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Abstract. The classical morphological segmentation paradigm is based
on the watershed transform, constructed by flooding the gradient im-
age seen as a topographic surface. For flooding a topographic surface,
a topographic distance is defined from which a minimum distance algo-
rithm is derived for the watershed. In a continuous formulation, this is
modeled via the eikonal PDE, which can be solved using curve evolution
algorithms. Various ultrametric distances between the catchment basins
may then be associated to the flooding itself. To each ultrametric dis-
tance is associated a multiscale segmentation; each scale being the closed
balls of the ultrametric distance.

1 Introduction

Segmentation is one of the most challenging tasks in image processing, as it
requires to some extent a semantic understanding of the image. The morpholog-
ical segmentation paradigm, based on the watershed transform and markers, has
been extremely successful, both for interactive as for automatic segmentation.
Its principle is simple: a) a gradient image of the scene is constructed; b) for each
object of interest, an inside particle is detected, either in an automatic manner
or in an interactive manner; c) construction of the watershed associated to the
markers. Its avantage is the robustness: the result is independent of the shape
or the placement of the markers in the zones of interest. The result is obtained
by a global minimization implying both the topography of the surface and the
complete set of markers.

This paradigm has met its limits with the emergence of new segmentation
tasks in the area of communications and multimedia industry. The development
of games, teleworking, teleshopping, television on demand, videoconferences etc.
has multiplied situations where images and sequences have not only to be trans-
mitted but also manipulated, selected, assembled in new ways. This evolution
is most challenging for segmentation techniques: one has to segment complex
sequences of color images in real time, be automatic but also able to deal with
user interaction.

Object oriented coding represents an even greater challenge for segmentation
techniques. Such encoders segment the scene into homogeneous zones for which
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contours, motion and texture have to be transmitted. Depending upon the tar-
geted bitstream and the complexity of the scene, a variable number of regions
has to be transmitted. Hence an automatic segmentation with a variable number
of regions is required for sequences for which the content or even content type is
not known a priori. Hence, there is no possibility to devise a strategy for finding
markers, and as a consequence the traditional morphological segmentation based
on watershed and markers fails.

This situation has triggered the development of new techniques of multiscale
segmentation, where no markers are required. In such cases it is of interest to
construct a sequence of nested partitions going from coarse to fine; each boundary
of a coarse segmentation also being a boundary of all finer segmentations. We
will call such a series of nested partitions a multiscale cube (we do not call it
pyramid, as the resolution of the images is not reduced when going from fine to
coarse). Such a multiscale cube may be used in various ways:

– chose in the cube a slice with the appropriate number of regions
– compose a segmentation by extracting regions from different slices of the

cube. This may be done in an interactive way. It may also result by mini-
mizing some global criterion (for instance, if a texture model is adopted for
each region, it is possible to measure the distance between the model and
the original image in each region. It is then possible to minimize a weighted
sum of the length of the contours and of the global distortion of the image).

– use the pyramid for defining new dissimilarity measures between the adja-
cent catchment basins, which may be used for segmenting with markers and
yield better results as the traditional segmentation with markers, using the
altitude of the gradient.

In absence of any knowledge of the image content, it is important to find
good psychovisual criteria for constructing the cube.

In this paper, we first discuss the monoscale watershed segmentation by flood-
ing both from a discrete formulation of the shortest topographic distance as well
as from a continuous viewpoint of the eikonal PDE and curve evolution. Fur-
ther, for multiscale segmentation, we use ultrametric distances to generalize the
flooding and improve the segmentation.

