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ABSTRACT

Multiscale, i.e. scale-space image analysis is a powerful frame-
work for many image processing tasks. A fundamental issue with
such scale-space techniques is the automatic selection of the most
salient scale for a particular application. This paper considers op-
timal scale selection when nonlinear diffusion and morphologi-
cal scale-spaces are utilized for image denoising. The problem
is studied from a statistical model selection viewpoint and cross-
validation techniques are utilized to address it in a principled way.
The proposed novel algorithms do not require knowledge of the
noise variance, have acceptable computational cost and are read-
ily integrated with a wide class of scale-space inducing processes
which require setting of a scale parameter. Our experiments show
that this methodology leads to robust algorithms, which outper-
form existing scale-selection techniques for a wide range of noise
types and noise levels.

1. INTRODUCTION

A primary concern for many applications of image analysis and
computer vision is the presence of noise. Most algorithms for im-
age segmentation, surveillance or medical image analysis require
effective noise suppression to produce reliable results. Therefore
an image denoising module is often present in the pre-processing
stage of many practical image analysis systems.

Nonlinear scale-spaces, induced either by nonlinear diffusion
processes or morphological operators, are particularly effective
at suppressing noise while preserving important image features
e.g. edges and are widely used for image denoising. Nonlinear
diffusion Partial Differential Equations (PDEs) which generate
general-purpose denoising methods are generalizations of the ho-
mogenous heat equation. Representative examples are the Perona-
Malik nonlinear edge-preserving diffusion equation [1], with its
mathematically well-posed modification [2], and the anisotropic
diffusion equation [3]. Variants of these denoising PDEs for spe-
cific applications have also been proposed (e.g. [4]). In the exper-
iments reported in Sec. 4 we have used the diffusion PDE of [2]

(from now on, x denotes a 2D position vector on the image plane):
ou(z,t .
% = div (g(| Vua ) V), )

with initial condition u(x, 0) = y(x), which creates a scale-space
{ft : t > 0}, with fi(z) £ wu(z,t). In Eq. (1) the diffusivity
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g : [0,+00) — R is a decreasing function (with g(0) = 1,
g(r) — 0 while r — +00) which favors intraregion over interre-
gion smoothing and u, denotes convolution of v with a Gaussian
kernel of standard deviation o.

A large class of morphological filters also generates nonlinear
scale-spaces with good denoising properties. The simplest exam-
ple is Minkowski openings and closings, which are serial compo-
sitions of flat erosions and dilations by disks. Cascading open-
closings at increasing scales yields the alternating sequential fil-
ter (ASF) [5]. Further, the Minkowski open-closings in an ASF
can be replaced by other types of lattice-theoretic open-closings,
such as the reconstruction filters [6]. Most of the above morpho-
logical scale-spaces can also be implemented with PDEs, which
has many advantages over implementation with digital filters [7].
However, reconstruction openings and closings are not self-dual
operators, treating the image and its background asymmetrically.
A newer morphological operator type that unifies both of them
and possesses self-duality is the leveling [8]. Levelings are nonlin-
ear object-oriented filters that simplify a reference image f by si-
multaneously locally expanding or shrinking an initial seed image,
called the marker m, and globally constraining the marker evolu-
tion by the reference image. Let u(x,t) represent the evolutions
of m. Then w is a weak solution of the PDE [8, 9] du(zx,t)/0t =
—sgn(u — f)||Vu||, with initial condition u(z,0) = m(z). This
PDE has a non-trivial steady-state [9] A(m|f) £ lims— oo u(x, t),
which is the leveling of f with respect to m. Now, let us consider
various markers m¢, t = 1, 2, ..., that are related to some increas-
ing scale parameter ¢ and construct the levelings f; = A(m¢|fi—1),
t > 1, with fo = y. The signals {f; : ¢ > 0} constitute a hier-
archy of multiscale levelings of the initial image y possessing the
causality property that f; is a leveling of f; for 7 > i. A way to
construct such multiscale levelings is to use a sequence of multi-
scale markers obtained by sampling a Gaussian scale-space of y.

Any of the above multiscale denoising methods starts from a
noisy initial image y and generates a sequence of scale-space snap-
shots {f; : ¢ > 0}, with fo = y, which depend on an increasing
scale parameter ¢. Thus, a cental issue is how to optimally select
the scale at which to stop smoothing the image. At the one ex-
treme, at a very small scale the noise has not yet been suppressed
sufficiently and the estimate demostrates high variance. At the
other extreme, at a very large scale, not only the noise but also the
details of the image have been eliminated — the estimate is highly
biased. However, most scale-space representations do not exhibit
an inherent stopping point. For example, the steady-state solution
of nonlinear diffusion is typically the trivial constant-valued im-
age. Even if the diffusivity g in Eq. (1) is selected in a way that
the steady-state foo is non-trivial [10, 11], there is still no guar-
antee that f., is optimal for the denoising problem in any reason-
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able way. One clearly needs an automatic method to successfully
resolve this bias—variance tradeoff, stopping the denoising proce-
dure after the noise has been adequately suppressed but before the
image has been oversmoothed. The need for explicit scale selec-
tion mechanisms has also been stressed out by other researchers in
similar contexts (see e.g. the work of Lindeberg in [12]).

