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ABSTRACT: In this paper, we investigate an AM-FM
model for representing modulations in speech resonances. Specif-
ically, we propose a frequency modulation (FM) model for the
time-varying formants whose amplitude varies as the envelope
of an amplitude-modulated {AM) signal. To detect the modu-
lations we apply the energy operator ¥(z) = (£)? — z% and its
discrete counterpart. We found that ¥ can approximately track
the envelope of AM signals, the instantaneous frequency of FM
signals, and the product of these two functions in the general
case of AM-FM signals. Several experiments are reported on the
application of this AM-FM modeling to speech signals, bandpass
filtered via Gabor filtering.

1 Introduction

In his work on nonlinear modeling of speech production, Teager
(1, 2] used the nonlinear operator

Valz(n)] = 2°(n) — z{n - )z(n + 1) (1)

on speech-related discrete-time signals z(n). Kaiser [3] analyzed
V¢ and showed that it can detect the frequency of single sinusoids
and chirp signals, and has many useful properties; e.g.,

P 4[Ar™ cos(Qon + @)] = A*r®"sin?(Qy) (2)

Kaiser [4] recently introduced an operator closely related (see
Section 3} to ¥4 for continuous-time signals z(¢):

elz(t)] = [(1))* - =()z(t) (3)

where & = dz/dt, and investigated several properties of ¥.; e.g.,

¥ [Ae™ cos(wot + 8)] = A%e*wd (4)
V[z(t)y(t)] = 22 ()T fy()] + ¥* (1) ¥c[z (1)) (5)

¥, was onginally derived to track the energy of a linear un-
damped oscillator. Namely, when ¥, is applied to the oscillation
signal A cos(wpt), its output is (Awg)? and hence proportional to
the erergy of the source producing the oscillation. Thus ¥, can
be viewed as an energy operator.

Teager applied ¥4 to signals resulting from bandpass filter-
ing speech vowels in the vicinity of their formants. If the formant
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were due to a linear resonance, then by (4) the operator’s output
would be a decaying exponential. Teager observed, on the other
hand, several “energy™ pulses per pitch period, which he viewed
as indicating modulation of formants caused by nonlinear phe-
nomena such as rapidly varying separated air flow in the vocal
tract. In our work we interpret these energy pulses by using an
AM-FM model, ie., a frequency modulation (FM) mode] for the
variation of the center frequency of time-varying formants whose
amplitude varies like the envelope of an amplitude-modulated
(AM) signal. For pure AM and FM signals we found that the en-
ergy operators ¥. and ¥4 can approximately track the envelope
of AM signals, the instantaneous frequency of FM signals, and
the product of these two functions in the case of AM-FM signals.
Our coverage of these interesting results is brief and focuses on a
few special cases; more details and general cases are given in [J)].
We have also obtained promising experimental resuits from ap-
plying this AM-FM modeling to speech signals, bandpass filtered
via Gabor filtering.

2 Continuous-time AM and FM

Consider a general AM signal
X an(2) = e(t) cos(wet + 6) (6)

where e(1) is an envelope more slowly varying than the carner.
Henceforth, we shall drop the subscripts ¢,d from ¥, since it
will be clear from the context whether we refer to continuous or
discrete time. By (5) and (4),

UIX anr(1)] e?w? + cos?(w i + 8)¥(e) = [w.e(t)])?*(1 + error)

< e if W(e) € (wee)?
(7)

where = is meant as “approximated by the dominant term™. The
order of the approximation error in {6) (where by order we mean
the order of maximum value that a signal or a quantity can as-
sume) is O[¥(e)/(ew.)?]). In [5] it was shown that this error
order is € 1 if e(t) is eany bandlimited signal whose highest {re-
qQUENnCY W, is € w,. Then ¥ acts as an envelope detector, because
V¥ [e(t) cos(w.t + 8)) o [e(t)|. Two special cases for e(t) are: (i)
(AM with carrier) e{t) = 1 + ma(t), where a(t) is the AM infor-
matjon signal and m < 1 is the modulation index. (ii) (AM with
suppressed carrier) e(t} = a(t). For simplicity let e(¢) = cos(wqt)
with w, € w,. (as standard to assume in AM); then

U{cos(wyt) cos(w .t + 8)] = [w, cos(wa1)]? (8)
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The approximation error in (8) has order Ol{wafw.)?]; e.g., it is

