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Abstract—Singing Voice Separation (SVS) is the task of isolat-
ing the vocal component from a given musical mixture. In recent
years there has been an increase in both the quantity and quality
of SVS techniques that operate in the waveform domain and have
an encoder-separator-decoder structure, where the separator
processes a latent representation of the waveform produced by
the encoder. In this work, we propose a parallel multi-band
modification for this family of architectures, that splits the
latent representation provided by the encoder in multiple sub-
bands and then processes each band in isolation, using multiple
separators, so as to better exploit the internal correlations of each
sub-band. We investigate the effect of our proposed modification
on Conv-TasNet, a widely used architecture adhering to the
encoder-separator-decoder paradigm. The results indicate that
the proposed modification improves the overall performance
without altering the network size, and offer insights on its scaling
capabilities as well as its applicability in other architectures that
follow this general paradigm.

Index Terms—singing voice separation, Conv-TasNet, parallel
separators, music source separation

I. INTRODUCTION

Source separation is the task of decomposing a given
mixture signal into the source signals that constitute it. In
the context of audio processing, singing voice separation is
the task of separating the vocal track and the instrumental
accompaniment from a musical mixture. With the development
of deep learning, and the availability of more data [1], fully
supervised methods based on Deep Neural Networks (DNNs)
have dominated the field [2], [3]. These methods can be split in
two broad categories, based on whether they process the audio
signal in its original form (waveform domain), or using a time-
frequency (T-F or spectrogram) representation of the signal,
such as the Short-Time Fourier Transform (STFT) magnitude.

The intuition behind the usage of the magnitude STFT for
this task has led to a number of very successful network archi-
tectures [4]–[9]. However, the STFT still constitutes a generic
signal transformation, not necessarily optimised for the task of
source separation. Moreover, STFT-magnitude based methods
omit the phase of the signal from the estimation of the sources.
The most commonly used shortcut involves reconstructing the
source signals using the phase of the mixture signal, or an
approximation provided by the Griffin-Lim algorithm [10],
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Fig. 1. The encoder-separator-decoder architecture.

thus discarding part of the signal information and hindering
the overall separation potential.

On the other hand, waveform domain-based methods [11]–
[16], bypass these issues, as they typically learn a transforma-
tion suitable for the separation task and utilise all the informa-
tion provided by the signal. A considerable amount of these
waveform-based methods follow an encoder-separator-decoder
structure [12], [17]–[19] and separate the source signals by
transforming the input mixture into a two-dimensional latent
space, generating suitable masks for each source, applying
them on the learned latent space and transforming the results
back to the waveform domain. These architectures have been
shown experimentally to achieve a higher upper bound of
performance, compared to their STFT-based counterparts [20].

Multi-band audio processing has proven to be successful in
a number of tasks, such as generative audio synthesis [21],
[22] and STFT-based audio source separation [8], [9]. In this
work1 we propose a multi-band extension to waveform-based
architectures for audio source separation, in which the learned
latent space is automatically split into multiple, uniquely
separable bands, and each band is processed individually,
using multiple separators in parallel. This work deviates from
a number of publications in the literature [14], [19], [23]–
[25] which either focus on utilizing an improved encoder
structure, or fine-tuning the building blocks of the separator
for time-domain encoder-separator-decoder architectures. We
applied our proposed method in Conv-TasNet [12], a recently
introduced architecture that follows the encoder-separator-
decoder paradigm, and our results in the task of singing
voice separation on the widely used MUSDB18 dataset [1]
indicate that the proposed band-splitting paradigm could be
successfully applied to a number of architectures that are based
on the aformentioned learned latent space scheme.

1Github link: https://github.com/PanagiotisP/svs-multiband
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The rest of the paper is organized as follows: In Sec. II,
we present the original Conv-TasNet [12] architecture, while
our proposed multi-band variant is introduced in Sec. III. The
experimental framework we utilize to evaluate our proposed
architectures is outlined in Sec. IV. We report on and discuss
our findings in Sec. V, while Sec. VI contains our conclusions
and proposes a number of future research directions.

