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ABSTRACT

In this study, we make use of brain activation data to investigate the
perceptual plausibility of a visual and an auditory model for visual
and auditory saliency in video processing. These models have al-
ready been successfully employed in a number of applications. In
addition, we experiment with parameters, modifications and suitable
fusion schemes. As part of this work, fMRI data from complex video
stimuli were collected, on which we base our analysis and results.
The core part of the analysis involves the use of well-established
methods for the manipulation of fMRI data and the examination of
variability across brain responses of different individuals. Our re-
sults indicate a success in confirming the value of these saliency
models in terms of perceptual plausibility.

Index Terms— visual saliency, auditory saliency, fMRI, Gen-
eral Linear Model, spatio-temporal Gabor energy filterbank, AM-
FM sound analysis

1. INTRODUCTION

As a cognitive mechanism employed by both humans and artificial
systems, attention has been an active research field for many years
now. Selecting the most important part of information for further
processing, attention mechanisms play a crucial role in human per-
ception and thus have numerous applications. The feature integra-
tion theory [2] and the concept of spatial saliency maps [3] became
the basis of many cognition-inspired attention models, such as [4],
[5] or [6] for vision and [7] or [8] for audition. In the context of
video processing, an audiovisual modeling of human attention has
been attempted in [9].

Significant neurobiological and psychophysical evidence indi-
cates that the first stages of sensory information processing include
many feature detection processes. Brain imaging techniques, such
as functional Magnetic Resonance Imaging (fMRI), in conjunction
with computational methods can serve as a noninvasive tool to mon-
itor neural activity during external stimulation, thus illuminating the
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structural and functional architecture of the human brain. Recently
there has been a shift towards more complex and naturalistic stimuli,
such as real-life images, video and audio excerpts. The attempt to
study such real-life stimuli aims at understanding their representa-
tion in the human brain and ultimately at linking low-level features
with the high-level semantic information they convey, in order to
improve computational schemes for feature extraction [10].

Several contributions have so far been made towards linking
computational frameworks to brain activation data. Such efforts aim
at establishing new methods of combining and interpreting the two
types of data [11], [12], [13], at assessing the biological plausibility
of widespread perceptual models [14], [15] or at augmenting the lat-
ter by integrating high-level information encoded inside the human
brain [16], [17]. Another study proposes that whenever different in-
dividuals are exposed to the same audiovisual stimulus, the internal
brain representations they form should be similar, since they encode
information (features) of the stimulus itself. Thus, brain regions in-
volved in audiovisual processing should have similar time responses
across individuals, in contrast to others [18].

In this study, we test the validity of a perceptually-inspired vi-
sual model [19] and we investigate the biological plausibility of a
previously proposed auditory saliency framework [20]. These mod-
els have been successfully employed in a number of applications
(see section 2). In addition, we experiment with parameters, mod-
ifications and fusion schemes that render these models more fit to
describe brain activation data and thus more compatible with the
functions of the human brain. Since fMRI data are scarce, especially
when it comes to naturalistic stimuli, we opted to experiment on data
newly collected as part of this study, rather than to rely on already
existing databases. For our purposes we employed a design simi-
lar to [14], which we first validate on our setup. More specifically,
we use the visual and auditory features as regressors to reconstruct
the time-series of voxels in the brain by means of a General Lin-
ear Model (GLM), a method well-established for use with fMRI. We
expect to obtain an accurate reconstruction for voxels in the visual
and auditory cortex respectively. We then perform a cross-check on
our results based on the correlation of brain areas responses across
subjects. Our results indicate a success in verifying the perceptual
validity of the computational models in both modalities.

First, we briefly describe the visual and auditory front-ends (sec-
tion 2). We next present our experimental setup for data collection
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(section 3), followed by the method used to fit a model on the fea-
tures and fMRI data in section 4. Finally, in section 5 we present and
evaluate our results.

2. COMPUTATIONAL SALIENCY MODELS

2.1. Visual model

In this work we employ a variant of a recently proposed spatio-
temporal model for visual saliency that has achieved a good per-
formance in many application tasks such as eye-fixation prediction,
action classification and movie summarization [21, 19]. Specifically,
we employed a spatio-temporal filterbank of 400 3D Gabor filters
[21], as described in [19] for both the luminance and color streams.
This frontend provides motion information in different scales and di-
rections, thus detecting both the fastest changes in the video stimuli
(e.g. flicker) and the slowest motion changes related to action events.
Instead of keeping only the dominant energy, we extract frame-wise
features that correspond to 7 dominant spatio-temporal energies in
order to increase robustness. We then apply a simple fusion scheme
by normalizing each feature time-series and then taking the mean
over all features. In this way, we obtain a single value describing the
saliency of each video frame.