In our work, we consider choosing the optimal scale for de-
noising as a statistical model selection problem. We suggest that
a desirable scale-selection strategy should choose the scale-space
snapshot that minimizes the expected “distance” to the (generally
unknown) noise-free image, under a given problem-specific loss
function. We propose two novel algorithms based on statistical
cross-validation techniques that approximate this ideal optimality
criterion in a principled way. These algorithms prove to be partic-
ularly effective and robust in practice. Our approach is on the same
spirit with [13], where similar cross-validation techniques are uti-
lized for selecting the optimal threshold for denoising by wavelet
thresholding. This paper extends our recent work in [14], which
was confined to scale selection in diffusion scale-spaces, by study-
ing the performance of the proposed cross-validation scale selec-
tion algorithms in denoising schemes utilizing a wider class of
nonlinear scale-spaces, including morphologically-induced ones.

2. PROBLEM FORMULATION AND PREVIOUS WORK

Available is a “noisy” grayscale image y consisting of M = MM,
pixels. Consider a lexicographic ordering of the pixels and denote
with y; the intensity at the ¢-th pixel, with 1 < ¢ < M. We assume
that y is a realization of a random process Y, modeled by:

Y= f"(x)+N;, i=1,...,M, ?2)
where f* denotes the usually unknown “clean” image and N is a
zero-mean noise process, with independent elements [V; of vari-
ance 7. Starting from the noisy image y(x) as initial condition
fo, the scale-space members {f; : ¢ > 0}, indexed by an in-
creasing scale parameter ¢, are candidates for approximating f*.
We seek for the optimal denoised version of our degraded image
among these scale-space snapshots f;.

For that purpose an optimality criterion needs to be estab-
lished. Suppose that a new instance y™“* = f* + n"°" is gener-
ated from Y, with n7“” independent from n; but identically dis-
tributed with it. We define the (in-sample) prediction error made
by model f; as:

PE(t) = PE(fi) = En{L(y"", f1)}, (©)

taking expectations over the noise process {n; "}, where L is a
pixel-normalized loss function which penalizes the deviation be-
tween y"“ and f;. Typical examples of loss functions are the
Ly(z,y) = (& M |z — yil?) /" for p € {1,2}, although
other choices might be more appropriate for certain applications.
The optimal stopping time t* can then reasonably be defined as the
scale that PE(¢) attains its minimum, i.e. t* = argmin, , PE(t).

Another quantity useful in our analysis is the model error, de-
fined as ME(t) = ME(f:) = L(f*, f¢). In the case that the noise
power tends to zero, ME(t) and PE(t) coincide. Otherwise the
added uncertainty due to noise leads to PE(¢) > ME(t). For ex-
ample, for square loss and zero-mean i.i.d. errors of variance o2,
one can easily show that PE(t) = ME(t) + o2. The utility of
ME(t) is limited in practice, since f* is usually unknown. How-
ever one can use ME(t) and the scale ty;; = argmin,. , ME(t)

where it attains its minimum as reference when f* is available, as
is the case with the experiments of Sec. 4, where we artificially
add noise to images and hence know f*.

The extra-sample prediction error, defined as

PEy(t) = PE4(f:) = Enx{L(y"", fi)}, “

differs from PE(t) because it treats the position X of pixels in the
newly generated image y"” as random variables [15, 16]. This
means that for PE (¢) we might need to compute the image in-
tensity at a point not present in the training set {z; : 1 < ¢ < M}
(cf superresolution). The additional uncertainty introduced in this
case means that typically PE4 (t) > PE(t). In image process-
ing terminology, PE (¢) measures not only the uncertainty due to
noise and model error, as PE(t) does, but an interpolation error, as
well. However, in our application we are not interested in PE(¢)
per se but in the scale ¢* that it attains its minimum. Assuming that
the interpolation error terms in PE, (¢) for the different models
{ft : t > 0} effectively cancel out, it is plausible to take t* ~ ¢,
where ¢ = argmin,., PE,(t) is the scale where PE, (¢) is
minimized. The gain from this assumption is that PE (¢) can be
estimated directly from the noisy image y using cross-validation
techniques, as we will see in Sec. 3.