II. REVIEW OF CONV-TASNET

The original Conv-TasNet [12] architecture consists of an
encoder, a separation module and a decoder, as illustrated in
Fig. 1. The encoder transforms overlapping segments of the
mixture waveform x ∈ RA×T , where A is the number of audio
channels (1 for mono, 2 for stereo) and T is the segment length
in samples, into a latent, high-dimensional representation, w ∈
RN×T ′

, where T ′ is the length of the encoded representation
in samples. As this transformation is learnable, it is possible to
create representations of the signal that are more suitable for
the separation process than other fixed transformations, such as
the STFT. The encoder is implemented as an 1D convolutional
layer, with an encoding dimension of N = 256, a relatively
large kernel size of L = 20 samples, and a 50% stride of
L/2 = 10 samples.

The separator processes the latent representation to generate,
for each of the C sources in the mixture, a latent mask Mc ∈
RN×T ′

, c = 1 . . . C. These masks are applied multiplicatively
to the encoded input, resulting in the encoded representations
of the source signals. In [12], the separator is implemented as a
multi-block, residual Temporal Convolutional Network (TCN)
[26], that uses serially connected stacks of S = 3 sub-modules.
In turn, these modules comprise of D = 8 depthwise separable
convolutional blocks each, with an increasing dilation factor,
di = 2i−1, i = 1, ..., D, in order to capture multi-scale
data patterns. Before and after the convolution operation,
each convolutional block transforms the latent representation
along the channel dimension between a bottleneck dimension,
B = 256 and an internal channel dimension, H = 512.

Finally, the decoder transforms the masked latent represen-
tations of each source back to the waveform domain, resulting
in the estimated segments of the source signals ŝc. This module
uses a linear layer to change the number of channels from N
to A · L and then uses an overlap-and-add method to restore
the dimensionality of both the channel and the feature map
dimensions of the source signals.

III. MULTI-BAND SEPARATION

In this section, we describe our proposed multi-band exten-
sion for Conv-TasNet. This was inspired by MMDenseLSTM
[8], a time-frequency domain model that splits the mixture
spectrogram into multiple frequency bands and processes each
band individually, before combining their respective outputs.
We attempt to create a similar structure, taking into considera-
tion that the domain of operation differs (waveform instead of
T-F) and the representation we use is derived via a learnable
transformation, instead of the STFT, which is fixed, with
known properties and interpretation.

A. Multi-Band Masking Separation Architecture
Figure 2 depicts the proposed model. In order to create

multiple frequency bands, as in [8], we approached the latent
representation as a T-F one. More specifically, regardless of
the number of channels and the length of the input signal,
the encoder produces a multi-channeled representation of 1D
series of features. One can interpret this representation as
having a “latent frequency” (channel) and a “latent time”
(feature map) dimension, resulting in a “latent spectrogram”.
Of course, since the transformation that the encoder applies
is learnable, it does not share the same interpretation as a
deterministic transformation to the frequency domain.

Having made the above semantic remark we proceed in
describing the proposed architecture. Our model starts off with
the encoder, which is equivalent to the original [12]. The
resulting latent representation w ∈ RN×T ′

is split along the
channel dimension to create Q uniquely exclusive feature map
bands wi ∈ RNi×T ′

, i = 1 . . . Q, where Ni corresponds to
the number of channels that are assigned to each band so that
Ni = N/Q. Instead of a single separator, our model utilizes an
ensemble of separators Si, i = 1, ..., Q, connected in parallel,
each of which receives the feature map wi, and generates its
respective sub-mask matrix Mi ∈ RC×Ni×T

′

. By having the
separators operate in smaller sub-space than the original, they
can specialize in its properties and process the respective parts
of the representation of the signal better.

These sub-mask matrices are then concatenated along the
channel axis to restore the channel dimension of the encoded
latent representation. After concatenation of the sub-mask
matrices, the masks are applied multiplicatively to the latent
representation of the mixture, to isolate each source signal
in the latent space, and the decoder transforms the latent
representations back to the waveform domain, providing us
with the source signals. As in [12], the whole network is jointly
trained, forcing thus the encoder to learn a latent space with
sub-spaces exclusively tailored for each separator.
B. Full-band Masking Variant

In the proposed technique, each separator operates on a dif-
ferent sub-space than the others, as the assignment of channels
to bands is mutually exclusive. In order to examine whether
the separators work better in isolation, or they can benefit
from ”inter-band” information we propose an additional, ”full-
band”, separator that processes the whole latent space. In this
case, the total number of separators is Q + 1, with the last
separator receiving all NQ+1 = N channels of the latent
representation and resulting in a M ∈ RC×N×T ′

mask. Since
the total number of channels after concatenating the masks in
the channel dimension is 2 ·N , we incorporate a linear layer
between the separators and the decoder to change the channel
number back to N , so that we can multiply the resulting mask
with the encoded mixture and retrieve the source signals.