2.2. Auditory model

For the auditory modeling we employ the audio features proposed in
[20]. These features are based on AM-FM demodulation [22] and
variants have been successfully used in many applications such as
speech and music recognition [22] and summarization [9, 20]. The
employed feature vectors consist of 25 Teager-Kaiser energies that
are extracted using a Gabor filterbank. Sound loudness and rough-
ness, which have been found to correlate with the functioning of the
human auditory system, are included as additional features.

We used a variant of the proposed scheme, where only 12
Teager-Kaiser energies were used to avoid estimability issues with
the GLM: due to low time resolution of the fMRI, available data
points suffice for a reliable estimation of a limited amount of param-
eters. The logarithm of each narrow-band signal energy was then
taken before fusing the energy features to obtain the final saliency
curve using a max operation, since we have found the resulting curve
to be more descriptive of a low-pass physiological signal, such as
BOLD. This aimed at suppressing sharp peaks produced by the
Teager-Kaiser energy operator, which have proven to be of value to
a machine learning based summarization scheme [21] nonetheless.

3. EXPERIMENTAL DESIGN AND SETUP

3.1. Experimental design

Validation design. In order to appraise the validity of our setup, we
tested the proposed scheme using a paradigm that permits straight-
forward interpretation of the results. Thus, the visual and audi-
tory stream had been independently manipulated so that they formed
segments with and without sound and segments with color image,
grayscale image and no image at all (ON/OFF design). This way,
the two streams are also artificially de-correlated. For this purpose
we used an excerpt of a wildlife documentary. Data from 5 partici-
pants were collected.

Saliency extraction design. We will further test to what extent the
desired results can be reproduced for normal free-viewing conditions
without any manipulation. In our implementation we have elected
to present the first 20 minutes of the feature film “The Departed”

from the COGNIMUSE [1], [9] database of annotated films, on the
grounds that we have observed adequate discernible fluctuations in
the corresponding saliency curve. Data from 6 participants have
been collected.

3.2. fMRI data collection and pre-processing

The images were acquired with a 3T Philips Achieva TX MRI scan-
ner using gradient-echo EPI sequences (Time to Repetition — TR =2
s, Field Of View — FOV of 192 %240 mm?, 36 sequential bottom-up
transverse slices, voxel size 3x3x3 mm?). Subjects were lying in-
side the scanner while the film excerpt was being back-projected on
a semi-opaque material and they viewed the video through a mirror
attached to the equipment. Headphones designated for usage inside
MRI scanners were used for the audio stream. The SPM Toolbox
[23] was used to preprocess the fMRI data and fit a GLM. Raw data
are spatially realigned (motion correction), temporally interpolated
to compensate for acquisition delay, normalized to standard MNI
space’and smoothed with an 8 mm wide Gaussian kernel. Follow-
ing the preprocessing stage, high-pass filtering of 128 seconds cutoff
is applied to the voxel time-series to remove low-pass physiological
components such as respiration and heart beat. fMRI residual tempo-
ral autocorrelation was modeled as an AR(1) process and integrated
in the GLM estimation (see Section 4.2).

4. THE GENERAL LINEAR MODEL FOR FMRI DATA

4.1. Regressor construction

Visual as well as auditory features, and therefore saliency curves pro-
duced via fusion are provided by the selected front-ends on a frame
basis, that is one value per frame or 25 values per second. In order to
use them as regressors for the low-resolution fMRI time-series, sub-
sampling to one value per 2 seconds is required to match the MRI
scanner TR. Following subsampling, regressors are convolved with
the standard haemodynamic response function (HRF). This low-pass
function introduces a time blurring and is considered to adequately
model the transfer function of a voxel seen as a time-invariant linear
system. The sets of visual and auditory regressors are used to fit two
models independently for each modality. Likewise, the visual and
auditory saliency regressors are used to fit two independent models.

4.2. Model description and estimation

The computationally constructed features are used to fit a GLM for
each voxel independently. fMRI time-series are thus represented as
y = Xb + ¢, where N is the number of volumes (one per TR), y
isan N X 1 vector comprising the observed fMRI voxel time-series
(predictant variable), X is the N x K design matrix comprising the
regressors (predictor variables) that have been computed from the
visual or auditory features (one regressor per column), as well as the
motion correction regressors estimated during preprocessing and a
constant regressor modeling baseline activation, bisa 1 x N vec-
tor representing the weights (beta values) attributed to each regres-
sor according to the model estimation and € is an additive Gaussian
error. The model parameters, including hyper-parameters model-
ing temporal autocorrelation are jointly estimated using a Restricted
Maximum Likelihood algorithm (ReML) [24], [25]. Hence, b are
voxel-specific, whereas X is identical for all voxels.