We briefly review next a number of other approaches to scale

selection, mainly from the scale-space related literature. In [17]
var(fgx )

Weickert selects the scale t7,,, which satisfies the relation ———s2— =

var(fo)
1++/snr’ assuming that the signal-to-noise ratio snr is known and
that the diffusion filter is so effective, that f;»  is a good approx-
imation of f*. Mrazek in [18] proposes a decorrelation criterion,
selecting the scale t}}.. which minimizes the correlation coeffi-

cov(fo—ft,ft) S
=V JoJeJt) | considerin —
var(fo—Jo)var(Fe) gfo—Jfi

as “noise” and ft?iec ~ f*. However the decorrelation criterion
does not seem to be connected with any other criterion of filtering
quality, which was also noted in [18]. Finally, Solo in [19], assum-
ing i.i.d. gaussian noise of known variance and quadratic penalty,
derives a SURE-based criterion for selecting the scale that mini-
mizes PE(t) under Ly loss. From the approaches just described,
none can handle arbitrary loss functions L. Moreover, the first
two of them lack statistical foundations. The cross-validation al-
gorithms we discuss next try to overcome these shortcomings.

cient t}j,. = argmin,-

3. SCALE SELECTION BY CROSS-VALIDATION

Cross-validation methods attempt to directly estimate the extra-
sample prediction error PE, (¢) of Eq. (4) in a non-parametric,
data-driven way [20]. Cross-validatory techniques for model se-
lection are very general, in the sense that they can be used with
any loss function L or nonlinear model generator, unlike other ap-
proaches to model selection, such as those based on the Akaike
Information Criterion, Mallows’ Cp statistic or the Bayesian In-
formation Criterion, whose applicability is typically restricted to
linear model settings with quadratic loss and known noise vari-
ance [21]. Therefore cross-validation is particularly appropriate
for scale selection in the context of denoising in nonlinear scale-
spaces under arbitrary loss function. Note, however, that for cross-
validation techniques to work well in our problem, it is impor-
tant that the noise elements V; at different pixels are uncorre-
lated. For example, it has been shown in [22] (in the context of
kernel smoothing) that if noise at neighboring pixels is positively
(negative) correlated, then models selected by unadapted cross-
validation tend to overfit (resp. underfit) the data (cf. [13]).
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In order to estimate PE (¢) by cross-validation, we need to
properly resample the noisy data D = {(z;,v:) : 1 < i < M}
which form our training set. Let 71 C D contain some data
withheld from the training set. Then the remaining data from D
can be used to build a nonlinear diffusion scale-space denoted by
ft_{Il. The predictive power of ft_Trl can be assessed on J7 by
F/’]\E+( 7Y = L(y", f771), since Ty is independent from the
data used to build the model. Repeating K times for different sub-
sets J1, ..., Tk of roughly the same size and averaging yields:

K

~ 1 == -

PEL(t) = PE“V(t) = y7d > PEL(f77") ®)
k=1

In order to derive practical algorithms for our application, we
need to specify the {J; : 1 < ¢ < K}. This issue has attracted
considerable attention in the literature (see e.g. [23]). For some
model selection problems, like choosing the regularization param-
eter of smoothing splines, leave-one-out cross-validation (where
K = M and T; only contains (x;,¥;)) can be approximated an-
alytically, leading to fast computations [21]. However leave-one-
out cross-validation in our case requires building nonlinear diffu-
sion scale-spaces of M images of size (M—1)-pixels each, some-
thing unacceptably expensive. Hence we propose two other data
resampling configurations, called quadruple-cv and double-cv from
now on. Fig. 1 depicts for each of them the pixels D — T; used
to build the scale-space model (in black) and the pixels T; used to
estimate its prediction error (in white) for the case ¢ = 1.

SR

Fig. 1. Resampling configurations. T is depicted in white. Left:
Quadruple-CV. Right: Double-CV.

In quadruple-cv, by selecting four different values {(0,0), (0,1),
(1,0), (1,1)} for the shift vector (s;, s;), we get four subsampled
by a factor of two in each direction versions of the noisy im-
age y. Each consists of roughly M /4 pixels with coordinates
{(2i 4 54,25 +s5) : 0< i < My/2,0 < j < M,/2}. We then
build the scale-space of each of these subsampled images, appro-
priately scaling the PDEs or the structuring elements of the mor-
phological filters. For example, if the PDE (1) is utilized, we must
set 7/ = 7/4 (for the time-step), ¢'(-) = g(-/2) and ¢’ = o /2.
We then get PEgu‘gdruple_cv(t) from Eq. (5), computing each of
the four terms {15-1\'_1:+(ft_7k) : 1 < k < 4} as follows: We take
the corresponding snapshot of the auxiliary scale-space, with di-
mensions M /2 by M, /2 and interpolate from it the values at the
remaining 3M /4 pixels p; € Ty (by bilinear interpolation in our
implementation). We then penalize (by means of L) the discrep-
ancy between the interpolated value and the initial noisy value y;
at the same pixel p; and average over the 3M /4 pixels of Ty to
get P/’I\-L_ ( ft_T’“). The computational overhead roughly equals the
cost of generating the original scale-space, since 4 auxiliary scale-
spaces of size M /4 pixels each need to be built.

