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Abstract
We investigate the automatic phonetic modeling of sign lagg based on phonetic sub-units, which are data driven &hduwany
prior phonetic information. Visual processing is based qrababilistic skin color model and a framewise geodesitv@atontour
segmentation; occlusions are handled by a forward-backpeediction component leading finally to simple and effextiegion-based
visual features. For sign-language modeling we proposedelimg structure for data-driven sub-unit constructiohisTutilizes the cue
that is considered crucial gment the signal into parts; at the same time we alkassify the segments by implicitly assigning labels
of Dynamic or Static type. This segmentation and classifinagtep disentangleBynamic from Satic parts and allows us to employ
for each type of segment ttappropriate cue, modeling and clustering approach. The constructecdiDimsegments are exploited at
the model level via hidden Markov models (HMMs). The Staéigreents are exploited via k-means clustering. Each Dynanfitatic
part, exploits the appropriate cue related to the movenwatpropose that the movement cues are normalized in order traibslation
and scalenvariant. We apply the proposed modeling for further combinatiorhefinovement trajectory individual cues. The proposed
approaches are evaluated in recognition experiments ctedion the continuous sign language corpus of Boston WsitygiBU-400)
showing promising preliminary results.

1. Introduction we focus on automatic data-driven modeling of sub-units

Sign languages, i.e., languages that essentially convey ifVithoutany phonological or linguistic information.
formation via visual patterns, commonly serve as an al-The field of SLR is certainly in the focus of quite intense re-
ternative or complementary mode of human communicasearch lately[[Ong and Ranganath2005]. It is considered to
tion. Visual patterns, as opposed to the audio ones used f @ multilevel problem and it poses significant challenges
the oral languages, are formed by hand shapes and mandggarding visual processing and information stream model-
or general body motion, lip movements and facial expresing for recognition.[[Vogler and Metaxas2Q03] broke down
sions. Their expressiveness facilitates human intenactioSigns into their constituent sub-units using the basicddea
and exchange of information not only in the existence off the Movement-Hold mode[[Liddell and Johnson1989]
hearing-impaired people but also in situations where dpeec@nd applied successfully the so-called Parallel HMMs.
is impractical, e.g., in loud workspaces. However, effi-[BauerandKraiss2001], on the other hand worked also
cient communication by these means is only feasible beat the sub-unit level exploring a data-driven approach
tween specially trained interacting parties. In this capte for modeling the intra-sign units. They cluster inde-
automatic sign-to-text and text-to-sign translation can b Pendent frames utilizing K-means. [Fang etal.2004] and
viewed as the intermediate technological modules that cafHanefal.2009] have also proposed approaches for data-
partially lift this restriction. Moreover automatic sigarl-  driven sub-unit modeling. They employed clustering by
guage recognition may have contributions across other arfgonsidering segments and not only independent frames as
as as linguistics for the study of sign languages or for thdBauerand Kraiss2001] at the feature level, taking advan-
semi-automated processing of corpora. tage of the dynamics that are essential in sign language.
Early attempts on automatic Sign Language RecogModeling at the sub-unit level provides a powerful method
niton (SLR) were restricted to simple recognition in order to increase the vocabulary size and deal with more
tasks [Ong and RanganathZpo5] similarly to cases of€alistic data conditions.
speech recognition a few decades ago. An informal corThe main objective of the proposed modeling approach
respondence of the word in spoken language is a sigif the automatic segmentation and construction of data-
unit, given that sign languages tend to be monosyllabiélriven sub-units: these sub-units are the intra-sign primi
[Emmorey2002]. There are several metaphors betweefive segments that shall be reused to reconstruct signs that
sign and speech recognition that allow for the exchange o$hare similar articulation parameters. We are inspired by
methods between the two areas. However, there exist poinoth perceptual and linguistic evidende JEmmorey2002,
of difference too. A diversity that also has practical eféec Liddelland Johnson1989] on the functionality of the mul-
concerns phonetic sub-units: There is not yet a well-defineéiple cues. Among all cues the ones that we heavily exploit
unit equivalent to the phoneme in speech. Another differnext are based on the planar (2D) coordinates of the domi-
ence concerns the multiple parallel cues that are artiedilat Nant hand’s centroid, and some of its products. We shall re-
during sign language generation. In this paper, as far afr to these features from now on as thevement-position
the segmentation, modeling and recognition are concerne@Ues. Besides, movement and position are among the main
characteristics that describe a sign [EmmoreyR002].

