
KINECT-BASED MULTIMODAL GESTURE RECOGNITION
USING A TWO-PASS FUSION SCHEME

Georgios Pavlakos, Stavros Theodorakis, Vassilis Pitsikalis, Athanasios Katsamanis and Petros Maragos

School of Electrical and Computer Engineering, National Technical University of Athens, Greece.

ABSTRACT

We present a new framework for multimodal gesture recognition that
is based on a two-pass fusion scheme. In this, we deal with a de-
manding Kinect-based multimodal dataset, which was introduced in
a recent gesture recognition challenge. We employ multiple modal-
ities, i.e., visual cues, such as colour and depth images, as well as
audio, and we specifically extract feature descriptors of the hands’
movement, handshape, and audio spectral properties. Based on these
features, we statistically train separate unimodal gesture-word mod-
els, namely hidden Markov models, explicitly accounting for the dy-
namics of each modality. Multimodal recognition of unknown ges-
ture sequences is achieved by combining these models in a late, two-
pass fusion scheme that exploits a set of unimodally generated n-best
recognition hypotheses. The proposed scheme achieves 88.2% ges-
ture recognition accuracy in the Kinect-based multimodal dataset,
outperforming all recently published approaches on the same chal-
lenging multimodal gesture recognition task.

Index Terms— multimodal gesture recognition, HMMs, speech
recognition, multimodal fusion

1. INTRODUCTION

Gestural interfaces have been gaining increasing attention re-
cently [1, 2]. This can be mainly attributed both to recent tech-
nological advances, such as the wide spread of depth sensors, and to
groundbreaking research since the famous “put that there” [3]. The
natural feeling of gesture interaction can be significantly enhanced
by the availability of multiple modalities. Static and dynamic ges-
tures, the form of the hand, as well as speech, all together compose
an appealing set of modalities for human-computer interaction that
offers significant advantages [4]. All the above, pose numerous
challenging research issues for the detection of meaningful informa-
tion in the visual and audio signals, the employment of appropriate
features, the building of effective classifiers, and the multimodal
combination of multiple information sources [1].

In this context, our goal is the effective detection and recog-
nition of multimodally expressed gestures as performed freely by
multiple users. The demanding dataset [5] that inspired this re-
search effort has been recently acquired for the purpose of the mul-
timodal gesture recognition challenge [6]. This comprises multi-
modal cultural-anthropological gestures of everyday life, in multi-
user spontaneous realizations of both spoken and hand-gesture ar-
ticulations, intermixed with other random and irrelevant hand, body
movements and spoken phrases.

In this paper, we present a multimodal recognition system that
exploits the colour, depth and audio signals captured by the Kinect
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sensor. It extracts features for the handshape configuration, the
movement of the hands and the speech signal. We then train hidden
Markov models (HMM) for each unimodal cue. These statistical
models are at a late-stage integrated in a two-pass fusion scheme.
This includes a first-pass that is driven by the most reliable modal-
ity. In this step we take advantage of a known approach from the
speech recognition community: the multiple n-best sentence hy-
potheses rescoring scheme [7]. We adapt this concept for our case
of complementary modalities, and combine it with a second-pass, in
which fusion is performed via parallel HMMs [8] on all modalities
given the best hypothesis of the first-pass. We have found the novel
overall framework to outperform the approaches that participated
in the recent demanding multimodal challenge [6], as published in
the proceedings of the 2013 ACM ICMI workshop, by reaching an
accuracy of 88.2% and leading to a relative error reduction of 7.48%
over the first ranked team.

2. RELATED WORK

Visual Features: It would be no exaggeration to say that gesture
recognition has blossomed since the introduction of depth-based sen-
sors, such as Kinect. Many works face hand tracking by taking
advantage of its depth-based tracking (e.g. see works in [5]). Vi-
sual cues consist of the movement, position and the shape of the
hands. Commonly used features are the 2D/3D center-of-gravity of
the hand blob [9], motion features [10], as well as features related
with the hand’s shape, such as shape moments [9] and Fourier de-
scriptors [11]. Principal component analysis (PCA) is applied for a
descriptive representation of handshape, e.g. [12]. Variants of active
shape and appearance models are employed for handshape feature
extraction [13, 14]. Other approaches employ Histogram of Ori-
ented Gradients (HOG) [15], or scale invariant feature transform
(SIFT) [16]. In this work we employ the 3D points of the articu-
lators as extracted from the depth-based skeleton tracking and the
HOG descriptors for the handshape cue.

