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ABSTRACT

Viscous morphological operators have shown very good perfor-
mance in regularizing various image analysis tasks such as detec-
tion of intensity-varying boundaries and segmentation. This paper
presents a novel formulation of viscous morphological operators
as solutions of nonlinear partial differential equations (PDEs) of
the hyperbolic type with level-varying speed. Efficient numerical
algorithms are also developed to solve these PDEs and generate
the viscous operations. It also generalizes the viscous operators
by studying the class of intensity level-varying operators, of which
special cases are intensity adaptive connected operators such as vol-
ume openings and viscous reconstruction filters. We present both
theoretical aspects and applications of the above ideas.

Index Terms— Morphological operations, Adaptive filters, Par-
tial differential equations.

1. INTRODUCTION

Viscous morphological operators have shown very good perfor-
mance in regularizing various image analysis tasks such as detection
of intensity-varying boundaries and segmentation [18, 19]. The-
oretical aspects of viscous lattices and viscous connections have
been studied in [16]. Standard morphological operators that depend
on a structuring element act everywhere on an input image at a
predefined fixed scale (size) and all the structures in the image are
processed identically whatever their luminance. However, in many
applications, two structures of same size but of different luminance
(or contrast) may not have the same visual importance and should
not be processed identically. For example, in segmentation tasks,
fuzzy or noisy contours require a high amount of modeling while
precise contours should not be smoothed. Viscous morphological
operators [11, 18, 19] can be seen as filters of locally adaptive ac-
tivity, which in the aforementioned applications offer a systematic
way to choose between a strong or a weak regularization. Specifi-
cally, by assuming that points of high luminance are certain while
points of low luminance are uncertain (or conversely), the size of the
structuring element is defined at each pixel as a function of the local
luminance.

The viscous operators may have a considerable computation
load since they require a different filtering for each intensity thresh-
olding level and then stacking. In this paper we present a novel and
simple to implement method that generates isotropic viscous mor-
phological operators using hyperbolic partial differential equations
(PDEs) whose curve speed varies monotonically according to the
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intensity. They stem from the corresponding constant-speed PDEs
that model standard flat morphological operations [3, 8]. These new
PDEs offer both an efficient way to implement the viscous filters as
well as a continuous dynamic model.

In contrast to the all-discrete approaches that dominated image
processing in the recent past, in computer vision since the late 1980’s
there have been proposed continuous models for several tasks based
on PDEs. The discrete part of such approaches comes only in the
difference equations (numerical algorithms) that approximate the so-
lution of these PDEs. Motivations for using PDEs include better and
more intuitive mathematical modeling, connections with physics,
better approximation to the Euclidean geometry of the problem, and
existence of efficient numerical algorithms for solving them. Sev-
eral classes of nonlinear PDEs used in image analysis and vision
are based on or related to morphological operations. In the early
1990s three teams of researchers independently published nonlinear
PDEs that model the continuous morphological scale-space [1,3,20].
Many refinements of the above three works for morphological PDEs
followed. Recent reviews can be found in [6, 8]. Our PDE work in
this paper extends the approach in [3, 8]. In parallel to the develop-
ment of the above ideas, there have been some advances in curve-
surface evolution using level-set methods [12]. Many applications
to image processing and computer vision have followed since then.
Early examples include the implementation by [2, 14] of the mor-
phological PDEs of [3] for continuous-scale dilations and erosions
by using the level-set algorithms of curve evolution.

The next section presents the definitions and some examples of
viscous morphological operators. Further, we propose their exten-
sion and unification into a more general class of morphological op-
erators that are intensity-level adaptive and include various classes of
connected filters. Then we present the major contribution of this pa-
per, the PDE formulation of viscous operators, followed by efficient
numerical algorithms to solve them and simulation examples.

2. VISCOUS MORPHOLOGICAL OPERATORS

The dilation and erosion of a set X by a disk of radius λ, i.e. the
Minkowski addition X ⊕ λB and subtraction X � λB, are denoted
by δλ(X) and ελ(X) respectively (B is the unit disk). Similarly,
δλ(f) and ελ(f) denote the flat dilation and erosion of a graylevel
image f by such a disk.