This research work was supported by the EU under the reBased on simple movement, position measurements, we

search program Dictasign with grant FP7-ICT-3-231135. proceed on the automatic sub-unit modeling of sign lan-
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guage at the model level, that refers to the modeling of

intra-sign segments. This modeling involves the synergy

of the multiple cues and the modeling structure that these

cues are incorporated: 1) the partitioning of segments into

dynamic or static with respect to their dynamics; we em- ‘

ploy for each sign unit, a model based segmentation at the ‘
state level, that apart from the segmentation assigns also

labels to the segments. 2) The modeling of the static or dy- @ ®

namic segments depending on the label that they were aﬁgure 1: (a) Likelihood ratio per pixel belonging to skin

signed in the previous modeling step. Each type of segmeny, not, shown as a grayscale image. (b) Segmentation after
shall be modeled by the cues and the model that are mor@mploying GAR on the likelihood ratio map.

appropriate for each case. Given the segmented sign we are

equipped with a prosperous initialization step to face ap- , . o
propriately the modeling the dynamic vs. static intra-signWhereI is the image P, P denote the probability of a cer-

segments. For the case of dynamic segments, our goal f&in Pixel & belonging to the skin or background regions,
to cluster not the independent frames as if they were if€SPECtively, ang (/) is the edge-detection stopping func-
a common pool[[Bauer and Kraiss2001], neither the feglion. To estimate the probabilitie; and P, we employ

ture frames sequences as segments themselves at the feaflif@ Probabilistic models to account for the skin and back-
level [Fang et al.2004.Han et a.2009]. Instead, we Ioroposground color, respectively. After the estimation/@f and

to hierarchically cluster whole dynamic models (HMMs) £ by taking their ratio we result with a measure of a pixel
[Smyth199)] based on a similarity measure among modpelonging to skin. The above likelihood ratio map is then

els via their parameters. Another point to stress is that thdSed as a force in the GAR model enforcing the curve to
models are first normalized wrt. 1) the initial segment'sCOnverge eventually to the edges that separate the skin re-

position, for each segment, and 2) the maximum scale ogion from the background. The result of the hand detection

the movement's trajectory. These normalization steps arkat We use is shownin Figl 1. Due to the dynamic nature of
crucial, since by incorporating them we end up model-S19" language articulation, the skin color regions of ieser

ing the actual movement data independently to the exist @Y occlude each other. For these cases we employ tech-
ing mixed scales or initial positions: this makes the mod-1dues in order to disambiguate occlusions such as linear

els more compact, increases the training data per modefl(,)r\"""‘r(j't""‘C|(Ward prediction and template matching.

and reduces the total number of models required. For th(z 2. Feature Summary

case of static segments, the main measurement that charac="

terizes them is the one of position, corresponding to moré&mploying the segmentation and tracking process, we ex-
clear postures on which the velocity has been on averagiéact features related to the position and the movement.
close to zero. We evaluate the proposed methods on reMore specifically using the fitted ellipses on each hand
data from the Boston-University continuous American Signwe extract the features related to these ellipses such as
Language corpus (BU400) [Dreuw et al.2D08]. In the ex-z,y centroid coordinates. In addition, we construct fea-
periments we explore a variety of feature streams and evaliures which are products from the x,y coordinates of the
ate the efficacy of the proposed modeling scheme in prelimbands’ centroids, such as the velociti(t) = [i;7], the
inary automatic recognition experiments showing promis-acceleratiomcc(t) = [i; ] and the instantaneous direction
ing results. These experiments investigate the efficacy ofir(t) = [i;9]/(i* + *)'/2. For the scope of our current
the employed features, as well the integration of the multiinodeling and recognition we are using only the X,y coor-
ple movement-position cues. dinates of the dominant hand centroid using as reference
point the centroid of the signer’s head and its aforemen-
tioned products.