Modeling and HMMs: As far as statistical modeling is con-
cerned, HMMs are employed for the modeling of the dynamics and
are applied successfully in hand gesture recognition [17]. Other
HMM applications are for instance the threshold model [18] for ges-
ture spotting, and the parametric HMMs [19] for gestures with sys-
tematic spatial variation. At the same time Parallel HMMs (PaH-
MMs) [8] accommodate multiple cues simultaneously, and provide
an effective fusion scheme. In this paper we build word-level HMMs
both for audio and visual modalities.

N-Best Rescoring and Late Fusion: N-best sentence hypotheses
scoring was introduced for the integration of speech and natural lan-
guage [20], whereas later on it was employed for the integration of
different recognition techniques [7]. At the same time, fusion ap-
proaches can be broadly classified into early (feature) and late (deci-
sion) fusion cases. For the first case, features of the different modal-
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Fig. 1. Sample cues. Multi-modal Gesture Challenge 2013 Dataset.

ities are early integrated, e.g. by concatenation, and then employed
all together for the training of a single multimodal classifier. In the
second case separate classifiers are built for each modality and their
decisions are late fused. This is usually implemented by combining
the class-conditional observation log-likelihoods of each modality
into a joint score. Parallel HMMs [8] belong to the second case. In
this work we employ the concept of n-best rescoring together with a
late fusion parallel HMM framework.

Approaches Evaluated in the Same Dataset: Among the recently
published approaches that have been ranked in the first places of
the gesture challenge several of them took advantage of the audio
modality, whereas for the learning and recognition they employed
HMM/GMMs, boosting, random forests, neural networks and sup-
port vector machines among others. For a summary see [5]. Wu
et al. [21], the first ranked team, are driven by the audio modality
based on end-point detection, and then combine classifiers by calcu-
lating normalized confidence scores. Authors in [22] are similarly
driven by the audio based on a hand-tuned detection algorithm, then
they estimate class probabilities per gesture segment and compute
their weighted average. Others [23] discard segments not detected
in both modalities while employing a temporal overlap coefficient
with threshold to merge overlapping modalities’ segments. Finally,
they recognize the gesture with the highest combined score.

3. MULTIMODAL GESTURE DATASET

Data: The ChaLearn multi-modal gesture challenge dataset [5]
provides via Kinect RGB and depth images of face and body, user
masks, skeleton information, as well as concurrently recorded au-
dio including the speech utterance accompanying/describing the
gesture (see Fig. 1). The vocabulary contains 20 Italian cultural-
anthropological gesture-words. The dataset contains three separate
sets, namely for development, validation and final evaluation, in-
cluding 40 users and 13858 gesture-word instances in total.

A challenging task: There is no single way to perform the in-
cluded cultural gestures, e.g., ‘vieni qui’ is performed with repeated
movements of the hand towards the user, with a variable number of
repetitions (see Fig. 2). Similarly, single handed gestures may be
performed with either the left or right hand. Further, false alarms
are introduced on purpose in both modalities as well as variations
in background, lighting, and, resolution, occluded body parts, and
different spoken dialects.

4. PROPOSED METHODOLOGY

Our multimodal gesture recognition system essentially implements a
two-level approach. First, to independently account for the specifici-
ties of each of the modalities involved, separate gesture-word mod-
els are trained for speech, skeleton and handshape. These models

(a) (b) (c) (d)

Fig. 2. (a,b) Arm position variation (low, high) for gesture ‘vieni
qui’; (c,d) Left and right handed instances of ‘vattene’.

are then used to generate a set of possible gesture-word sequence
hypotheses for a given recording. Then, this original set of hypothe-
ses is multimodally rescored and resorted. Based on the temporal
boundaries of the gestures in the best hypothesis, a parallel fusion
step exploiting all three modalities further improves recognition.