The main difference in the case of double-cv is that the pix-
els building each of the auxiliary scale-spaces are not located on
a rectangular lattice any more (see Fig. 1, right). Therefore, it is
convenient first to interpolate the values at the M /2 “white” pix-
els of T from the values at the remaining M /2 “black” pixels of
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Fig. 2. Image denoising example. Up: The noisy image and its
denoised version at an automatically selected scale. Down: Model
Error ME(¢) (ground truth) and Prediction Error PE (¢) (esti-
mated by each of the two cross-validation algorithms).

Fig. 3. A noisy image (left), as denoised by diffusion (center) and
leveling (right) scale-spaces at automatically selected scales. Up:
MRI scan, speckle noise. Down. Aerial image, gaussian noise.

the noisy image y; and then build the auxiliary scale-spaces (no
rescaling is thus needed). The overhead of the procedure is twice
the cost of the standard scale-space, since two auxiliary full-sized
scale-spaces evolve in parallel with the main one.

4. EXPERIMENTS AND COMPARISONS

An example of image denoising with automatic scale selection
by cross-validation can be seen in Fig. 2. The first row shows
the noisy image and its denoised version at scale tjj,,p1e—cv de-
termined by the double-cv cross-validation algorithm. The cor-
responding plots of the ME(¢) (ground truth) and PE, (¢) (as
estimated by the two cross-validation algorithms) can be seen at
the second row. Notice that, as we discussed in Sec. 2, ME(t) is
smaller than PE, (¢). However, both quantities attain their mini-
mum at roughly the same scale (after about 8 iterations). Further
denoising examples by diffusion and leveling scale-spaces, one of
an MRI scan and one of an aerial image, can be seen in Fig. 3.

In order to systematically assess the performance of the pro-
posed algorithms and compare them with other techniques, we
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Fig. 4. Relative increase in model error A(ME) /ME as a function
of the noise level nl for the scale selection algorithms under con-
sideration. Average results computed over 39 images. (Log-scale
on the y-axis, legend on the bottom-right figure.)

run a series of denoising experiments on a dataset of 39 natural
grayscale images (the kodak, aerial and misc1 collections available
fromhttp://www.cipr.rpi.edu/resource/stills/),
corrupted by artificial noise so that the ground truth f* would
be available. Apart from the two cross-validation algorithms we
propose (double-cv and quadruple-cv), we have also implemented
the snr-based method of Weickert (with ground-truth snr value),
and the decorrelation method of Mrazek, in the sequel dubbed
snr and dec, respectively. The scale-space used in the experi-
ments reported here was generated by the diffusion PDE (1), with
g(r) = 1/[1 + (r/X)?] [1], A = 0.01 (the intensity values of the
images were between 0 and 1) and the AOS scheme [3].

We experimented with three different noise types nt € { gaus-
sian, salt&pepper, speckle}. The degraded images were respec-
tively generated by y; = f*(z;) + € (gaussian), y; = (1 +
€)f"(z:) (speckle), and y; = f*(x;), with probability 1 — p and
yi = 0 or 1 with probability p/2 each (salt&pepper). In the gaus-
sian and speckle cases, the ¢; were i.i.d. sampled from N (0, o?).
We conducted tests for varying noise levels nl € {0.05, 0.1, 0.15,
0.2, 0.3, 0.4}, where nl = o in the case of gaussian or speckle
noise and nl = p in the case of salt&pepper noise and for two
different choices of the loss function L € {L1, L2 }. To assess the
performance of the algorithms under consideration for each of the
2 -3 -6 = 36 combinations of (L, nt,nl) we run experiments on
all 39 images in the database and averaged the relative increase in

A(ME) _ ME(t;),)—ME(t{r)
model error, defined as =y = ME((,,) .

. A(ME)
In Fig. 4 we present average benchmark scores for the =5

Notice that double-cv and quadruple-cv give results that some-
times are one order of magnitude better than the results given by
the snr and dec algorithms. This is particularly true in the case of
gaussian noise, where the % of the two cross-validation al-
gorithms is almost always less than 1%. The robustness of both
cross-validation algorithms, irrespectively of the noise type or the
utilized loss function is also noteworthy. Among the other two al-
gorithms, snr seems to perform better than dec. The decorrelation
algorithm dec performed rather poorly in our experiments. Note
that the experiments in [18] also imply that dec doesn’t perform
well with the nonlinear diffusion PDE (1).

These experimental results demonstrate that cross-validation
is very efficient for scale selection in nonlinear scale-spaces, giv-

ing good results for a range of noise types and loss functions.
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