We have employed a fixed-effects approach, using data from
each subject as a different session in the model by concatenating
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the data vertically and using a separate constant regressor for each
subject. The assumption upon which this setup is based, namely that
the model underlying the data is identical across subjects, is a bold
one to make for natural data (here brain activity). However, the small
sample (n=6 participants) does not allow for random-effects analysis
that would permit more robust generalizations [26].

Regarding feature models, an F-contrast (based on F-statistics)
was performed on b to test the overall variance of the observed data
that could be explained by the model comprising the feature regres-
sors. This way we can test the joint contribution of all regressors, de-
spite high cross-correlations between them. Such correlations render
the use of a T-contrast (based on T-statistics) to assess each regressor
independently essentially meaningless. For saliency models, com-
prising only one regressor of interest, we use T-contrasts. For voxels
whose p-value satisfies the p-FWE = 0.05 threshold, corrected for
multiple comparisons (family-wise error correction), the model re-
gressors associated with the F- or T-contrast are considered to have
a good predictability of the voxel time-series [25].

5. EXPERIMENTAL RESULTS

Results are presented in the form of thresholded statistical maps. The
color scale runs from red to white, the latter corresponding to the
highest predictability. Additionally, activation peaks and their loca-
tions are reported, as well as a summary of the model’s ability to
detect voxels from the corresponding modality while avoiding false
positives. The anatomical and functional labeling of activated clus-
ters and peaks was performed according to the atlas provided by the
Anatomy Toolbox. Whenever no assignment to a functional area
could be found, the anatomical area is reported.

5.1. Results for the validation design

As can be seen from Fig. 1, the results we obtained have the ex-
pected pattern. More specifically, the visual model is able to predict
the responses of voxels in the visual cortex quite accurately, while
few voxels have been detected outside of that. Some of the activation
that is not specific to the visual cortex could be attributed to multi-
media content related processing, such as areas involved in working
memory.

Likewise, the auditory model has a very good localization of
the auditory cortex. The observed activation in the visual cortex is
actually indicative of an anti-correlation between the auditory re-
gressors and the visual cortex activity; intense stimulus in a modal-
ity is known to often have a inhibitory effect on the complementary
one [27]. We have tested this via a directional t-test in the auditory
saliency model: no activation, that is, no positive relation, was found
with voxels in the visual cortex.

5.2. Results for visual features and saliency

We now turn to the results for the feature film. Figure 2 displays
four representative transverse slices of thresholded maps in the MNI
space, both for visual features and visual saliency models. We can
observe that the pattern of activation is quite satisfactory, although
in the case of the feature model there is some evident cross-modal
activation; activated voxels extend to part of the auditory cortex and
other areas. However, as is evident from Table 1 and Table 2 both
the peaks and the overall detection are well localized. The saliency
model as well produces satisfactory activation peaks (Table 3).

We observe very high activation in area V5, encoding motion
[28] and other areas high in the hierarchy of the visual cortex, while
restricted activation and absence of peaks is noted for the primary
(V1) and secondary (V2) visual cortex (see section 5.4 for further
details). Co-activation of the auditory cortex may be partly attributed

(a) Visual features (z=-4)

Fig. 1. Results of GLM fit for visual (a) and auditory (b) features. Trans-
verse slices in MNI space.

(b) Auditory features (z=5)

to the correlation between modalities, namely to the fact that visually
salient events coincide with acoustic events that are also perceived
as salient.

Fig. 2. Results of GLM fit for visual features (left — F-test) and saliency
(right — t-test). Projection on transverse slices MNI z=-8 to z=10 with step 8.

Table 1. Location of activation peaks for visual features model 2.

MNI Coordinates — Hemisphere Functional or F-value
XYZ [Anatomical] area
45 -67 4 Right V5/MT 36.23
-48 -76 4 Left V5/MT 30.47
27 -91 16 Right V3 21.01
27 -79 -11 Right V4 18.59
21 91 7 Left V3 15.43

Table 2. Visual features model: % of voxels of each visual area that show
significant association.

Visual area % in Left Hemisphere

% in Right Hemisphere

Vi 11.00 18.60
V2 4.60 16.70
V3 ventral 33.30 42.20
V3 dorsal 3.80 16.50
V4 ventral 66.60 55.30
V4 dorsal 36.00 36.60
V5/MT 100.00 94.60

In order to test the robustness of this visual front-end, we also
experimented with using only two dominant energies as regressors
— one for luminance and one for color. This produced results with a

?Brain areas are given in conventional notation. See Anatomy Toolbox
atlas for full names.



Table 3. Location of activation peaks for visual saliency model.