From a psychobehavioral perspective, gestures and speech are
thought to be closely related. They can have complementary or re-
dundant function arising from the same single underlying thought
process or mental concept [24]. Gestures convey important commu-
nicative information to the listener, but even blind speakers gesture
while talking to blind listeners [25].

Gestures in our case occur in parallel with their semantically
corresponding speech words. Given the above we assume that the
causes of either modality’s articulation are the original conceptsC =
{ci : i = 1, ..., NC} themselves. The realizations of a concept in
each modality m are finally observed in parallel. From our side, we
aim to find the underlying common concept given the multimodal
observations. Late fusion of the unimodally-based decisions offers
a simple and robust way to deconvolve this problem. It allows us
before reaching the single best multimodal cause, to get the best
unimodal guesses for each modality m, based on the sequence of
observations Om = [om1, ...omn], as:

ĉm = argmax
ci∈C

p(Om|ci). (1)

Herein we assume there is no prior for the different concepts for
either modality.

4.1. Speech, Skeleton and Handshape Modeling

Our modeling methodology essentially follows the keyword-filler
paradigm for speech [26, 27] and is based on HMMs. The prob-
lem of recognizing a limited number of gesture-words in a video
possibly comprising other heterogeneous events as well, is seen as
a keyword detection problem. The gesture-words to be recognized
are the keywords and all the rest is ignored. Each gesture-word is
modeled by an HMM with a common number of states and there is
a separate filler HMM to represent all other possible events.

Separate gesture-word models are trained per modality on mul-
tiple instances of the gestures as performed by the subjects. The
filler model per modality is trained on all training instances. Given
these models, recognition hypotheses are generated by means of the
Viterbi algorithm [28] on the combined state machine which accepts
all possible sequences of gesture-words or filler events.

All our models are left-to-right with Gaussian mixture models
(GMMs) representing the state-dependent observation probability
distributions. They are initialized by an iterative procedure which
sets the model parameters to the mean and covariance of the fea-
tures in state-corresponding segments of the training instances and
refines the segment boundaries via the Viterbi algorithm. Training
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is performed using the Baum-Welch algorithm [28], while mixture
components are increased incrementally.

4.2. Multimodal Fusion

N-Best Rescoring and Resorting (P1): Using the scheme described
in the previous section for a single modality and by applying Viterbi
decoding we can generate a list of the N-best gesture-word sequence
hypotheses H1, . . . , HN ; N is the number of hypotheses and Hi =
[g1g2 . . . gM ] is a gesture-word sequence. Each hypothesis is ac-
companied with its corresponding Viterbi score:

vmi = max
q∈Q

logP (Om, q|Hi, λ), i = 1, . . . , N, (2)

where Om is the observation sequence for modality m, q is a state
sequence of all possible sequences in Q and λ is the correspond-
ing set of models. Given the above hypotheses we rescore them
following (2) again but this time employing the HMMs trained for
the other modalities along with the corresponding observation se-
quences. This yields the new hypothesis scores for the rest of the
modalities; all scores are then combined into a final score based on
which the best hypothesis is chosen.

Currently, the modality providing the initial set of hypotheses is
speech since it was found to have the best performance in separate
experiments per information stream (Sec. 5). After rescoring the
speech hypothesis list based on the handshape and the skeleton we
linearly combine their Viterbi scores. The final score of this first pass
(P1) of fusion for each hypothesis is:

vp1i =
∑
m

wp1
m v

m
i (3)

where vmi is the Viterbi score for hypothesisHi based on the modal-
ity m, and wp1

m is the corresponding weight for the same modality.
The stream weights wp1

m are selected in order to optimize the recog-
nition performance in a validation set. The most probable gesture-
word sequence after this first fusion step is the one with the maxi-
mum combined score.

