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Abstract

Scale-spaces induced by diffusion processes play an im-
portant role in many computer vision tasks. Automatically
selecting the most appropriate scale for a particular prob-
lem is a central issue for the practical applicability of such
scale-space techniques. This paper concentrates on auto-
matic scale selection when nonlinear diffusion scale-spaces
are utilized for image denoising. The problem is studied in a
statistical model selection framework and cross-validation
techniques are utilized to address it in a principled way. The
proposed novel algorithms do not require knowledge of the
noise variance and have acceptable computational cost. Ex-
tensive experiments on natural images show that the pro-
posed methodology leads to robust algorithms, which out-
perform existing techniques for a wide range of noise types
and noise levels.

1. Introduction

A primary concern for many applications of image anal-
ysis and computer vision is the presence of noise. Noise is
unavoidably introduced during the image acquisition pro-
cess for various reasons, including thermal effects, cam-
era defects and the quantum nature of light. The transmis-
sion of an image over some communication medium may
also further deteriorate its quality. Therefore image denois-
ing techniques are often utilized in the pre-processing stage
of many practical image analysis systems. Various com-
puter vision algorithms for multiscale image segmentation
or shape recognition require effective noise suppression to
produce reliable results. In some applications, like extract-
ing information from SAR images or processing PET med-
ical images, the effect of noise is so strong, that the role of
a denoising module is indispensable.

An important category of image denoising methods uti-
lize various PDE-based diffusion processes. Evolving the

noisy image under such laws yields a multiscale analysis of
the noisy image. An estimate of the “clean” image is se-
lected among the scale-space snapshots by choosing an ap-
propriate value for the scale parameter, which in this paper
will coincide with the evolution time of the diffusion. The
class of diffusion PDEs which generate general-purpose de-
noising methods encompasses the homogenous heat equa-
tion, the Perona-Malik nonlinear edge-preserving diffusion
equation [12], with its mathematically well-posed modifica-
tion [4], and the anisotropic diffusion equation [16]. Many
variants of these denoising PDEs, tailored for specific appli-
cations, have also been proposed (e.g. [18]). In the experi-
ments reported in Sec. 4 we have used the nonlinear diffu-
sion filter of [4]:

∂u(x, t)
∂t

= div
(
g(‖∇uσ‖)∇u

)
, (1)

with initial conditionu(x, 0) = y(x) and reflecting bound-
ary conditions, but our algorithms are applicable in the more
general setting. In Eq. (1) the diffusivityg : [0,+∞) →
R+ is a decreasing function (withg(0) = 1, g(r) → 0
while r → +∞) which favors intraregion over interregion
smoothing anduσ denotes linear convolution ofu with a
Gaussian kernel of standard deviationσ.

A central issue with difussion-based denoising tech-
niques is how to optimally select the scale at which to stop
diffusing the image. At the one extreme, at a very small
scale the noise has not yet been suppressed sufficiently and
the estimate demonstrates high variance. At the other ex-
treme, at a very large scale, not only the noise but also
the details of the image have been eliminated – the esti-
mate is highly biased. However, most diffusion processes
per se do not exhibit a natural stopping point. For exam-
ple, the steady-state solution of nonlinear diffusion is typ-
ically the trivial constant-valued image. Even if the diffu-
sivity function g in Eq. (1) is selected in a way that the
steady-stateu(x,∞) is non-trivial [2, 6], there is still no
guarantee thatu(x,∞) is optimal for the denoising prob-
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lem in any reasonable way. One clearly needs an automatic
method to successfully resolve this bias–variance tradeoff,
stopping the denoising procedure after the noise has been
adequately suppressed but before the image has been over-
smoothed. The need for such explicit scale selection mech-
anisms has also been stressed out by other researchers in
similar contexts (see e.g. the work of Lindeberg in [9]).

In our work, we emphasize that the problem of choosing
the optimal scale-space snapshot can be treated as a statis-
tical model selection problem. We suggest that a desirable
scale-selection strategy should choose the scale-space snap-
shot that minimizes the expected “distance” to the (gener-
ally unknown) noise-free image, under a given problem-
specific loss function. We propose two novel algorithms
based on statistical cross-validation techniques that approx-
imate this ideal optimality criterion in a principled way and
prove to be particularly effective and robust in practice.
Our approach is on the same spirit with [11], where simi-
lar cross-validation techniques are utilized for selecting the
optimal threshold for denoising by wavelet thresholding.