2. Visual Processing of Sign Language
2.1. Segmentation and Tracking 3. Continuous Sign Language Recognition

For the segmentation of the video frames we areWe tackle the issue of sub-unit probabilistic modeling i or
based on the Geodesic Active Regions (GAR) approachler to deal with continuous sign language recognition. We
[Paragios and Deriche2002], as this has been adapted @mopose 1) the organization of the modeling in a tree-like
previous work [[Diamanti and Maragos2008] for sign lan- modeling structure that employs on each modeling level the
guage processing. The GAR are deformable 2D contoursppropriate feature(s) with the appropriate modeling de-
which evolve to minimize an energy functional, designed topending on the functionality of the features; 2) the normal-
meet the needs of the segmentation process. The intensiigation of the features that are modeled: We focus in this
image is partitioned into two separable regions, one beingvay on the actual underlying phenomena we wish to tackle
the union of the skin-colored regions, and the other conand avoid from getting our modeling consumed on mixed
sisting of the rest of the image pixels, referred to as backfactors; 3) the incorporation of the dynamitsthe model
ground. We adapt the GAR model to introduce a new forcdevel — and not at the feature level of separate frames or se-
for skin segmentation. quences of frames’ level. We consider that it is both 1) the

modeling structure and 2) the modeling withormalization,

Frotor =log ((Ps(Z))/(Py(X))) + cg(I) (1) thatare importantas it is discussed next.
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Figure 2: The 2-state HMM topology that is employed for
segmentation and implicit classification of the segments.

3.1. Model-based Segmentation and Classification

Modeling the Velocity Cue Our goal is to separate the
so called from now on, “dynamic” from the “static” parts
w.r.t. movement. This is the level of segmentation and
classification of the segmented parts of the signal: dynami
parts shall correspond to movements and static parts to noi-
movements. This approach is inspired by linguistic model-_. ] . . . .
ing [Liddell and JohnsonT9B9] of “movements and holds”. Figure 3: Segm_ent?tlon us,ling the velocity cue for one in-
We assume that movements correspond to high on avera éance of the sign "ADMIT". Each row corresponds to a
velocity, and non-movements to low relative velocity. Al- fiferent segment.

though the fuzziness of the ‘high’ and ‘low’ terms we ap-
propriately incorporate them by adopting a suitable model-
based approach. The feature that shall be utilized for this
characterization is thegelocity, whereas theacceleration
could add further detail. The velocity feature vector con-
sists of the dominant hand’s centroid velocity that is con- £ os
structed as the norm of the coordinate derivatives. Our goa

Velocity Histogram for Gloss : ADMIT
1.5

1

quency

is met if we consider the HMM structure of two states, as  ° > 4 6 s

shown in Fig[R. This allows the entrance and the exit from Veloclty

both states and the full transition from each state to the(a) (b)

other, since the dynamic or static parts may alternate one

another and do not obey any grammar rule. Figure 4: (a) Velocity distribution (histogram) superim-

Gloss Specific ModelingNext, we create one model for posed with the fitted (b) Segmentation shown superimposed
each gloss that is trained using all realizations of the speon the velocity profile for an instance of the sign ADMIT.
cific gloss. Each HMM gloss model models the velocity

profile of the corresponding gloss. Each one of the HMM, ) o ) )
states results in modeling a single velocity level. Given th 1ty modeling providing two different labels. By comparing