A graylevel image f can be decomposed into level sets Xh =
{x ∈ E : f(x) ≥ h} and can be reconstructed from them: f =∨

h h · χh(f). Here, E denotes the image domain space and χh is
the indicator function of Xh: ∀x ∈ E, χh(x) = 1 if x ∈ Xh, else
χh(x) = 0.

The standard flat morphological operators commute with thresh-
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olding. Further, they process all level sets identically. For example,
the flat dilation and erosion of a function f : E → [0, M ] satisfy:

δλ(f) =
∨

h

h δλ[χh(f)] and ελ(f) =
∨

h

h ελ[χh(f)] (1)

On the contrary, the viscous morphological dilations and erosions
proposed in [19] process different level sets at different scales:

δv
λ(f) =

∨

h

h δλ(h)[χh(f)] and εv
λ(f) =

∨

h

h ελ(h)[χh(f)]

(2)
In theory, λ(h) can be any function of the luminance h assuming val-
ues in the range [0, λm], where λ is the maximal scale of an operator
applied on any level set. For the two types of viscous operators stud-
ied in [19], λ(h) is a linear function of h: λ(h) = λm(M − h)/M
or λ(h) = λmh/M . In the first case, points of lowest luminance
are strongly dilated (λ(0) = λm) while points of highest luminance
are left unchanged (λ(M) = 0), and conversely in the second case.
This leads to the definition of two couples of dual viscous erosions
and dilations (we set λm = M ):

δv1
(f) =

∨
h h δM−h[χh(f)] , δv2

(f) =
∨

h h δh[χh(f)]
εv1(f) =

∨
h h εM−hχh(f) , εv2(f) =

∨
h h εh[χh(f)]

(3)

εv1 and δv2
are dual, εv1(−.) = −δv2

(.), but do not define

an adjunction. Only the couples (εv1,δv1
) and (εv2,δv2

) define
adjunctions in the sense of Galois:

δvi
(f) ≤ g ⇐⇒ f ≤ εvi(g), i = 1, 2 (4)

The adjunctions imply that the compositions δv1εv1, δv2εv2,

εv1δv1
and εv2δv2

produce openings and closings. Some of these
are the viscous openings and closings defined in [18]:

γv1 =
∨

h h γM−hχh , ϕv1 =
∨

h h ϕM−hχh

γv2 =
∨

h h γhχh , ϕv2 =
∨

h h ϕhχh
(5)

where γh = δhεh and ϕh = εhδh are the flat opening and closing by
a disk or radius h, respectively. While (γv1, ϕv2) and (γv2, ϕv1) are
couples of dual transforms, only two of the four viscous open/close
operators from (5) equal the compositions of some types of viscous
dilations and erosions from (3):

γv2 = δv2εv2, ϕv1 = εv1δv1
(6)

The other two compositions yield inequalities:

γv1 ≥ δv1εv1, ϕv2 ≤ εv2δv2
(7)

Figure 1 illustrates the behavior of a viscous dilation of type 1
and its use for reconnecting thin contours lines. The viscous dilation
is compared to the standard dilation. The viscous operator allows
to preserve high intensities while dilating points of lowest intensity.
Crest lines of the original image are preserved; holes are filled [19].

Alternating sequential filters (ASFs) [15] are useful in image
simplification applications. Their viscous extensions are also pow-
erful, as illustrated by the example of Fig. 2. Viscous (ASFs) consist
of multiscale viscous open/closings, possibly of the reconstruction
type, and can create very useful filtering effects. Figure 2 shows such
a viscous reconstruction ASF of type 2, which performs a luminance-
adaptive reconstruction ASF at each level:

ASFv2
rec(f) =

∨

h

h ·Rec[χh(f)|ϕhγh · · ·ϕ2γ2ϕ1γ1(χh(f))] (8)

where Rec(A|B) is a binary reconstruction filter yielding A if A ∩
B �= ∅, else ∅. This filter performs very well if one wants to preserve
the shapes that are close to the reference sample for any size while
simplifying the rest of the image. The original image in Fig. 2 is
color, and its processing is based on a total ordering of the color
vectors (by computation of the Mahalanobis distance [5] combined
with a lexicographic cascade [10]), which makes the return to the
color space easy [4]. The simplified color images are obtained by
filtering the graylevel distance map.