The paper is organized as follows. In Sec. 2 we first for-
mulate the problem of scale selection for denoising by non-
linear diffusion and then quickly review previous work in
the area. Then, in Sec. 3 we present the cross-validation
model selection framework to address the problem and de-
rive from it two practical algorithms. In Sec. 4 we describe
the experiments we conducted in order to assess the perfor-
mance of the proposed algorithms and compare them with
other methods. Finally, in Sec. 5 we present our conclusions
and give possible directions of future research.

2. Problem Formulation and Previous Work

Available is a “noisy” grayscale imagey consisting of
M = MxMy pixels. We consider a lexicographic ordering
of the pixels and denote byyi the intensity at thei-th pixel,
with 1 ≤ i ≤ M . We assume thaty is a realization of a ran-
dom processY , which follows the model:

Yi = f∗(xi) + Ni, i = 1, . . . ,M, (2)

wheref∗ denotes the usually unknown “clean” image and
N is a zero-mean noise process, with independent elements
Ni of varianceσ2

i .
Starting with the noisy imagey(x) as initial condition

u(x, 0), the diffusion PDE (1) generates a sequence of
scale-space snapshotsft(x) ≡ u(x, t) (indexed by the scale
parametert), which are candidate models for approximat-
ing f∗. We seek for the optimal denoised version of our de-
graded image among these scale-space snapshotsft.

For that purpose an optimality criterion needs to be es-
tablished. Suppose that a new instanceynew = f∗+nnew is
generated fromY , with nnew

i independent fromni but iden-
tically distributed with it. We define the(in-sample) predic-

tion error made by modelft as:

PE(t) ≡ PE(ft) = EN{L(ynew, ft)}, (3)

taking expectations over the noise process{nnew
i }, where

L is a pixel-normalized loss function which penalizes the
deviation betweenynew and ft. Typical examples of loss

functions are theLp(x, y) =
(

1
M

∑M
i=1|xi − yi|p

)1/p
for

p ∈ {1, 2}, although other choices might be more appro-
priate for certain applications. Theoptimal stopping timet∗

can then reasonably be defined as the scale thatPE(t) at-
tains its minimum, i.e.t∗ = argmint≥0 PE(t).

We also define themodel error:

ME(t) ≡ ME(ft) = L(f∗, ft) (4)

In the case that the noise power tends to zero,ME(t) and
PE(t) coincide. Otherwise the added uncertainty due to
noise leads toPE(t) > ME(t). For example, for square
loss and zero-mean i.i.d. errors of varianceσ2, one can eas-
ily show thatPE(t) = ME(t) + σ2. The utility ofME(t) is
limited in practice, sincef∗ is usually unknown. However
one can useME(t) and the scalet∗ME = argmint≥0 ME(t)
where it attains its minimum as reference whenf∗ is avail-
able, as is the case with the experiments of Sec. 4, where we
artificially add noise to images and hence knowf∗.

A quantity closely related toPE(t) is theextra-sample
prediction error, defined as:

PE+(t) ≡ PE+(ft) = EN,X{L(ynew, ft)} (5)

PE+(t) differs fromPE(t) because it treats the positionX
of pixels in the newly generated imageynew as random vari-
ables [5, 3]. This means that forPE+(t) we might need to
compute the image intensity at a point not present in the
training set{xi : 1 ≤ i ≤ M} (cf superresolution). The ad-
ditional uncertainty introduced in this case means that typ-
ically PE+(t) ≥ PE(t). In image processing terminology,
PE+(t) measures not only the uncertainty due to noise and
model error, asPE(t) does, but an interpolation error, as
well. However, in our application we are not interested in
PE(t) per se but in the scalet∗ that it attains its minimum.
Assuming that the interpolation error terms inPE+(t) for
the different models{ft : t ≥ 0} effectively cancel out, it is
plausible to taket∗ ≈ t∗+, wheret∗+ = argmint≥0 PE+(t)
is the scale wherePE+(t) is minimized. The gain from this
assumption is thatPE+(t) can be estimated directly from
the noisy imagey using cross-validation techniques, as we
will see in Sec. 3.