< 10% if wyfw, <1/3,0r < 1% if ws fw, €0.1.
Consider now the general FM signal

XFar(t) = cos[é(t)] = cos(w.t + &f; f(r)dr + 8) (9)

where ¢(1) is the instantaneous phase, w. is the carrier frequency,
wi(t) = do/dt = w.+A f(t) is the instantaneous frequency, f(1) is
the FM information signal and varies more slowly than cos(wt),
and A is the maximum frequency deviation. It js assumed that
|f(2)] €1 and A € w,.. Applying ¥ to Xpas vields

Y Xpu(@)] = (6P +628 = (@14 emror)
2 (9) =[P , if ¢ < 2(s)

The error in (10) has order O[¢/2(¢)?]; if this is < 1, then ¥
tracks well the instantaneous FM frequency. For the special case
of an FM.chirp signal, f(t) = st and w;(t) = w, + Ast; then the
error order is € 1 if As €« w?. For bandlimited signals f with
highest frequency w; the error order is € 1 if Aw; < 2(w.)? [5].
Such a special case is the FM-sine signal, where f(1) = cos(w 1),
B = Afw; is the FM modulation index, and

Plcos(w.t + Bsin(wyt) + 8)] ~ wi(t) = {w, + A cos{wst)]* (11)

The error has order < 1ifeither ws €« w, (astandard assumption
in FM}, or & € w, (small frequency deviation), or both. For
example, the error will be < 10% if (Afw.) - (wys/fwc) € 1/5.

Consider now a general AM-FM signal, i.e., an FM signal
whose amplitude is the envelope ¢(t) of an AM signal:

Xarm(t) = e(i)cos|o(t)] = e(t)cﬂs{uct-f-&[: f(r)dr+8) (12)
Then, by (5) and (10),

V[ Xarm(t)] = e2(t)(¢)? + 282N 4 cos?(¢)U(e)

[e{t)ws()1*(1 + error) .

e(t)wi()]? o if é< 2($)? and ¥(e) < (em;
(13

&

The approximation error in (13) is of the order

{(error} = max (O [L] ,O [ @(*e)]) (14)
2(e)? (ed)?

This error is <« 1 if e{t), f(¢) are bandlimited signals whose
highest frequency is < w, {5]. Then v/¥le(t)cos(fwi(r)d7)] =~
le(t}wi(t) and thus the +/¥'s output is the product of two parts:
an FM instantaneous frequency wi(f} and the AM envelope |e(1)].
This result generalizes the tracking ability of ¥, which for
A cos{wpt) signals yields Awg, whereas for AM-FM signals the
constant amplitude A and frequency wq are replaced by the AM
envelope and the FM instantaneous frequency.

As a special case of the AM-FM model, let (1) = cos(w,?)
and f(?) = cos{wst). Then

V¥[cos(wyt) cos{wat+13 sinf{wyi)4+8)} = | cos(w,t)|[we.+ A cos(wyt)]

(15)
The error will be € 1if (i) A € w, or wi € we and (i) w, € w,.
If A & w,, then the w;(f) variations have much smaller amplitude
than that of cos(w,t), and AM dominates over M, i.e., the v¥
output follows the AM envelope signal. AM also wins over FM
Hwy €« 27/L < w, where L is the time duration of the analysis

window. If wy > 27/L % w,, then FM wins over AM, i.e., V¥
tracks the FM instantaneous frequency.

A by-product of the AM-FM model is a better algorithm for
FM detection. Taking the derivative of the FM signal cos ¢(t),
gives an AM-FM signal y(t) = —¢(t)sin¢(t) whose envelope
is the FM instantaneous frequency. Hence, applying (13) with
e = ¢ gives VU[y(t)] = [wi(t)]2. Thus, we can build an FM de-
tector from a differentiator followed by the ¥ operator. By (10),
V¥ applied to an FM signal tracks its instantaneous frequency
w;(1), but if /¥ is instead applied to the FM derivative, then
it tracks [w;(t)]%. Hence, the latter case will give a better FM
tracking, since the square law will emphasize the oscillations of
the instantaneous frequency.

Although all the results in Section 2 (for notational simplic-
ity) referred to unit-amplitude cosines with no exponential de-
cay, they can be easily extended to incorporate an amplitude
A and/or an exponential decay e™ in the input signal by just

multiplying the energy operator’s output with A%¢?!, because
Y[Ae z(1)] = A%e*¥|z(1)].