3. INTENSITY LEVEL ADAPTIVE OPERATORS

We extend the concept of viscous operators to a general class of
intensity level-adaptive operators. Consider the classic scheme of
a building a level-invariant flat operator ψ from its binary version:

ψ(f) =
∨

h

h · ψ[χh(f)] (9)

Now, if we vary the binary operator ψh at each level, we can build a
level-varying semi-flat operator

φ(f) =
∨

h

h · ψh[χh(f)] (10)

provided that all ψh are increasing operators. We give several gen-
eralized examples from connected operators. (Next, the level h will
assume only integer values.) (A) Intensity-adaptive Reconstruction
filters: Consider a reconstruction opening ρ−(f |m), with marker m
and reference f . If we create m from multiscale erosions and vary
the erosion scale at each level (from a maximum s to a minimum
s/M ), we obtain a ‘viscous’ reconstruction opening at scale s:

ρv−
s (f |m) =

M∨

h≥1

h · ρ−[χh(f)|χs/h(m)]

(B) Volume opening: This was defined in [17] as an adaptive area
opening γ whose scale varied at level h so that Volume = h ·
Area ≥ λ. It can now be seen as an intensity-adaptive connected
filter for which ψh equals at each level an area filter α with parame-
ter λ/h, where λ is the scale of the volume opening

γλ(f) =

M∨

h≥1

h ·αλ/h(f)

(C) Viscous ASF: In (8) we defined a viscous reconstruction ASF of
type 2, used in Fig. 2. Similarly, we can define viscous ASFs based
on area open/closings. (For type 1 we should start with closings.)

4. PDES FOR VISCOUS OPERATORS

The multiscale dilation and erosion of an image f : R
2 → R by a

unit disk B as the scale-space functions

δ(x, y, t) � (f ⊕ tB)(x, y), ε(x, y, t) � (f � tB)(x, y)

where δ(x, y, 0) = ε(x, y, 0) = f(x, y). Then, the PDEs generating
the multiscale flat dilations and erosions of f are

∂tδ = ‖∇δ‖, ∂tε = −‖∇ε‖, (11)

where ‖ · ‖ is Euclidean norm. (For more general shapes B and
norms see [3, 8].) For 1D images, the disk becomes the interval
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(a) (b) (c) (d) (e) (f)

Fig. 1. Connection of thin lines by viscous dilation. (a) Original image. (b) Result of a standard dilation. (c) Result of a viscous dilation

δv1
(of same maximal size). (d),(e), (f) are the watershed lines [9] of (a), (b), (c).

(a) (b) (c) (d)

Fig. 2. Image simplification by viscous filtering. (a) Original image. (b) Mahalanobis distance map (the reference is a daisy). Viscous (c) and
standard (d) alternating sequential filters by reconstruction (of same size).

[−1, 1], and we replace ‖∇u‖ in all the above with |∂xu|. Examples
of generating multiscale morphological operations by PDEs of the
type ∂ut = ±‖∂xu‖ is shown in Fig. 3 (top).

The main objective is to find PDEs for the viscous dilations and
erosion, since they are the building blocks of the rest viscous op-
erators. We propose two models of PDEs for viscous dilations and
erosions. Each model comes as a pair. First,

∂tδ
v1(x, y, t) = (fmax − δv1(x, y, t))‖∇δv

1‖
∂tε

v1(x, y, t) = −(fmax − εv1(x, y, t))‖∇εv
1‖ (12)

where fmax = maxx f(x, y). To prove that they generate vis-
cous operations, we use the fact from the level-set approach of [12]
that the level curves of the function φ(x, y, t) that satisfies the
PDE ∂tφ = β(x, y, t)‖∇φ‖ move on the plane with normal speed
β(x, y, t). Thus, the isoheight curve at level h of δv

1 , which is the
boundary of the level set Xh, moves with speed fmax − h, which is
equivalent to the first type of viscous dilation. One generalization of
the above PDEs is to replace the monotonic speeds β = fmax − δ
with β = max(a − δ, 0) for some constant a. By using as speed
anchor the global min fmin of the initial function, we obtain another
pair of viscous operations:

∂tδ
v2(x, y, t) = (δv2 − fmin)‖∇δv

2‖
∂tε

v2(x, y, t) = −(εv2 − fmin)‖∇εv
2‖ (13)

In both models, the initial condition is the original image: δv(x, y, t) =
εv(x, y, t) = f(x, y). If f ≥ 0, we may set fmin = 0.