A number of approaches have been proposed in the
image processing community to address the problem. In
[17] Weickert selects the scalet∗snr which satisfies the re-

lation
var(ft∗snr

)

var(f0)
= 1

1+1/snr , assuming that the signal-to-
noise ratiosnr is known and that the diffusion filter is
so effective, thatft∗snr

is a good approximation off∗.
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Mrazek in [10] proposes a decorrelation criterion, selecting
the scalet∗dec which minimizes the correlation coefficient
t∗dec = argmint≥0

cov(f0−ft,ft)√
var(f0−ft)var(ft)

, consideringf0 − ft

as “noise” andft∗dec
≈ f∗. However the decorrelation cri-

terion does not seem to be connected with any other crite-
rion of filtering quality, which was also noted in [10]. Fi-
nally, Solo in [13], assuming i.i.d. gaussian noise of known
variance and quadratic penalty, derives a SURE-based [14]
criterion for selecting the scale that minimizesPE(t) un-
derL2 loss. From the approaches just described, none can
handle arbitrary loss functionsL. Moreover, the first two of
them lack statistical foundations. The cross-validation algo-
rithms we discuss next try to overcome these shortcomings.

3. Scale Selection by Cross-Validation

Cross-validation methods attempt to directly estimate the
extra-sample prediction errorPE+(t) of Eq. (5) in a non-
parametric, data-driven way [15]. Cross-validatory tech-
niques for model selection are very general, in the sense
that they can be used with any loss functionL or non-
linear model generator, unlike other approaches to model
selection, such as those based on theAkaike Information
Criterion, Mallows’ Cp statisticor theBayesian Informa-
tion Criterion, whose applicability is typically restricted
to quadratic loss and linear model settings [7]. Therefore
cross-validation is particularly appropriate for scale selec-
tion in our context of denoising by nonlinear diffusion un-
der arbitrary loss function. Note, however, that for cross-
validation techniques to work well in our problem, it is im-
portant that the noise elementsNi at different pixels are un-
correlated. For example, it has been shown in [1] (in the
context of kernel smoothing) that if noise at neighboring
pixels is positively (negative) correlated, then models se-
lected by unadapted cross-validation tend to overfit (resp.
underfit) the data (cf. [11]).

In order to estimatePE+(t) by cross-validation, we need
to properly resample the noisy dataD = {(xi, yi) : 1 ≤ i ≤
M} which form our training set. LetT1 ⊂ D contain some
data withheld from the training set. Then the remaining data
from D can be used to build a nonlinear diffusion scale-
space denoted byf−T1

t . The predictive power off−T1
t can

be assessed onT1 by P̂E+(f−T1
t ) = L(yT1 , f−T1

t ), since
T1 is independentfrom the data used to build the model.
We repeat thisK times for different subsetsT1, . . . ,TK of
roughly the same size and average the results to get:

P̂E+(t) = PECV (t) =
1
K

K∑
k=1

P̂E+(f−Tk
t ) (6)

In order to derive practical algorithms for our applica-
tion, we need to specify the{Ti : 1 ≤ i ≤ K}. This is-
sue has attracted considerable attention in the literature (see

Figure 1. Resampling configurations.T1 is depicted
in white.Left: Quadruple-CV.Right:Double-CV.

e.g. [8] and the references therein). For some model selec-
tion problems, like choosing the regularization parameter
of smoothing splines,leave-one-outcross-validation (where
K = M and Ti only contains(xi, yi)) can be approxi-
mated analytically, leading to fast computations [7]. How-
ever, adopting leave-one-out cross-validation in our case
would require building nonlinear diffusion scale-spaces of
M images of size(M−1)-pixels each, which clearly is un-
acceptably expensive. Hence we have explored two other
data resampling configurations for our problem. Fig. 1 de-
picts for each of these two alternative strategies the pixels
D − Ti used to build the scale-space model (in black) and
the pixelsTi used to estimate its prediction error (in white)
for the casei = 1. The first of these configurations (called
quadruple-cvfrom now on), which was also used by Nason
in the context of wavelet shrinkage [11], createsK = 4 non-
linear diffusion scale-spaces, each built up using≈ 1/4 of
the noisy image data and used to estimate the prediction er-
ror of the model on the remaining|Ti| ≈ 3/4 of the data.
The second (calleddouble-cvin the following) selects the
members ofTi in a chessboard-like fashion, utilizing half
for building the scale-space and half for testing it, repeat-
ing K = 2 times.