2 The classical morphological segmentation paradigm

2.1 Flooding a topographic surface

The classical morphological tool for segmentation is the watershed transform.
For segmenting an image f , first its edges are enhanced by computing its gradient
magnitude ||∇f ||. This is approximated by the discrete morphological gradient
δ(f) − ε(f), where δ(f) = f ⊕ B is the flat dilation of f by a small disk B and
ε(f) = f 	 B is the flat erosion of f by B. After the edge enhancement, the
segmentation process starts with creating flooding waves that emanate from a
set of markers (feature points inside desired regions) and flood the topographic
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surface ||∇f ||. The points where these flooding waves meet each other form the
segmentation boundaries. The simplest markers are the regional minima of the
gradient image. Very often, the minima are extremely numerous, leading to an
oversegmentation. For this reason, in many practical cases, the watershed will
take as sources of the flooding a smaller set of markers, which have been identified
by a preliminary analysis step as inside germs of the desired segmentation.

2.2 Modifying a topographic surface: Swamping

In the case where the sources for the flooding are not all minima of the topo-
graphic surface, two solutions are possible. Either use the markers as sources. In
this case, catchement basins without sources are flooded from already flooded
neighbouring region. Such a flooding algorithm, using hierarchical queues has
been described in [1].

The second solution consists in modifying the topographic surface as slightly
as possible, in such a way that the markers become its only regional minima.
This operation is called swamping. If m1, m2, ...mk are the binary markers we
construct a marker function g defined as follows : g = White outside the markers
and g = Black inside the markers. On the other hand, the topographic surface
f is modified by assigning the value Black to all regional minima. We then per-
form a closing by reconstruction of f from the marker function g. This can be
accomplished by an iterative algorithm which at each iteration forms a condi-
tional erosion, i.e., a supremum (∨) of the erosion of the previous iterate and
the original function:

g0 = g ∨ f
gk = ε(gk−1) ∨ f , k = 1, 2, 3, ...

(1)

In the limit as k → ∞ we obtain the function g∞ which is the result of the closing
by reconstruction. This new function is as similar as possible to the function f ,
except that its only regional minima are the family {mi}. Hence, its catchment
basins will give the desired segmentation.

3 Watershed Segmentation: Discrete and Continuous

3.1 Discrete Watershed and Topographic Distance

We consider first images in a digital framework. Images are represented on reg-
ular graphs where the nodes represent the pixels and the edges the neighbor-
hood relations. A connected component of uniform grey tone is called plateau.
A plateau without lower (resp. higher) neighbors is a regional minimum (resp.
maximum).

Let us now consider a drop of water falling on a topographic surface f for
which the regional minima are the only plateaus. If it falls outside a plateau,
it will glide along a path of steepest descent. If the altitude of a pixel x is
f(x), the altitude of its lowest neighbor defines the erosion ε(f)(x) of size 1
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Fig. 1. (a) Initial topographic surface. (b) Creation of the marker. (c) Result of the
swamping.

at pixel x. Hence the altitude of the steepest descending slope at pixel x is
slope(x) = f(x) − ε(f)(x). If x and y are two neighboring pixels, we will define
the topographic variation topvar(x, y) between x and y as slope(x) if f(x) > f(y)

and as slope(x)+slope(y)
2 if f(x) = f(y).

If π is a path (x = p1, p2, ..., y = pn) between two pixels x and y, we define
the topographical variation along the path π as the sum

∑

i=1,n−1
topvar(pi, pi+1)

of the elementary topographical variations along the path π. The topographical
distance between two pixels x and y is defined as the minimal topographical
variation along all paths between x and y. By construction, the trajectory of a
drop of water falling on the surface is a geodesic line of the topographic distance.
A pixel p belongs to the upstream of a pixel q if and only if the topographic
distance between both pixels is equal to | f(p) − f(q) |. Let us now transform
the topographic surface by putting all regional minima at altitude 0.