Second Fusion Pass (P2): Herein we exploit the gesture-word
level segmentation obtained from the most reliable information
stream (in our case, speech). First, we segment the audio, skeleton
and handshape observation streams employing the gesture-word
level segmentation provided by the best hypothesis generated in the
first fusion pass. Segments corresponding to the filler model are
ignored. Then for segment s and each modality m we compute the
log probability LLm

s,j = maxq∈Q logP (Om, q|λm
j ) where λm

j are
the parameters of the HMM for the gesture-word j and the modality
cue m; q is the state sequence. Then we linearly combine the LLm

s,j

for all different cues leading to a re-fused log probability of the
second fusion pass:

LLp2
s,j =

∑
m

wp2
mLL

m
s,j , (4)

where wp2
m , is the stream-weight for modality m set to optimize

recognition performance in a validation dataset. Finally, the ges-
ture with the maximum score is the recognized one for each segment
s.

Single Modalities Fusion
Aud. Skel. HS P1 P2 P1 + P2

78.4 47.6 13.3 85.8 87.2 88.2

Table 1. Single modalities and fusion approaches evaluation. Pro-
posed system’s recognition accuracy %, including Audio (Aud.),
Skeleton (Skel.), and Handshape (HS).

5. EXPERIMENTS

5.1. Multimodal Features and HMM Parameters

As discussed in Sec. 4.1 we statistically train separate word-gesture
level HMMs per modality i.e. audio, skeleton and handshape.

Skeleton Cue: The features employed for the skeleton cue in-
clude: the hands’ and elbows’ 3D position, the hands’ 3D position
with respect to the corresponding elbow, the 3D direction of the
hands’ movement, and the 3D distance of hands’ centroids. For each
gesture we train one left-right HMM using 13 states and 5 mixture
components per state.

Handshape Cue: The features employed are HOG as extracted
in both hands’ segmented images for both RGB and depth modal-
ity. We segment the hands by employing the hand’s tracking and by
performing threshold depth segmentation. Next, for each gesture we
train one left-right HMM using 13 states and 1 mixture component
per state.

Audio Cue: To efficiently capture the spectral properties of
speech signals, our frontend generates 39 acoustic features every 10
msec. Each feature vector comprises 13 Mel Frequency Cepstral
Coefficients along with their first and second derivatives. In each
left-right HMM we employed 26 states and 6 Gaussians per state.
The word insertion penalty was set equal to −400.

In all modalities we built a background HMM (bm) in order to
model out-of-vocabulary words. The number of states, mixture com-
ponents per state, the word insertion penalty in all cases were deter-
mined experimentally on the validation set.

5.2. Recognition Results

Single Modalities: In Table 1 we show the recognition results for
each modality. As observed the audio modality is the strongest one
leading to 78.4% word accuracy in contrast to skeleton and hand-
shape cues which lead to 47.6% and 13.3% respectively.

Separate Fusion Components (P1 or P2): For the evaluation
of the proposed fusion scheme we separately test each component.
First, for the P1 component we rescore the audio n-best hypothesis
list employing all three modalities and linearly combine their scores.
Second, the P2 component is separately evaluated here, it employs
the gesture-word level segmentation of the audio 1-best hypothesis
– this is due to the missing first-pass. It then linearly combines the
log-likelihood probabilities in each segment.

Two-Pass Fusion P1 + P2: We evaluate the proposed scheme
by combining sequentially the two components in the two-pass fu-
sion scheme: In detail we first apply the first-pass fusion step (P1)
leading to the best fused hypothesis as a result of the n-best rescor-
ing. Then follows the P2 component as the second-pass fusion step.
In this we employ the gesture-word level segmentation of the above
best fused hypothesis, leading on the second-pass fused result and
the final recognized words.

Results and Comparisons: As shown in Table 1 all the three fu-
sion cases outperform the unimodal cases leading to at least 34.4%

nancy
Typewritten Text
Proceedings IEEE International Conference on Image Processing (ICIP-2014), Paris, France, Oct. 27-30, 2014.