In more detail, in the case ofquadruple-cv
configuration, by selecting four different values
{(0, 0), (0, 1), (1, 0), (1, 1)} for the shift vector
(si, sj), we get four subsampled by a factor of two
in each direction versions of the noisy imagey.
Each consists of roughlyM/4 pixels with coordi-
nates{(2i+si, 2j +sj) : 0 ≤ i < Mx/2, 0 ≤ j < My/2}.
We then build the nonlinear diffusion scale-space of
each of these subsampled images, appropriately scal-
ing the diffusion PDE. For example, if Eq.(1) is uti-
lized, we must enforceτ ′ = τ/4 (for the time-step),
g′(·) = g(·/2) and σ′ = σ/2. We subsequently use
Eq. (6) to getPECV

quadruple−cv(t), computing each of the

four terms{P̂E+(f−Tk
t ) : 1 ≤ k ≤ 4} as follows: We

take thet′ = t/4 snapshot of the corresponding auxil-
iary scale-space, with dimensionsMx/2 by My/2 and
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interpolate from it the values at the remaining3M/4 pix-
elspi ∈ Tk. A nonlinear, edge-preserving procedure should
ideally be utilized for the interpolation, although, in prac-
tice, we have noticed little difference when using simple bi-
linear interpolation. We then penalize (by means ofL)
the difference between the interpolated value and the ini-
tial noisy valueyi at the same pixelpi and average over
the 3M/4 pixels of Tk to get P̂E+(f−Tk

t ). The proce-
dure just described adds automatic scale selection to non-
linear diffusion-based denoising procedures at roughly
double the computational cost of plain nonlinear dif-
fusion, since4 auxiliary scale-spaces of sizeM/4 pix-
els each need to be built in parallel with the standard
scale-space.

The concept in the case ofdouble-cvresampling is simi-
lar and won’t be described in detail. The main difference is
that the pixels that build each of the auxiliary scale-spaces
are not located on a rectangular lattice any more (see Fig. 1,
right). Therefore, it is convenient to first interpolate the val-
ues at theM/2 “white” pixels of Tk from the values at the
remainingM/2 “black” pixels of the noisy imageyi and
then build the auxiliary scale-spaces. Since these auxiliary
scale-spaces are full-sized, the PDE (6) doesn’t need any
rescaling. The overall cost of the procedure is three times
the cost of the standard scale-space, since two auxiliary full-
sized scale-spaces evolve in parallel with the main one.

4. Experiments and comparisons

An example of image denoising with automatic scale se-
lection by cross-validation techniques can be seen in Fig. 2.
At the first row one can see the noisy image and its de-
noised version at scalet∗double−cv determined by thedouble-
cv cross-validation algorithm. The corresponding plots de-
picting theME(t) (ground truth) andPE+(t) (as estimated
by the two cross-validation algorithms) can be seen at the
second row. Notice that, as we discussed in Sec. 2,ME(t)
is smaller thanPE+(t). Nonetheless, both quantities attain
their minimum at roughly the same scale (after about 8 iter-
ations). Some further examples of automatic denoising, one
of an MRI scan and one of an aerial image, utilizing cross-
validation scale selection techniques, can be seen in Fig. 3.

In order to systematically assess the performance of
the proposed algorithms and compare them with exist-
ing techniques, we run a series of denoising experiments
on a dataset of 39 natural grayscale images (the ko-
dak, aerial and misc1 collections available fromhttp:
//www.cipr.rpi.edu/resource/stills/ ), cor-
rupted by artificial noise so that the ground truthf∗ would
be available. Apart from the two cross-validation algo-
rithms we have proposed (double-cvand quadruple-cv),
we have also implemented the snr-based method of We-
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Figure 2. Image denoising example.Up: The noisy
image and its denoised version at an automatically
selected scale.Down: Model Error ME(t) (ground
truth) and Prediction ErrorPE+(t) (estimated by
each of the two cross-validation algorithms).

ickert (with ground-truth snr value), and the decorrelation
method of Mrazek, in the sequel dubbedsnr anddec, re-
spectively. The nonlinear diffusion scale-space used in the
experiments reported here was generated by the PDE of
Eq. (1) with σ = 0.1 pixels. We employed the diffusiv-
ity function g(r) = 1/[1 + (r/λ)2] [12], with λ = 0.01 in
all of the tests (the intensity values of the images were in
[0, 1]) and the AOS numerical scheme [16]. Bilinear inter-
polation was utilized for upsampling.