3 ' Discrete-time AM-FM

By discretizing derivatives we can obtain from ¥, an expression
closely related to ¥4 and thus link the two operators. We exam-
ined several cases, e.g., the 2.sample backward difference

E(t) = z(n) - 2(n — 1) = ¥ [z(t)] = Y4[z(n - 1)]  (16)

Likewise, the 2-sample forward difference 2 — z(n + 1) — z(n)
gives ¥3{z(n + 1)]. Thus both asymmetric 2-sample differences
succeed to transform ¥, into ¥4 (modulo one sample shift). How-
ever, Z-sample or J-sample symmetric differences fail because
they give more complicated expressions [5]. Next we apply ¥4 to
a few cases of discrete AM and FM signals.

Let X{n) = cos(Q2gn) cos(§lcn + 8) be an AM signal. From
the general property

Vafe(n)y(n)] = a:?(n}wy(nn+y*(n)wd[z(n)]—wd[x(n)m[y((n%]

1
and by (2) it follows that ¥[X(n)] is equal to cos 2(2,n)sin?(0,)
+[cos?(Q.n + ) —sin?(£),.)]sin?(Q,). Hence,

¥[cos(f2:n) cos(§2cn + @)] = [sin(£2.) cos(2,n)]? (18)

i sin®(Q,) <« tan?(Q,) (which holds if Q, < ).

Consider the discrete-time FM-sine signal
Y (n) = cos[¢(n)] = cos|Q.n + Bsin(Qn) + 6] (19)

where § = A/Q;, and the instantaneous frequency is li(n) =

dg(n)/dn = Q1.4+ A cos(tyn). For applying ¥ to Y (n) note that if

A = QcntPcos(Qy)sin(yn)+8 and B = Q.+ 8sin(Q;) cos(Qyn),
then Y (n+1)Y(n—1) = (cos 244 cos 2B)/2 = cos?( A)~sin?( B).

If Q2 is sufficiently small such that cos{Q1;) ~ 1 and sin(Q;) =~

{7, then cos(A) = Y (n), B = Q;(n), and by (1)

Ycos(¢(n))) = sin?[Q + A cos(§2yn)] (20)

All the results in Section 3 can be easily extended to incor-
porate an amplitude A # 1 and/or an exponential decay r® in
the input signal by just multiplying the output of ¥ by A2r2n,
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We conducted many experiments on synthetic discrete AM
and FM signals that verified the theoretical results and validated

the approximate formulas. Figure 1 illustrates some of the above
conclusions.

4 Modeling Speech Resonances

Teager’s work in steady-state vowels provides evidence for res-
onances with time-varying formants and amplitudes [2]. In our
work we mode] a single speech resonance by a damped AM-FM
model

R(n) = Ar™ cos(Q,n) cos{Qen + Ssin(Qyn) +8)  (21)

where £, is the center frequency of the formant, the instanta-
neous FM frequency Q;(n) = Q. + A cos(Q2yn) models the time-
varying formant, and A = 5Q; controls the amount of FM. The
AM envelope | cos(£1,n)| tracks the amplitude variations and r is
the rate of energy dissipation. Then by (18) and (20)

ﬁ{R(n)] r |Ar® cos(2an)sin{Q + A cos(Qyn))| (22)

This approximation assumes that £ is small and that Q, <
0. (see the discrete AM and FM case). Thus, vV¥[R(n)] is a
(damped) product of the envelope and the (sine of the) instan-
taneous frequency of the resonance. This class of signals may
serve as a model of energy pulses observed on actual speech
waveforms. An alternative model for the FM f{requency that
Is consistent with our previous analysis is the chirp Q;(n) =
. + Asn. In addition, an alternative envelope model would
be e(n) = 14+ mcos(f2,n) where m measures the amount of AM;
then V¥ [e(n)cos(f Q;(n))] = e(n)|sin Q(n)] if N/ is small and
s € Q. orm & 1[5

In our work we extract a single resonance by bandpass fil-
tering the speech signal with a Gabor filter, whose impulse and
frequency response are

h(t) = exp{—a*?)- cos(w,.?) (23)
T W— Wwe)? )+ L,
Hw) = 2‘/—; (EXp[-( e ) ]+exp{—( ;2 )2]) (24)

The (Gaussian shape of H(w)} avoids producing side lobes that
could produce false pulses in the W’s output. The bandwidth
(measured between the points at 10% of peak value)} is about
BW = 1.7a (in Hz). Qur design of the discrete bandpass Ga-
bor filter proceeds as follows: A center formant frequency F,
is manually selected from the short-time speech spectrum by
visual inspection. A value of a is selected such that BW ¢
[0.5F,, F.]. h(t) is discretized by replacing t with a7, where T is
sampling period, and truncating h(n) to a symmetric FIR fiiter,
h(n) = exp(—b?n?) - cos(§l.n), with =N < n < N, b = aT, and
{1, = 2rF.T. Then the Gabor bandpass filtering is performed
by convolving the truncated A(n) with the speech signal. The
integer ¥ is chosen to truncate the Gaussian envelope of h(n) es-
sentially to zero; e.g., N = 2.5/(aT} yields exp(~b*N?) = 0.002.

