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FRACTAL ASPECTS OF SPEECH SIGNALS:
DIMENSION AND INTERPOLATION
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ABSTRACT: The nonlinear dynamics of air flow during
speech production may often result into some small or large de-
gree of turbulence. In this paper we quantify the geometry of
speech turbulence, as reflected in the fragmentation of the time
signal, by using fractal models. We describe an efficient algo-
rithm for estimating the short-time fractal dimension of speech
signals and use it for speech segmentation and sound classifica-
tion. We also develop a method for fractal speech interpolation,
which can be used to synthesize controlied amounts of turbulence
in speech or to increase its sampling rate by preserving not its
bandwidth (as classically done) but rather its fractal dimension.

1 Speech Aerodynamics and Fractals

Preservation of momentum in the air flow during speech produc-
tion yields the Navier-Stokes governing equation [8]

p(%’ti+a-va)=_vp‘+pv’ﬂ (1)

where p is the air density, p is the air pressure, 7 is the (vector)
air particle velocity, and u is the (assumed constant) air viscos-
ity coefficient. Flow compressibility is assumed negligible since
in speech flow (Mach numbers)?> « 1. The Reynolds number
Re=pU L/u characterizes the type of flow, where U is a velocity
scale for 7 and L is a typical length scale, e.g., the tract diam-
eter. For the air we have very low u and hence high Re. This
causes the inertia forces to have a much larger order of magni-
tude than the viscous forces. While u is low and may not play an
important role for the speech air flow through the interior of the
vocal tract, it is essential for the formation of boundary layers
along the tract boundaries and for the creation of vortices. A
vortez is a flow region of similar (or constant) vorticity &, where
& = V x 1. Vortices in the speech air flow have been experimen-
tally found above the glottis in [6, 7] and theoretically predicted
in [6, 4) using simple geometries. There are several mechanisms
for the creation of vortices: 1) velocity gradients in boundary
layers, 2) separation of flow, which can easily happen at cavity
inlets due to adverse pressure gradients (see [6] for experimen-
tal evidence for separated flow during speech production), and
3) curved geometry of tract boundaries, where due to the dom-
inant inertia forces the flow follows the curvature and develops
rotational components. After a vortex has been created, it can
propagate downstream, governed by the vorticity equation [8]
i)
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The term & - Vi causes vortex twisting and stretching, whereas
vV33 produces diffusion of vorticity. As Re increases (e.g., in
fricative sounds or during loud speech), all these phenomena
may lead to instabilities and eventually result into turbulent flow,
which is a ‘state of continuous instability’ [8] characterized by
broad-spectrum rapidly-varying (in space and time) velocity and
vorticity. The transition to turbulence during speech production
may occur for lower Re closer to the glottis because there is an
air jet flowing out from the vocal cords and turbulence starts for
jets at much lower Re than for flows attached to walls (as is the
case downstream the vocal tract).

Modern theories that attempt to explain turbulence 8] pre-
dict the existence of eddies (vortices with a characteristic size
A) at multiple scales. According to the energy cascade theory,
energy produced by eddies with large size is transferred hierarchi-
cally to the small-size eddies which dissipate it due to viscosity.
A related result is the famous Kolmogorov law

E(k,r) o r¥3k~%/2 (K in a finite range) 3)

where k = 27/X is the wavenumber, r is the energy dissipa-
tion rate, and E(k,r)is the velocity wavenumber spectrum, i.e.,
Fourier transform of spatial correlations. In some cases this mul-
tiscale structure of turbulence can be quantified by fractals. Man-
delbrot {2] and others have conjectured that several geometrical
aspects of turbulence (e.g., shapes of turbulent spots, boundaries
of some vortex types found in turbulent flows, shape of particle
paths) are fractal. Several researchers also attempt to understand
aspects of turbulence as cases of deterministic chaos. Chaotic dy-
namical systems converge to attractors whose sets in phase space
or related time-series signals can be modeled by fractals. Now
there are several mechanisms in high-Re speech flows that can
be viewed as routes to chaos; e.g. vortices twist, strech, and fold
(due to the bounded tract geometry). This process of twisting,
stretching, and folding has been found in low-order nonlinear
dynamical systems to give rise to chaos and fractal attractors.
All the above theoretical considerations and experimental ev-
idence motivated in this paper our use of fractals as a mathemat-
ical and computational vehicle to analyze and synthesize various
degrees of turbulence in speech signals. One of the main quantita-
tive ideas that we focus on is the fractal dimension of speech sig-
nals, because it can quantify their graph’s fragmentation. Since
the relationship between turbulence and its fractal geometry or
the fractal dimension of the resulting signals is currently very lit-
tle understood, in this paper we conceptually equate the amount
of turbulence in a speech sound with its fractal dimension. Al-
though this may be a somewhat simplistic analogy, we have found
the short-time fractal dimension of speech to be a feature useful
for speech sound classification and segmentation. To measure it
we developed a simple and efficient algorithm based on multi-
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scale morphological filters that iteratively expand and contract
the signal’s graph. We also introduce a method for synthesizing
controlled amounts of turbulence in speech by fractal interpola-
tion: i.e., we increase the speech sampling rate by synthesizing
fractal functions of prescribed fractal dimension that interpolate
the original low-rate speech data. Interpolating speech is very
important for multirate analysis and coding and has been classi-
cally done by preserving its bandwidth. In contrast, our speech
interpolation method offers preservation of its fractal dimension.