Definition 1. We call catchment basin CB(mi) of a regional minimum mi the
set of pixels which are closer to mi than to any other regional minimum for the
topographical distance

A more general description of the topographic distance, also valid for images
with plateaus may be found in [7]. Within each catchment basin, the set of pixels
closer to the minimum than a given topographic distance h are all pixels of this
basin with an altitude below h. In this framework the construction of the catch-
ment basins becomes a shortest path problem, i.e., finding the path between a
marker and an image point that corresponds to the minimum weighted distance.
Computing this minimum weighted distance at all image points from any marker
is also equivalent to finding the gray-weighted distance transform (GWDT) of
the image. There are several types of discrete algorithms to compute the GWDT
which include iterated (sequential or parallel) min-sum differences [13] and hier-
archical queues [7]. Instead of elaborating more on discrete GWDT algorithms,
we prefer now to proceed to our next formulation of watershed that will be
based on a continuous (PDE-based) model. Afterwards, the discrete GWDT
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will be re-interpreted as one possible discrete approximation to the solution of
the continuous problem.

3.2 Continuous Watershed and Eikonal PDE

The watershed transforms an image f(x, y) to the crest lines separating adjacent
catchment basins that surround regional minima or other ‘marker’ sets of feature
points. In a continuous formulation, the topographic distance of f along a path
becomes the line integral of ||∇f || along this path. Viewing the domain of f as
a 2D optical medium with a refractive index field η(x, y) = ||∇f ||, makes the
continuous topographic distance function equivalent to the optical path length
which is proportional to the time required for light to travel this path. This leads
to the eikonal PDE

||∇U(x, y)|| = η(x, y), η(x, y) = ||∇f(x, y)|| (2)

whose solution for any field η(x, y) is a weighted distance function [11,2]. In
the continuous domain and assuming that the image is smooth and has isolated
critical points, the continuous watershed is equivalent to finding a skeleton by
influence zones with respect to a weighted distance function that uses points in
the regional minima of the image as sources and η = ||∇f || as the field of indices
[9,7]. If other markers different than the minima are to be used as sources, then
the homotopy of the function must be modified via morphological reconstruction
to impose these markers as the only minima.

Modeling the watershed via the eikonal has the advantage of a more isotropic
flooding but also poses some challenges for its implementation. This problem can
be approached by viewing the solution of the eikonal PDE as a gray-weighted dis-
tance transform (GWDT) whose values at each pixel give the minimum distance
from the light sources weighted by the gray values of the refractive index field.
Next we outline two ways of solving the eikonal PDE as applied to segmentation.

3.3 GWDT based on Chamfer Metrics

Let η[i, j] be a sampled nonnegative gray-level image and let us view it as a
discrete refractive index field. Also let S be a set of reference points or the
‘sources’ of some wave or the location of the wavefront at time t = 0. As discussed
earlier, the GWDT finds at each pixel p = [i, j] the smallest sum of values of η
over all possible paths connecting p to the sources S.

This discrete GWDT can be computed by running a 2D min-sum difference
equation like the one implementing the chamfer distance transform of binary
images but with spatially-varying coefficients proportional to the gray image
values [13]:

Uk[i, j] = min{Uk[i − 1, j] + aη[i, j], Uk[i, j − 1] + aη[i, j],
Uk[i − 1, j − 1] + bη[i, j], Uk[i − 1, j + 1] + bη[i, j], Uk−1[i, j]} (3)
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where U0 is the 0/∞ indicator function of the source set S. Starting from U0, a
sequence of functions Uk is iteratively computed by running (3) over the image
domain in a forward scan for even k, whereas for odd k an equation as in (3)
but with a reflected coefficient mask is run in a backward scan. In the limit
k → ∞ the final GWDT U∞ is obtained. In practice, this limit is reached after
a finite number of passes. The above implementation can also be viewed as a
procedure of finding paths of minimal ‘cost’ among nodes of a weighted graph
or as discrete dynamic programming. As such it is actually known as Dijkstra’s
algorithm. There are also other faster implementations using queues [13,6]. The
above GWDT based on discrete chamfer metrics is shown in [13] and [4] to be a
discrete approximate solution of the eikonal PDE ||∇U || = η.