IV. EXPERIMENTAL SETUP
A. Dataset

Following the majority of recent papers on music source
separation, we evaluate our models on the MUSDB18 dataset
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Fig. 2. Block diagram of our proposed multi-band separation modification.
The N -channeled latent representation is split in the channel dimension in
non overlapping bands, according to increasing channel index.

[1]. This dataset includes a total of 150 songs, in stereo format,
at a sampling frequency of 44.1kHz, as well as the vocals,
bass, drums and the rest of the accompaniment (denoted as
“others”) as individual tracks. Since we perform singing voice
separation, we need a vocal component, which is directly
provided by the dataset, and an accompaniment component,
which is composed on the fly by adding the three instrumental
streams. The dataset was split into training, validation and
testing data according to the default configuration of 86
training, 14 validation and 50 test track songs.

Adapting the training to our resources, we use 2 second
segments of dual-channel (stereo) signals, downsampled at
22.05kHz. As data augmentation, we apply channel and sign
flip at random, as well as time-shift and shuffling of the sources
between tracks of the same batch, similar to [27].

B. Training Configuration

We trained our models using the Adam optimizer, with a
learning rate of 3e-4, for a maximum of 150 epochs and early
stopping if 20 consecutive epochs pass with no decrease in
the validation loss. The Mean Absolute Error (MAE) between
the estimated and true source signals was used as the loss
function. The batch size of each model was adapted according
to its memory requirements, by always maximizing memory
utilization of the used GPUs. Finally, the processing took place
in 2 GeForce GTX 1080 Ti graphic cards.

C. Model Configurations and Variants

As our baseline model we use our reimplementation of
the Conv-TasNet [12], with model hyperparameters set to the
values mentioned in Sec. II. Also, for all model configurations
involving multiple separators, the bottleneck dimension of
each separator is equal to the number of channels it processes.

We call the baseline model M1. Regarding the multi-band
models, we trained a model with Q = 2 bands (M2), a “full-
band” model with Q + 1 = 3 bands (M3) and a model with
Q = 4 bands (M4), to explore the scalability of the technique.
Additionally, in order to investigate the ability of multiple
separators to adapt to a predefined latent space, we train a
model with Q = 2 bands, with the weights of the encoder and
the decoder frozen at the respective values of the baseline, M1
(M5), as well as one with the same encoder and decoder as
M5 (M6), but with the filters sorted in ascending order of base

frequency, so that the two separator process solely the high-
and low- frequency parts of the input, respectively.

Finally, in order to investigate whether the technique can co-
operate with a more sophisticated front-end, that incorporates
features from both waveform and time-frequency domains,
we train two additional models that incorporate the stronger
encoder/decoder described in [19]. In particular, the stronger
encoder applies multiple 1-D convolutional layers with varying
kernel sizes to capture features in multiple resolutions, and
combines them with features derived from the magnitude
STFT spectrogram of the signal, before processing the con-
catenated feature map with two 1x1 convolutional layers.
This front-end can fully replace the original one, without the
need of any adjustment to the separator. So, for this set of
experiments we retrain the basic Conv-TasNet architecture
from scratch, with its front-end replaced with the one de-
scribed above (S1), and a second one (S2) that additionally
incrorporates the two-band modification. The hyperparameters
of the new modules are the same as in the original study [19].

D. Evaluation Protocol
In accordance to the protocol presented in [28], we evalu-

ate our models against the Signal-to-Distortion-Ratio (SDR),
Signal-to-Artifact-Ratio (SAR) and Signal-to-Interference-
Ratio (SIR) metrics between estimated and true sources over 4-
second segments. Regarding the computation of these metrics,
it is assumed that the estimated source signal, ŝj is decom-
posed in 4 terms, corresponding to the true source signal, inter-
source interferences, sensor noise and auditory artifacts, as:
ŝj = starget+einterf+enoise+eartif. The proposed decomposition
is based on orthogonal projections of the source signals onto
subspaces spanned by the source signals and/or the sensor
noise. Therefore, the metrics are defined as:

SDR = 10 log10
∥starget∥2

∥einterf + enoise + eartif∥2

SIR = 10 log10
∥starget∥2

∥einterf∥2

SAR = 10 log10
∥starget + einterf + enoise∥2

∥eartif∥2

SDR is considered to measure the overall quality of the
separated signals, while SIR and SAR quantify the clarity of
the separated sources and the existence of auditory artifacts in
the sources, respectively. These metrics are calculated for both
the estimated vocal and accompaniment components of each
segment, using the museval python package which provides
an implementation of the BSSEval metrics. The exact version
used is BSSEval v4. In order to acquire a single value for each
metric, we follow the median-of-medians protocol devised in
[3]; first, the segment-wise scores are aggregated over each
song by calculating their median, and then the median of the
per-song scores is computed throughout the whole test set.