2 Fractal Dimension of Speech

Let the continuous function S(t), 0 < t < T, represent a short-
time speech signal, let the set XCR? represent its graph, and
let Dy be the Hausdorfl dimension of X. The signal S is called
Jractal if its graph is a fractal set [2], i.e., if Dy > 1. Next we
discuss two other dimensions closely related to Dy.

Minkowski- Bouligand dimension Dysg: Dilate X with a disk
of radius £ and thus create a Minkowski cover. Find the area A(¢)
of the cover, and set its multiscale length equal to Lim,_o L(¢),
where L(¢) = A(e)/2¢. Then Dpsp is the constant D in the power
law L(e) & £'~D as ¢ — 0, which L(e) obeys if X is fractal.

Boz counting dimension Dp: Partition the plane with a grid
of squares of side € and count the number N{¢) of squares that
intersect X'.<Then Dp = lim,_.olog[N(c)]/ log(1/e) is obtained
by replacing the Minkowski cover area with the box cover area.

In general, 1 £ Dy < Dyp = Dp < 2. In this work we
focus only on Dasp which we shall henceforth call the “fractal
dimension” D, because: 1) It coincides with Dy in many cases
of practical interest; 2) It is much easier to compute than Dy.
3) It will be applied to sampled signals where most approaches
can yield only approximate results. 4) It can be more robustly
estimated than Dg, which suffers from uncertainties due to the
grid translation or its spacing ¢ relative to the signal’s amplitude.
(Dp = Dasp in the continuous-time case, but they correspond to
two different algorithms (with different performances) for sam-
pled signals.)

As shown in [3], D will not change if we replace the disks in
the Minkowski cover of X with other compact convex symmetric
shapes BC R?. Thus,ifeB = {eb: b€ B} is an ¢-scaled shape B,
we can obtain multiscale multishape area distributions Ap(e) =
Area(X®cB), where @ is the morphological dilation. Assuming
now that Ag(e)  £270 as ¢ — 0 yields that

logA—?—z(E—) = D-]og(%) + constant , as € — 0. (4)
Instead of implementing the two-dimensional dilation X@eB,
it is computionally more efficient [3] to obtain Ag(e) via one-
dimensional dilations S®G, and erosions $S8G, of the signal §
by the function G,(t) = sup{y € R: (,y) € €B)} at all scales ¢:

T
Ap(e) = /o [$8G.(t) - S6G.(1))dt. (5)

These dilations and erosions create an area-strip as a layer either
covering or being peeled off from the graph of the speech signal
at various scales.

For a discrete-time finite speech signal S[n}, n = 0,1,..., N,
we use covers at discrete scales ¢ = 1,2,..., and restrict the dis-
crete set B to have radius=1. Then the corresponding 3-sample
function G[r] (at scale ¢ = 1) can have only two shapes: a trian-
gle or a rectangle [3]. In both cases G[0] = & > 0 is allowed to
vary and match the amplitude range of the signal S. The main

result in the discrete case is the following recursive zigorithm [3]:

SeGln] = max {S[n+k+GH)}, e=1
S QG(!'Pl) = (Séé,)@G ) &€= _2»--~;Emaz

(6)
Likewise for the erosions S6G,. Next, we compute the areas
Apgle] by replacing the foT in (5) with summation TN . Fi-
nally, we fit a straight line using least-squares to the plot of
(log Aple])/e?,log 1/€), whose slope gives the fractal dimension of
S. For “real world” fractal signals the assumption of a constant
D at all scales ¢ is not true. Hence, instead of a global dimen-
sion, we estimate the local fructal dimension LFD|e}, which for
each £ is equal to the slope of a line fitted to the log-log plot
of (4) over a moving window {e,6 + 1,...,£ + 9} of 10 scales.
We henceforth select A = 0, which makes G a binary function,
because then the erosions/dilations can be performed faster, and
the algorithm yields fractal dimensions that are invariant to any
affine transformation § — a5+ b of the amplitude range (a > 0).
Figure 1 shows 30 msec segments of unvoiced fricative, voiced
fricative, and vowel speech sounds extracted from words spoken
by a male speaker and sampled at 30 KHz (¥ = 900) together
with their corresponding profiles of LFD[¢] for € = 1,..,90, i.e.,
for time scales 1/15 — 6 msec. The reason for the higher than
usual sampling rate is to preserve the fragmentation of the sam-
pled signal as close as possible to that of the continuous-time
speech signal. We have conducted many experiments similar
to Fig. 1, from which we concluded the following: 1) Unvoiced
fricatives (/F/, /8/, /S/), africates, stops (during their tur-
bulent phase), and some voiced fricatives like /Z/ have a high
fractal dimension € [1.6,1.9] at all time scales (mostly constant
at scales > 1 msec), consistent with the turbulence phenomena
present during their production. 2) Vowels at small scales (< 0.1
msec) have a small fractal dimension € [1,1.3]. This is consis-
tent with the absence or small degree of turbulence (e.g., for loud
or breathy speech) during their production. However, at scales
> 2 -3 msec (i.e., at scales of the same order as the distance be-
tween their major consecutive peaks) their dimension increases
appreciably. 3) Some voiced fricatives like /V/ and /TH/ bave
a mixed behavior. If they don’t contain a fully developed tur-
bulence state, at scales < 0.1 msec they have a medium fractal
dimension D € {1.3,1.6), which increases at scales > 5 msec (for
the same reasons as for vowels) and may decrease for intermediate
scales. Otherwise, their dimension is high (> 1.6), although often
somewhat lower than that of their unvoiced counterparts. Thus,
for normal conversational speech, we have found that its short-
time (e.g., over ~ 10— 30 msec frames) fractal dimension D (eval-
uvated at a scale < 0.1 msec) can roughly distinguish these three
broad classes of speech sounds by quantifying the amount of their
waveform’s fragmentation. However, for loud speech (where the
air velocity and Re increase, and hence the onset of turbulence
is easier) or for breathy voice (especially for female speakers) the
dimension of several speech sounds, e.g. vowels may significantly
increase. In general, the D estimates may be affected by sev-
eral factors including a) the time scale, b) the specific discrete
algorithm (usually most algorithms for sampled signals underes-
timate the true D since some signal’s fragmentation has been lost
during sampling), and c) the speaking state. Therefore, we often
don’t assign any particular importance to the absolute D esti-
mates but only to their average ranges and relative differences.
We also used D estimated at a single small time scale, i.e.,
LFD[e = 1], as a short-time feature for purposes of speech seg-
mentation and for signaling important events along the speech
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signal. Fig. 2 shows the waveform of a word and its short-time
fractal dimension, average zero-crossing rate, and energy as func-
tions of time. While D behaves similarly with zero-crossings, it
has several advantages: For example, it can segment and distin-
guish between a vowel and a voiced fricative, whereas the zero-
crossings can fail (see Fig. 2) because the rapid fluctuations of the
voiced fricative may not appear as zero-mean oscillations which
would increase the zero-crossing rate but as a graph fragmenta-
tion which increases D. We have also observed cases where D
could detect voiced stops but the zero-crossings could not.
Related to the Kolmogorov 5/3-law (3) is the fact that the
variance of velocity differences between two points at distance
AX varies « (AX)*3, These distributions have identical form
to the case of fractional Brownian motions {2] whose variances
scale with time differences AT as (AT)*H, 0 < H < 1, the
frequency spectra vary oc 1/f2#+! and time signals are fractal
with dimension D = 2 — H. Thus, putting H = 1/3 leads to
D = 5/3 for speech turbulence. Of course, Kolmogorov's law
refers to wavenumber (not frequency) spectra and we dealt with
pressure (not velocity) signals from the speech flow. Thus we
should be cautious on how we interpret this result for speech.
However, it is interesting to note that in our experiments with
fricative sounds we often observed D (for time scales < 0.1 msec)
in the range [1.65,1.7) or sometimes exactly 5/3=1.67. In [5] a
global dimension D = 1.66 was reported for speech signals but
no mention of the 5/3 law was made, the D estimation algorithm
was different, and the time scales were much longer, i.e., 10 msec
to 2 sec; thus in [5] the time scales were above the phoneme level,
whereas our work is clearly below the phoneme time scale.