The constants a and b are the distance steps by which the planar chamfer
distances are propagated within a 3 × 3 neighborhood. To improve the GWDT
approximation to the eikonal’s solution, one can optimize (a, b) to minimize the
error between the chamfer and Euclidean distances and/or use larger neighbor-
hoods (at the cost of a slower implementation). However, using a neighborhood
larger than 5×5 may give erroneous results since the large masks can bridge over
a thin line that separates two segmentation regions. Overall, this chamfer metric
approach to GWDT is fast and easy to implement, but due to the required small
neighborhoods is not isotropic and cannot achieve high accuracy.

3.4 GWDT based on Curve Evolution

In the standard digital watershed algorithm [8,14], the flooding at each level
is achieved by a planar distance propagation that uses the chess-board metric.
This kind of distance propagation is non-isotropic and could give wrong results,
particularly for images with large plateaus, as we found experimentally. Eikonal
segmentation using GWDTs based on chamfer metrics improves this situation
a little but not entirely. In contrast, for images with large plateaus/regions,
segmentation via the eikonal PDE and curve evolution GWDT gives results
close to ideal.

In the PDE-based watershed approach [5], at time t = 0 the boundary of each
source is modeled as a curve γ(0) which is then propagated with normal speed
c(x, y) = c0/η(x, y) = c0/||∇f(x, y)||, where c0 is the largest constant speed
(e.g., the speed of light in vacuum). The propagating curve γ(t) is embedded as
the zero-level curve of a function F (x, y, t), where F (x, y, 0) = F 0(x, y) is the
signed (positive in the curve interior) distance from γ(0). The function F evolves
according to the PDE

∂F

∂t
= c(x, y)||∇F || (4)

As analyzed in [10,12], this PDE implies that all the level curves of F propagate
with a position-dependent normal speed c(x, y) > 0. This is a time-dependent
formulation of the eikonal PDE and can be solved via the entropy condition
satisfying numerical algorithm of [10]. The value of the resulting GWDT at any
pixel (x, y) of the image is the time it takes for the evolving curve to reach this
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pixel, i.e. the smallest t such that F (x, y, t) ≥ 0. The wateshed is then found
along the lines where wavefronts emanating from different markers collide and
extinguish themselves.

To reduce the computational complexity of solving general eikonal PDE prob-
lems via curve evolution a ‘fast marching’ algorithm was developed in [12,3] that
tracks only a narrow band of pixels at the boundary of the propagating wave-
front. For the eikonal PDE segmentation problem, a queue-based algorithm has
been developed in [5] that combines features from the fast marching method to
computing GWDTs and can deal with the case of multiple sources where triple
points develop at the collision of several wavefronts.

As Fig. 2 shows, compared on a test image that is difficult (because ex-
panding wavefronts meet watershed lines at many angles ranging from being
perpendicular to almost parallel), the continuous segmentation approach based
on the eikonal PDE and curve evolution outperforms the discrete segmentation
results (using either the digital watershed flooding algorithm or chamfer metric
GWDTs). However, some real images may not contain many plateaus or only
large regions, in which cases the digital watershed flooding algorithm may give
comparable results than the eikonal PDE approach.

4 Ultrametric distances associated to flooding

4.1 Ultrametric distance and multiscale partitions

The first part of the paper has described the tools for producing the finest
partition, from which a multiscale representation may be derived. Let P0 =
(P01, P02, ...P0n) be the list of regions forming the finest partition. We are inter-
ested in constructing a series of nested partitions Pk = (Pk1, Pk2, ...Pkn), where
each region Pkj is the union of a number of regions of finer partitions Pl, for
l < k.

It is classical to associate to the series of nested partitions (Pk) an ultrametric
distance :
d(P0i, P0j) = min(l | ∃Plh ∈ Pl for which P0i ⊂ Plh and P0j ⊂ Plh). In other
words, the ultrametric distance is the smallest index of a partition Ph, of which
one of the sets Plh contains both regions P0i and P0j .