V. RESULTS AND DISCUSSION
Quantitative Model Comparison: Table I shows the eval-

uation results in terms of SDR, SIR and SAR. The two-band
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TABLE I
MEDIAN SDR, SIR, SAR METRICS IN DB CALCULATED UPON 4-SECOND
SEGMENTS IN MUSDB18 DATASET. HIGHER IS BETTER. BOLD DENOTES

STATISTICALLY SIGNIFICANT IMPROVEMENT (p = 0.01) OVER THE
RESPECTIVE BASELINE (M1 FOR M MODELS, S1 FOR S MODELS).

M1 M2 M3 M4 M5 M6 S1 S2

Voc.
SDR 5.81 6.37 5.94 6.05 6.31 6.26 6.39 6.36
SIR 14.13 14.25 14.23 14.61 15.29 15.21 14.39 14.92
SAR 6.59 7.12 6.78 6.98 6.75 6.88 6.82 7.09

Acc.
SDR 11.78 12.21 11.76 11.66 12.36 11.91 12.23 12.03
SIR 16.01 16.69 16.01 16.04 17.07 16.54 17.57 17.51
SAR 14.24 14.52 14.37 14.10 14.11 14.29 14.20 14.07

TABLE II
DESCRIPTION AND NUMBER OF TRAINABLE PARAMETERS OF THE

TRAINED MODELS.
Model Description #Params

M1 Baseline 6.6M
M2 2 Bands 6.58M
M3 2 Bands +1 Full-Band 12.97M
M4 4 Bands 6.71M
M5 2 Bands + Frozen enc/dec 6.56M
M6 2 Bands + Sorted enc/dec 6.56M
S1 Stronger enc/dec 7.32M
S2 Stronger enc/dec + 2 bands 7.31M

models M2 and M5 and achieve the best overall performance
among M models, surpassing the metrics of the baseline,
by a significant margin. This improvement over the baseline
reaches 0.5 dB, in terms of vocal SDR. We note that this
increase in performance is less than the one reported in [9],
where application of the multi-band technique yielded a gain
of approximately 1 dB in vocal SDR; however, no direct
comparison can be made, since [9] was trained and evaluated
on a subset of [1]. Regarding the other M models, the full-band
model, M3, performs approximately equally to the baseline,
the sorted frozen model, M6, performs better than the baseline
but slightly worse than M2 and M5, while M4 performs sim-
ilarly to the baseline regarding the accompaniment but scores
better in terms of the vocal metrics, achieving a high SIR and
SAR. On the other hand, the two models incorporating the
encoder presented in [19] perform comparably to models M2
and M5, with no model achieving a clear edge in performance.
Finally, we note that the results of baseline models M1 and
S1 are mostly in agreement with those reported in [19], while
using the normalized metrics devised in [29] yields similar
results.

In order to assess the validity of our results, we performed
the paired Wilcoxon signed rank test, over all metrics, between
each model we developed and its respective baseline, at a
statistical significance level of p = 0.01. We note that models
M2, M5 and M6, which utilize 2 uniquely exclusive bands,
outperformed their M1 baseline at most metrics, while the
rest of the models did not. In fact, the accompaniment SIR
of the M1 baseline was found to be statistically significantly
better versus the M3 model. No conclusive results could be
yielded from the comparison between models S1 and S2.

Discussion: The quantitiative results indicate that the Conv-
TasNet architecture can benefit from the proposed multi-band
technique. We assume that the separators, constrained in a
smaller sub-space, learn to process the available information

Fig. 3. Frequency domain representation of the encoder filters for models M1
(left), M2 (center), M4 (right). The sub-figures display the sub-space that is
processed by the respective separator, in the case of multi-band models. The
filters of each band are sorted in ascending order of base frequency.

more efficiently, improving the separation performance. This
can be backed by the fact that incorporating the features of an
additional separator that processes the whole latent space (M3)
worsens performance, leading to results close to the baseline.
However, in terms of scalability of the technique to a larger
number of bands, the performance of model M4 in comparison
to M2 implies that using more separators, each being assigned
a “narrower” latent space has diminishing returns.