REF DACCORDO OOV OOV OK OOV OOV OOV SONOSTUFO

AUDIO DACCORDO BM PREDERE OK BM FAME BM SONOSTUFO

P1 DACCORDO BM BM OK BM BM OK SONOSTUFO

P2 DACCORDO BM BM BM BM BM BM SONOSTUFO

P1+P2 DACCORDO BM BM OK BM BM BM SONOSTUFO

Fig. 3. A decoding word sequence example. Audio (top) and visual modalities (second) via a sequence of images for a word sequence.
Ground truth transcriptions (“REF”). Decoding results for the single-audio modality (AUDIO) and the three different fusion schemes (P1,
P2 and P1+P2). Errors are highlighted: deletions (blue color) and insertions (green color). A background model (bm) models the out-of-
vocabulary (OOV) words.

relative word error rate (WER) reduction1. By comparing the sepa-
rate evaluation of the single fusion components, that is, either P1 or
P2 the P2 leads to 9.9% RER compared with P1. This is due to the
fact that P1 is restricted to a single hypothesis out of the unimodal
(audio) n-best list. This is in contrast to P2 which may recognize
a gesture-word sequence that is not present in the audio n-best hy-
pothesis list and fits better to the multi-modal observation vectors.
Finally, by comparing the proposed two-pass fusion (P1+P2) with
P2 the former leads to 7% error reduction. This is because in the
two-pass fusion scheme the employed gesture-word level segmenta-
tion corresponds to the fused hypothesis, that is better than the uni-
modal (single-audio) 1-best hypothesis in the P2 alone. This is clear
if we compare the single-audio and P1 recognition performances:
the latter leads to 34.4% RER.

Example from the Results: A decoding example is shown in
Fig. 3. Herein we illustrate both audio and visual modalities for a
word sequence accompanied with the ground truth word-level tran-
scriptions (row:“REF”). In addition we show the decoding output
employing the single-audio modality (AUDIO) and the three pre-
sented fusion cases (P1, P2 and P1 + P2). As we observe there
are several cases where the subject pronounces an out-of-vocabulary
(OOV) word and either perform a gesture or not. This indicates the
difficulty of the task as these cases should be ignored. By focus-
ing on the recognized word sequence that employs the single-audio
modality we notice two insertions (‘PREDERE’ and ‘FAME’). By
employing either the P1 or P2 the above word insertions are cor-
rected as the visual modality is integrated and helps identifying that
these segments correspond to OOV words. Finally, the single pass
fusion components lead to errors which the proposed approach man-
ages to deal with: P1 causes insertion of “OK”, P2 of a word dele-
tion “BM”. These are in contrast to P1 + P2 which recognizes cor-
rectly the whole sentence.

Comparisons with other approaches in the same task: Herein we
compare the recognition results of our proposed multimodal recogni-
tion and two-pass fusion framework with other approaches [5] which
have been evaluated in the exact recognition task2. Among the nu-

1All relative percentages unless stated otherwise refer to relative WER
reduction (RER).

2In all results presented we follow the same blind testing rules that holded

Rank Approach Lev. Dist. Acc.% RER
- Our 0.11802 88.198 -
1 iva.mm [21] 0.12756 87.244 +7.48
2 wweight 0.15387 84.613 +23.30
3 E.T. [22] 0.17105 82.895 +31.00
4 MmM 0.17215 82.785 +31.44
5 pptk 0.17325 82.675 +31.88

Table 2. Our approach in comparison with the first 5 places of the
Challenge. We include recognition accuracy (Acc.) %, Levenshtein
distance (Lev. Dist., see text) and Relative Error Reduction (RER).

merous groups and approaches that participated we list the first four
ones as well as the one we submitted during the challenge (pptk).
As shown in Table 2 the proposed approach outperforms the others
leading to relative error reductions of at least 7.48%. We note that
our updated approach from the one submitted during the challenge
leads to 31.88% RER. The differential is the following: The fusion
scheme employed in this approach was plain P1 and moreover the
method did not take advantage of all training/validation data during
estimation of parameters.

6. CONCLUSION

We have presented a framework for kinect based multimodal gesture
recognition, exploiting multiple audio and visual modalities. The
overall framework is evaluated in a demanding Kinect-based mul-
timodal dataset [5] achieving 88.2% word accuracy. Comparisons
include both approaches of several teams that participated in the re-
lated challenge, leading to 7.48% relative WER reduction compared
to the first ranked team [21], and focused comparisons with other
fusion approaches leading to 7% relative WER reduction.

in the challenge, in which we have participated (pptk team). In Table 2 we
include for common reference the Levenshtein distance which was also used
in the challenge results [5].
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