3 Fractal Interpolation of Speech

Bandlimited discrete signal interpolation has been done tradi-
tionally by upsampling (i.e., by inserting zeros between consec-
utive signal samples) and passing the upsampled signal through
a Jow-pass linear filter to smooth the abrupt transitions during
gaps, while preserving the bandwidth. Given the importance of
fractal dimension for speech, we develop here an alternative ap-
proach to interpolate speech by synthesizing and upsampling a
fractal function that interpolates the given low-rate speech and
can have any desired fractal dimension.

Before we discuss fractal speech interpolation, we summarize
basic ideas from the theory of fractal interpolation functions [1].
Given is a set of data points {(zp,ys) € R*n=0,1,2,...N> 1}
on the plane, where z,_; < z,. In the complete metric space §
of all continuous functions g : [zg, 2] — R such that g(zq¢) = yo
and g(zn) = yn define the function mapping ¥ by

W(g)(l’) = Cﬂ(z_bn)/aﬂ+Rn9((z-bn)/an)+dn y T € [In-lqzn]
(7)
where n = 1,2,...,, N, the R, € (~1,1) are free parameters, and
the 4N parameters a,, by, ¢y, dn, are uniquely determined by
anZo + bn =ZTn-1 , GnIN T bn = Tn (8)
Royotcnzo+dn=yn1 , Rayv+cizn+dua=yn (9)
Under the action of ¥ the graph of the input function g is mapped
to the graph of the output ¥(g) via affine mappings (z,y) —

(az + b, Ry + ¢z + d), which include contractions and shifts of.

the domain and range of g. ¥ is a contraction mapping in G
and has a unique fixed point which is a continuous function F :
[z0,zn] — R that interpolates the given data; i.e., F(z,) = yn
forn=20,1,..,N. Fis called a fractal interpolation function, be-

cause quite often the fractal dimension D of its graph A’ exceeds
1. Specifically, if N_, |Rn] > 1 and {2, y) are not all collinear.
then D is the unique real solution of "7_, |R.[a2~1 = 1; other-
wise, D = 1. If a, = 1/N for all n, then

log (a1 1Rnl)

D=1+ log N

(10)
Thus by choosing the vertical scaling ratios R,'s we can synthe-
size a fractal interpolation function of any desired fractal dimen-
sion. F can be synthesized by iterating ¥ on any initial {uction
gin G;ie., F =limy_e ¥°*(g) where ¥°*(g) = ¥[¥°:~1)(g)].

Let S,[n], n = 0,1,.., N be an original short-time speech seg-
ment. To fractally interpolate it by a factor L we start from the
N + 1 data pairs (z, = nL,yp, = So[n]) with zy = NL = A, set
a, = 1/N, b, = z,_1, and select R, = R € (-1,1). Then there
is a unique fractal interpolation function F(z), z € {0, M), which
interpolates the given data, i.e, F(nl) = S,[n}. R = 0, F is
the piecewise-linear interpolant of the data. The graph of F has
fractal dimension D = 2 + log |R|/logN if 1 > |R| > 1/N, and
D =1if |R| £ 1/N. The larger |R|, the larger D, the rougher F
looks. Based on F we can up-sample S, to a 1 : L interpolated
signal Si[m] = F(m), m = 0,1,..,M. We use the single scal-
ing ratio R as a parameter to control the fractal dimension (and
hence the amount of turbulence) in the interpolated speech. 1If we
select R = NP=2 where D is the measured short-time fractal di-
mension of the low-rate signal S,, then we essentially interpolate
speech by preserving its fractal dimension. Fig. 3a shows a 26.7
msec original speech segment from the voiced fricative /V/ sam-
pled at 30 KHz. This was decimated to a signal S, at 6 KHz; Fig.
3b shows S, upsampled at 30 KHz using the classical bandlimited
1:5 interpolation. Fig. 3c shows the 1:5 fractal interpolation S;
of S, using a ratio R corresponding to a measured D = 1.66. We
see that the bandlimited interpolation cannot reconstruct some
of the high frequency structure since it preserves the original (3
KHz) bandwidth, whereas the fractal interpolation (preserving
the signal’s fractal dimension) reconstructs part of this high fre-
quency structure. We have also applied this fractal interpolation
method to speech unvoiced fricatives and vowels and observed
the same good consistency in the amount of fragmentation be-
tween the original high-rate speech and the fractally interpolated
low-rate speech.
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Figure 1. Top row shows waveforms from speech sounds. Bottom row shows their local fractal dimensions.
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Figure 2. Speech waveform of the word /soothing/ sampled

at 30 KHz and short-time speech measurements over a 10 msec
window, computed every 1 msec and post-smoothed by a 3-point

median filter.
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Figure 3. Fractal Interpolation of Speech (N = 160, L = 5, M = 800; D = 1.66 = R = 0.2).
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