We experimented with three different noise typesnt ∈
{gaussian, salt&pepper, speckle}. The degraded images
were respectively generated byyi = f∗(xi) + εi (gaus-
sian),yi = (1 + εi)f∗(xi) (speckle), andyi = f∗(xi),
with probability1− p andyi = 0 or 1 with probabilityp/2
each (salt&pepper). In the gaussian and speckle cases, the
εi were i.i.d. sampled fromN(0, σ2). We conducted tests
for varying noise levelsnl ∈ {0.05, 0.1, 0.15, 0.2, 0.3, 0.4},
wherenl = σ in the case of gaussian or speckle noise and
nl = p in the case of salt&pepper noise and for two differ-
ent choices of the loss functionL ∈ {L1, L2}. To evaluate
the performance of the algorithms under consideration for
each of the2 · 3 · 6 = 36 combinations of(L, nt, nl) we run
experiments on all 39 images in the database and averaged
the performance results of each algorithm on the different
images. We totally performed36 · 39 = 1404 experiments.
At each experiment and for each scale selection algorithm
alg ∈ {double− cv, quadruple− cv,dec, snr}, we eval-
uated two quantities, namely therelative increase in model
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Figure 3. Examples of noisy images and their de-
noised versions at automatically selected scales.Up:
An MRI scan degraded by speckle noise.Down: An
aerial image with added gaussian noise.

error, defined as∆(ME)
ME = ME(t∗alg)−ME(t∗ME)

ME(t∗ME) and therela-

tive scale error, given by∆t∗

t∗ = |t∗alg−t∗ME|
t∗ME

.

In Figs. 4 and 5 we present average benchmark scores for
∆(ME)

ME and ∆t∗

t∗ , respectively, acquired by the experimental
process just described. In these figures one can see that the
two algorithms based on cross-validation consistently out-
perform thedecandsnr methods. The robustness of both
cross-validation algorithms, irrespectively of the noise type
or the utilized loss function is particularly noteworthy.

In more detail, as far as∆(ME)
ME is concerned (Fig. 4),

double-cvandquadruple-cvgive results that sometimes are
one order of magnitude better than the results given by
the snr anddecalgorithms. This is particularly true in the
case of gaussian noise, where the∆(ME)

ME of the two cross-
validation algorithms is almost always less than1%, ap-
proaching sometimes0.1%, practically meaning that the au-
tomatically selected scalet∗CV in these cases coincided with
the ground truth optimal scale for almost every image in the
dataset. The performance ofdouble-cvandquadruple-cvin
the two cases of non-gaussian noise is less impressive, al-
though the error still remains under10%. Among the other
two algorithms,snr seems to perform better thandec. It is
noteworthy in Fig. 4 that the error made by thesnr algo-
rithm consistently lies around10%. The decorrelation algo-
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Figure 5. Relative scale error∆t∗/t∗ at various
noise levelsnl for the scale selection algorithms un-
der comparison. Average results over 39 images. Log-
scale on y-axis. Legend on the bottom-right figure.

rithm decperformed rather poorly in our experiments. Note
that the experiments in [10] also imply thatdecdoesn’t per-
form well with the nonlinear diffusion PDE (1). Similar re-
marks can be made about the∆t∗

t∗ results shown in Fig. 5.
Finally, regarding the relative performance of the two

cross-validation algorithms,double-cvseems from the re-
sults shown in the figures to perform slightly better than
quadruple-cv, but the margin is too small to allow for
safe conclusions, especially if we take into account that
quadruple-cvis computationally cheaper.

5. Conclusions

This paper has presented a promising approach to auto-
matic scale selection in nonlinear diffusion scale-spaces for
denoising purposes. The problem has been formulated in a
statistical model selection framework and cross-validation
techniques have been utilized to estimate the optimal stop-
ping time in a principled way. Two practical algorithms have
been derived under this approach, which can be used with
whatever loss function is most applicable to a specific appli-
cation under consideration. Extensive experimental results
on artificially degraded images have demonstrated the effi-
cacy of the method in a range of noise types and loss func-
tions. It will be interesting to test the applicability of the
method in denoising methodologies which utilize broader
classes of diffusion or morphological scale spaces.
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