MNI Coordinates  Hemisphere Functional or T-value
XYZ [Anatomical] area

42 -73 4 Right [Mid. Occip. Gyrus] 11.35

-42 -64 4 Right [Mid. Temp. Gyrus] 11.00

27 91 16 Right V5/MT 10.55

27 -79 -11 Right [Mid. Temp. Gyrus] 10.16

21 91 7 Left V4 10.15

similar, yet more shrunk pattern localized around area V5 bilaterally.
Such result is expected, since spatio-temporal energies are capable
of modeling both slow and rapid motion changes in a video [21].

5.3. Results for auditory features and saliency

As far as auditory models are concerned, we obtain results with
strong presence of activation in the auditory cortex both for the case
of features and saliency. Nevertheless, cross-modal effects are far
more evident here. It seems that concomitant visual events with con-
spicuous motion introduce significant correlation between auditory
feature (and saliency) regressors and brain voxels located in the vi-
sual cortex, since motion is explicitly encoded in the V5 [28]. Acti-
vation peaks (Tables 4 and 5) support this hypothesis, since they are
located in the auditory cortex and area V5.

By examination of the auditory regressors and motion estima-
tion, we found that large peaks describing or coinciding with motion
dominate parameter estimation in the GLM and thus result in visual
voxels scoring above the statistical activation threshold. This cross-
modal effect is also true for visual features, though to a lesser extent.

Fig. 3. Results of GLM fit for auditory features (left — F-test) and saliency
(right — t-test). Projection on transverse slice MNI z=5.

Table 4. Location of activation peaks for auditory features model.

MNI Coordinates  Hemisphere Functional or F-value
XYz [Anatomical] area
-5-19 4 Left TE 1.0 52.16
54 -13 4 Right TE 1.0 49.04
48 70 4 Right V5/MT 38.56
-39 -31 13 Left TE 1.1 36.05
48 73 7 Left V5/MT 35.85

5.4. Study of brain response correlation across subjects

In an effort to further establish the validity of our results, we con-
ducted an analysis based on inter-subject correlation. We extracted
the mean response of each anatomically defined brain area and
calculated the pairwise Pearson correlation coefficient between all
subjects. Then we performed a t-test to check whether each mean
between-subjects coefficient differed significantly from zero.

Table 5. Location of activation peaks for auditory saliency model.

MNI Coordinates  Hemisphere Functional or T-value
XYz [Anatomical] area

Cluster 1 (Left)

51 -22 7 Left TE 1.0 20.34

-48 -76 4 Left V5/MT 17.72

-39 -31 13 Left TE 1.1 16.84
Cluster 2 (Right)

51 -19 7 Right TE 1.0 20.14

48 -70 4 Right V5/MT 17.86

66 -25 10 Right [Sup. Temp. Gyrus] 16.83

As we can see in Table 6, areas with high inter-subject correla-
tion have been detected by the visual and auditory models respec-
tively. It is also worth noting that V5 encoding motion indeed dis-
plays the highest value. We have also reported a small participation
of areas V1 and V2, both low in the visual system hierarchy. We
can derive from Table 6, that this in not only due to the model’s in-
capability to provide a plausible representation of the information
encoded in these areas, but also due to the discordance among sub-
jects. Part of this effect can be attributed to the experimental setup
and the projection technique in particular: the semi-opaque material
blurs the image and renders low-level static information primarily
encoded in these areas, such as edges, less conspicuous.

It is also worth noting that this analysis produced similar results
for the ON/OFF validation design.

Table 6. Auditory and visual brain areas with statistically significant (p <
0.001) inter-subject correlation in order of ascending p-values (column-
wise).

Funct. Area cont’d cont’d cont’d
V5/MT L TE1.0L TE12L TE1.2R
V5/MT R FGI R V4 dorsal R VIL

V4 ventral R TE1.1R V3 ventral R V2R
TE1.0R V4 dorsal L FG2 R VIR

FGI L AreaTE3L  V3dorsal R V2L

V4 ventral L V3 ventral L V3 dorsal L

AreaTE1.1L FG2L TE3R

6. CONCLUSIONS

In this study we tested the perceptual validity of computational mod-
els for visual and auditory saliency, both of which have been success-
fully used in a number of applications, using fMRI data. Imaging
data were collected for an excerpt of a feature film as part of this
work. To this end we employed widely accepted methods, such as
GLM modeling of fMRI voxel responses and correlation of mean
responses of anatomically defined brain areas across subjects. We
have achieved satisfactory results for vision, thus experimentally es-
tablishing the proposed model as a perceptually inspired one. As
pertains to audition, we have obtained promising results, which at-
test to the suitability of the model in dealing with problems of human
attention in multimodal video processing.

Our current efforts aim at extending our fMRI database to more
video stimuli and more participants, which will broaden the scope
and enhance the validity of our arguments. We are also investigat-
ing more elegant and effective fusion schemes, as well as more so-
phisticated methods for linking our computational models to brain
imaging data, such as ones that make use of temporal information.
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