It is an ultrametric distance as it verifies the following axioms :
* reflexivity : d(P0i, P0i) = 0
* symmetry: d(P0i, P0j) = d(P0j , P0i)
* ultrametric inequality : for all i, j, k:

d(P0i, P0j) ≤ max{d(P0i, P0k), d(P0k, P0j)}
The first two axioms are obviously verified. The last one may be interpreted

as follows : the smallest index l of a region Plh containing both regions P0i and
P0j is necessarily smaller or equal than the smallest index u of a region Puv

containing all three regions P0i, P0j and P0k

An ultrametric distance is a distance, as the ultrametric inequality is stronger
than the triangular inequality. A closed ball for the ultrametric distance with
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(a) (b)

(c) (d)

Fig. 2. Performance of various segmentation algorithms on a Test image (250 × 400
pixels). This image is the minimum of two potential functions. Its contour plot (thin
bright curves) is superimposed on all segmentation results. Markers are the two source
points of the potential functions. Segmentation results based on: (a) Digital watershed
flooding algorithm. (b) GDWT based on optimal 3 × 3 chamfer metric. (c) GDWT
based on optimal 5 × 5 chamfer metric. (d) GDWT based on curve evolution. (The
thick bright curve shows the correct segmentation.)

centre P0k and radius n is the set of all regions P0i for which d(P0i, P0j) ≤ n.
The balls associated to an ultrametric distance have two unique features, which
will be useful in segmentation. The radius of a ball is equal to its diameter, i.e.
to the largest distance between two elements in the ball. Each element of a ball
is the centre of this ball. It is easy to check that the union of all closed balls of
radius n precisely constitute the partition Pn.

Inversely we will associate a series of nested partitions to each ultrametric
distance, by taking for partition of rank n, the set of closed balls of radius n. We
will now define several ultrametric distances, naturally associated to the flooding
of a topographic surface. Each of them will yield a different partition cube.
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4.2 Flooding Tree

A finer analysis of the flooding will show the apparition of a tree in which
the nodes are the catchment basins and the edges represent relations between
neighboring nodes. Let us observe the creation and successive fusions of lakes
during the flooding. The level of the flood is uniform over the topographic surface
and increases with constant speed : new lakes appear as the flood reaches the
various regional minima. At the time of apparition, each lake is isolated. As the
level increases and reaches the lowest passpoint separating the corresponding
CB from a neighboring CB, two lakes will merge. Two types of passpoints are
to be distinguished. When the level of the flood reaches the first type, two lakes
previously completely disconnected merge ; we will call these passpoints first
meeting passes. When the flood reaches the second type, two branches of a
unique lake meet and form a closed loop around an island. Representing each
first meeting pass as an edge of a graph and the adjacent catchment basins as
the nodes linked by this edge will create a graph. It is easy to see that this graph
is a tree, spanning all nodes. It is in fact the minimum spanning tree (MST) of
the neighborhood graph obtained by linking all neighboring catchment basins
by an edge weighted by the altitude of the passpoint between them.

4.3 Flooding via Ultrametric Distances

Each edge of the spanning tree represents a passpoint where two disconnected
lakes meet. We will assign to this edge a weight derived by measuring some geo-
metric features on each of the adjacent lakes. We consider four different measures.
The simplest is the altitude of the passpoint itself. The others are measured on
each lake separately : they are respectively the depth, the area and the volume
of the lakes For each of these four types a weight is derived as follows. Let
us consider for instance the volume : the volumes of both lakes are compared
and the smallest value is chosen as volumic weight of the edge. Depth and area
measures are treated similarly leading respectively to weight distributions called
dynamics for the depth and surfacic weight distributions. If the height is chosen,
we get the usual weight distribution of the watershed.

We will now define an ultrametric distance associated to each weight dis-
tribution on the MST : the distance d(x, y) is defined as the highest weight
encountered on the unique path going from x to y along the spanning tree. This
relation obviously is reflexive and symmetrical. The ultrametric inequality also
is verified : for all x, y, z, d(x, y) ≤ max{d(x, z), d(z, y)}; since the highest weight
on the unique path going from x to y along the spanning tree is smaller or equal
to the highest way on the unique path which goes first from x to z and then
from z to y along the spanning tree.