Fig. 2 shows (a) a segment of a speech vowel /e/ sampled
at F, = 30 kHz and (b) the cutput from v'¥ when applied to
a bandpass filtered version of (a) extracted around a formant at
F. = 3400 Hz using a Gabor filter with & = 10007 and N = 75.
Fig. 3 is similar to Fig. 2 but for a sustained vowel fa/ sampled
at 10 kHz with F_ = 2620 Hz, b = 15007, and N = 50. There
are present 2-3 pulses per pitch period, and the damped AM-

FM model (22) may approximately explain the shape of these
measured energy pulses. There have been cases where we have
observed only one major pulse per pitch period. This may be
partially explained by a low percent of (AM or FM) modulation
or by small (,,2;.

Equation (22) has generally both an AM and an FM com-
ponent. The pulses could be due to both or just one of them.
If A < Q (or if §1; < 27Fy < 1}, where Fp is the pitch {re-
quency), then AM wins over FM and V¥ follows essentially the
envelope of the resonance; such a case is illustrated in Fig. lc
via a synthetic AM-FM signal. If however 1, « 27 Fp < Qy {or
if m <€ 1 in the case of the 1 + mcos(§2,n) envelope), then the
FM dominates over AM. By testing ideas on synthetic AM-FM
signals and by running zero-crossing FM detectors on speech res-
onances, we have seen in our speech experiments that AM tends
to dominate FM. Also if the FM frequency deviation A is small,
then the exponential decay makes the F'M component harder to
detect. Thus additioral effort is required to isolate and purify

the FM component.
Finally, note that we have assumed in all the above analysis

and experiments the presence of a single resonance in the vocal

tract output. Actual speech vowels are quasi-periodic and may
consist of multiple resonances. Both these phenomena introduce
an additive component to the single resonance which may alter
the output of the energy operator. Consider the case that arises
when there are two formants closely spaced. Let’s model this
situation with the signal z(2) = sin{wt + 28) + sin(wqt). Then
z(t) = 2 cos{w,t+8)sin(w 1+8) is an AM signal whose carrier and
envelope frequencies are w, = () +w7)/2 and w, = (W) —wy)/2.
By (7), V¥[z(1)] & we| cos(w.t + )|, and hence /¥ will track the
envelope, if the approximation error order O[(1 ~ d)2/{1 + d)?]
is € 1, where d = wyfwy < 1 (assume uwy > wp). For this er-
ror to be < 10%, d > 0.5, i.e., the two formants must be less
than an octave apart. Then we observe an AM modulation of
one formant by the other. Consider also the case of two consecu-
tive pitch harmonics falling within the resonance bandwidth and
passing through the Gabor filter. Then the above model {con-
sisting of two additive sines) holds and may predict a possible
tracking of an AM envelope. However, this AM envelope varies
with a frequency roughly equal to the pitch frequency and thus
the modulation does not introduce additional pulses over a pitch
period. Finally, in the time-domain, closely spaced responses
from the vocal tract due to consecutive pitch pulses may also in-
troduce fluctuations in v/¥’s output which are not consequences
of the AM or FM modulation of the resonance itseif.

5 Conclusions

Qur discussion motivates the following model for the vocal tract
response (over a pitch period):

K
5{n) = Z Agri cos(§l, en) cos(f2 x + Bisin(Ly4m) + 6} (23)
k=1

where A is the number of resonances. We also may include in-
teraction between resonances by allowing coupling beiween the
{1,'s and the §1s's of the same resonance or among different reso-
nances. It is important to emphasize that this is not an AM-FM
model of speech production, but rather the AM-FM is a math-
ematical vehicle to model the acoustical consequences of some

nonlinear mechanisms of speech production. One approach to
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obtaining the parameters of such a model would be to 1} find the
K center frequencies §2. (e.g., from the short-time Founer trans-
form), 2) iteratively extract each {requency band and model it as
an AM-FM signal by using the operator ¥, 3) subtract the mod-
eled AM-FM component from the total speech signal and model
the remainder of the resonances.
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