Fig. 3 displays the frequency domain representation of the
learned encoder filterbank for models M1, M2 and M4, For
each model, the sub-figures match the sub-space of the latent
space learned by the encoder that is processed by the respective
separator. The filter responses are sorted by the filter’s central
frequencies in the frequency domain, in ascending frequency
order. We can see that the single band/separator of the baseline
model M1 forces the encoder to learn a latent space that
covers all the frequencies, in a non-linear manner. For the M2
model, the two encoders also cover the same frequency range.
Despite the appearance of small sub-bands with common char-
acteristics in each encoder, such as the narrow low-frequency
filters in the second band (bottom), the distribution of filters
between the two encoders is mostly similar. However, for the
model M4, the differences between the spanned sub-spaces of
each encoder become more visible; for instance, the second
band has converged to a sub-space containing more filters with
lower central frequency and smaller bandwidth compared to
the rest, while the bottom two bands contain visibly more
high-frequency and high-bandwidth filters. These deviations
are larger than the internal ones of the models M1 and M2,
implying that the individual separators specialize in different
regions of the spectrum. However, this behavior appears to
be detrimental to the separation performance, indicating that
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a larger latent space is required for each separator.
Regarding the M5 model, it is remarkable that it performed

as well as M2, even though it had to adapt to a fixed latent
space, optimized for the task of singing voice separation
but trained independently. This might be an indication that
the multi-band technique can work for models following
the encoder-separator-decoder architecture with an arbitrary
waveform-based front-end. However, the performance of the
M6 model was slightly worse than M5, which implies that
manually crafting bands in terms of spectral content from
learnable filterbanks does not yield the performance gains it
does in the case of STFT [8].

Finally, the multi-band technique didn’t provide any boost
to the model incorporating the stronger encoder (S2). Our
explanation for this is that the dual nature of the extracted
features, since they originate from both waveform and T-F
domains, as well as the multi-layered structure of the encoder
lead to a latent space structurally different than that of the
Conv-TasNet, which is computed via a linear filterbank.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a multi-band, multi-separator
extension for models that follow the encoder-separator-decoder
architecture, and investigated its application on the Conv-
TasNet architecture. Our results in the task of Singing Voice
Separation indicate that this approach can lead to improved
performance compared to the baseline Conv-TasNet architec-
ture, and is compatible with learned, waveform-based front-
ends. As future work, we would like to validate the above
claim by applying this technique in other waveform-based ar-
chitectures [16] in the more general task of music source sepa-
ration. Additionally, with recent research indicating the robust-
ness of Digital Signal Processing - inspired filterbanks [23],
we are interested in examining whether the latent spaces
they generate can be used to perform a more sophisticated
assignment of channels to bands and separators.
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Source Separation Using Deep Convolutional Neural Networks,” Lecture
Notes in Computer Science, vol. 10169, pp. 258–266, 02 2017.

[7] A. Jansson, E. Humphrey, N. Montecchio, R. Bittner, A. Kumar, and
T. Weyde, “Singing Voice Separation with Deep U-Net Convolutional
Networks,” in Proc. ISMIR 2017, Suzhou, China, 2017.

[8] N. Takahashi, N. Goswami, and Y. Mitsufuji, “MMDenseLSTM: An
Efficient Combination of Convolutional and Recurrent Neural Networks
for Audio Source Separation,” in Proc. IWAENC 2018, Tokyo, Japan,
2018.

[9] N. Takahashi and Y. Mitsufuji, “Multi-scale Multi-band Densenets for
Audio Source Separation,” in Proc. WASPAA 2017, New Waltz, NY,
USA, 2017.

[10] D. Griffin and J. Lim, “Signal Estimation from Modified Short-Time
Fourier Transform,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 32, no. 2, pp. 236–243, 1984.

[11] D. Stoller, S. Ewert, and S. Dixon, “Wave-U-Net: A Multi-Scale Neural
Network for End-to-End Audio Source Separation,” in Proc. ISMIR
2018, Paris, France, 2018.

[12] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing Ideal
Time–Frequency Magnitude Masking for Speech Separation,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 27, no. 8, pp. 1256–1266, 2019.
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