5. NUMERICAL ALGORITHMS FOR PDES

The PDEs generating the flat or viscous dilations or erosions of
f by disks are special cases of Hamilton-Jacobi PDEs of the type
φt + β||∇φ|| = 0, with initial condition φ(x, y, 0) = f(x, y)
and speed β = ±(φmax − φ). In numerical simulations, the goal
is to compute an approximation Φn

i,j of the true solution values

φ(iΔx, jΔy, nΔt) on a grid with spatial steps Δx, Δy and time
(scale) step Δt, given the initial values Φ0

i,j = f(iΔx, jΔy) and
the velocities βij = β(iΔx, jΔy). Such a first-order algorithm [12]
replaces ∂/∂t with a forward difference and space derivatives with
upwind combinations of finite differences

D+xΦn
i,j � Φn

i+1,j−Φn
i,j

Δx
, D−xΦn

i,j � Φn
i,j−Φn

i−1,j

Δx

D+yΦn
i,j � Φn

i,j+1−Φn
i,j

Δy
, D−yΦn

i,j � Φn
i,j−Φn

i,j−1
Δy

and iterates the following:

Φn+1
i,j = Φn

i,j − Δt[(βij ∨ 0)∇+ + (βij ∧ 0)∇−] (14)

where n = 0, 1, 2, ..., (Tmax/Δt), Tmax is the maximum time (or
scale) of interest, and ∇+,∇− are two different discretizations of
the gradient magnitude required for positive and negative speed, re-
spectively. One such discretization scheme was proposed in [12].
We use here an alternative discretization for the gradient magnitude
results by replacing the partial derivative magnitudes |φx|, |φy| in
‖∇φ‖ with the partial morphological derivatives Mx,My and us-
ing the differences D±x, D±y in place of the left/right derivatives
required for Mx,My , as done in [7, 8]:

∇+
MD = [max(0, D−x,−D+x)2 + max(0, D−y,−D+y)2]1/2

∇+
MD = [min(0, D−x,−D+x)2 + min(0, D−y,−D+y)2]1/2

(15)
This M-derivative discretization is less diffusive and faster than the
gradient discretization of [12]. It is actually equivalent to but slighty
faster than the gradient discretization proposed in [13] for solving
the eikonal PDE. It is also interesting that the direct discretization of
morphological derivatives yields a monotone and consistent numer-
ical approximation to the Hamiltonian ||∇φ||.

The PDE approach provides a geometrically much better ap-
proximation to implementing multiscale morphological operations
with Euclidean disks and hence avoid the abrupt shape discretiza-
tion inherent in modeling digital dilations using discrete disks. Ex-
amples of generating multiscale viscous morphological operations

2202



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PDE−based Multiscale Flat Dilations

(a) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PDE−based Multiscale Flat Erosions

(b) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PDE−based Multiscale Flat Openings

(c) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PDE−based Multiscale Flat Dilations

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
PDE−based Multiscale Viscous Dilations (VD1)

(e) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
PDE−based Multiscale Viscous Erosions (VE1)

(f) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
PDE−based Multiscale Viscous Dilations (VD2)

(g) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
PDE−based Multiscale Viscous Erosions (VE2)

(h)

Fig. 3. Top: PDE-based evolutions (dash) of multiscale flat dilations, erosions, openings, and closings of a 1D signal f (solid). Bottom:
PDE-based evolutions of the two types of multiscale viscous dilations and erosions for same initial 1D signal f .

by PDEs of the type ∂ut = ±(umax − u)‖∂xu‖ and ∂ut = ±(u−
umin)‖∂xu‖ are shown in Fig. 3 (bottom).

6. CONLUSIONS

This paper generalizes the viscous operators of [18, 19] into a gen-
eral class of intensity level adaptive operators, whose special cases
include luminance-adaptive reconstruction and area filters as well
as ASFs. Further, the paper introduces nonlinear scale-space PDEs
that model these viscous operators and corresponding numerical al-
gorithms that provide digital implementation with isotropy and in-
creased speed (since images are not processed level by level). Image
simulation examples demonstrate the utility of the viscous filters.
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