The closed balls of the ultrametric distance precisely correspond to the seg-
mentation tree induced by the minimum spanning tree. The balls of radius 0
are the individual nodes, corresponding to the catchment basins. Each ball of
radius n is the union of all nodes belonging to one of the subtrees of the MST
obtained by cutting all edges with a valuation higher than n. A closed ball of
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radius R and centre C is the set of nodes which belong to the same subtree of
the MST, obtained by cutting the edges at altitude higher than or equal to R
and containing C. Obviously replacing the centre C by any other node of the
subtree yields the same subtree.

Cutting the (k − 1) highest edges of the minimum spanning tree creates a
forest of k trees. This is the forest of k trees of minimal weight contained in
the neighborhood graph. Depending on the criterion on which the ultrametric
distance is based, the nested segmentations will be more or less useful. The ultra-
metric distance based on altitude is the less useful. The segmentation based on
depth are useful for ranking the particles according to their contrast. The area
ultrametric distance will focus on the size of the particles. The volumic ultra-
metric distance has particularly good psychovisual properties [15]: the resulting
segmentation trees offer a good balance between size and contrast. as illustrated
in the following figures. The topographical surface to be flooded is a color gradi-
ent of the initial image (maximum of the morphological gradients computed in
each of the R, G and B color channels). The volumic ultrametric distance has
been used, and 3 levels of fusions have been represented, corresponding respec-
tively to 15, 35 and 60 regions.

Initial 15 regions 35 regions 60 regions

Fig. 3. Multiscale segmentation example.

5 Applications

5.1 Interactive segmentation with nested segmentations

A toolbox for interactive editing is currently constructed at the CMM [16], based
on nested segmentations. A mouse position is defined by its x-y coordinates and
its depth in the segmentation tree. If the mouse is active, the whole tile containing
the cursor is activated. Moving the mouse in the x-y plane permits to select or
deselect regions at the current level of segmentation. Going up will produce a
coarser region, going down a smaller region. This technique permits to ”paint”
the segmentation with a kind of brush, whose shape adapts itself to the contours
and whose size may be interactively changed by the user.
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6 The watershed from markers

In many situations one has a seed for the objects to segment. It may be the
segmentation produced in the preceding frame when one has to track an object
in a sequence. It may also be some markers produced by hand, in interactive
segmentation scenarios. As a result, some nodes of the minimum spanning tree
may be identified as markers. The resulting segmentation associated to these
markers will then still be a minimum spanning forest, but constrained in that
each tree is rooted in a marker. The algorithm for constructing the minimum
spanning forest is closely related to the classical algorithms for constructing the
MST itself (see ref[17]. for more details). Each marker gets a different label and
constitutes the initial part of a tree. The edges are ranked and processed in
increasing order. The smallest unprocessed edge linking one of the tree T to an
outside node is considered ; if this node does not already belong to another tree,
it is assigned to the tree T . If it belongs to another tree, the edge is discarded
and the next edge is processed.

Segmenting with markers constitutes the classical morphological method for
segmentation. For optimal results, it is important to correctly chose the underly-
ing ultrametric distance. We have presented 3 new distances giving often better
results than the classically used flooding distance (where the weights are the
altitude of the passpoints) This is illustrated by the following figures, where
the same set of markers has been used alternatively with the flooding distance
and with the volumic distance. The superiority of the volumic distance clearly
appears here : it correctly detects the face, whereas the flooding distance follows
the boundary of a shadow and cuts the face in two.

markers flooding dist. volumic dist.

Fig. 4. Segmentations with different ultrametric floodings.

7 Conclusion

A multiscale segmentation scheme has been presented, embedded in the flooding
mechanism of the watershed itself. It opens many new possibilities for segmen-
tation, either in supervised or unsupervised mode.
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