population of data from large portions of the training set,the results it seems t_hat the automatic segmentation via the
the two state levels correspond to a low- and a high-levePT0P0sed approach is on average close to the manual seg-
of the corresponding feature, i.e. velocity. This is furthe MeNtation points. _ _
understood if we observe the velocity distribution over theTn€ Proposed model-based approach provides various ad-
different realizations for a specific gloss in Fig. 3(a). Af- vantages: 1) we get not (_)nly the segmentation but a.Iso t.he
ter training each HMM we perform a Viterbi alignment for _result ofa clas_smcatlon since we hav_e (_ancgpsulated implic
each realization given the gloss resulting to the most prob'-tly the dynamic and static character|§t|cs into the stafes
ablesegmentation points at the state levebgether with the the same model. 2) Another asset is that we don’t need
labels of the velocity profiles. An example of segmentationt© define any threshold manually (as other approaches for
obtained for one instance of the sign “ADMIT” is depicted S€gmentation at thg feature level), since these are handled
in Fig.[A(B) for the feature level, whereas Fy. 3 shows thdnherently after setting the model parameters.
actual frames of the segments (subsampled).
Automatic vs. Manual SegmentationOne way to eval-
uate the proposed segmentation approach is by comparirdye tackle next the issue of intra-sign sub-unit modeling at
its output with the corresponding manual annotation by exthe HMM model level instead of the feature level. In this
perts. At this point we show the results of a preliminaryway we take advantage of the explicit dynamic modeling at
such effort. Figurgl5 presents both the automatic and marthe state level that the HMMs yield. Dynamic modeling is
ual annotatichfor a realization of the sign “ADMIT”. For ~ crucial for the modeling of movement. After all, HMMs
the automatic production of both segmentation points andlave been employed successfully in other applications
the classification of the segments we make use of the velo®f sign language modeling top [Vogler and Metaxas2003].
Afterwards, a model level approach adds up a probabilistic
1The manual annotation has been provided by Annelies Brafviewpoint that can be further exploited, and finally fits well
fort at CNRS-LIMSI. with the automatic recognition framework.

3.2. Modeling Dynamic Segments
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Figure 6: Trajectories of dynamic movements mapped ont@Ehsigning space: (a) Without any normalization. (b) After
normalization to the initial position. (c) After normalizan to scale. (d) After normalization to both the initialgition
and scale.

ture the actual dynamics independently to both the initial
position (compare with Fil 6(a,c)), and the maximum scale
(compare with Figld6(b,c)).
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o C ' We initialize the segments by first applying the segmen-
tation procedures, as it has been described in the pre-

Figure 5: Automatic vs. Manual Segmentation and seg¥ious SectionCZl... Given that the segments contain

ments’ classification for a realization of the sign “ADMIT". movement our goal is to cluster whole dynamic models

(HMMs) [SmythI997] that correspond to these movement
trajectories. Clustering states at the model level has been

32 1. Feature Normalization employed succesfully in ASR applications. Herein we clus-
o ter not just the states, bwthole HMMs. Thus, we fitN

Imugl Position  Our 90"’?' in this Fask Is to mo<_:ie| the dy- 3-state HMMs, one for each individual sequence or seg-
namics of movement during the signs. The main feature for

. . . mentS;, i = 1...N. Afterwards we use a similarit
each dynamic segment is tin@vement trajectory. Each Si, 4 y

position sequence is initiated from the previous actuaitpos measure between pairs of HMM modets. k= 1,2,
: . . ) by adopting among proposed approaches in the literature
tion that is arbitrary. The modeling of such features, leads y bting g pIop PP

. ; . Iuang and Rabiner1985] that are based on the Kullback-
to the consumption of the modeling effort due to the m'LeibIerdivergence. Similarly we employ

creased variance that the arbitrary initial positions @& th
movement trajectories introduce, so as to account for all 1 POM |1, 571
different initial positions. This is encountered by normal D(H,, H2) = Z T; 108 PO Hy,5™2)
izing the feature segments, each one with its corresponding o

initial position. This step results on the translation iiva I )
ant movement modeling, i.e. independently to the initialWhereO; " corresponds to the observation sequences that

position. An example of this normalization is presented inhave been gengzated fr%r:l each of fiigmodel, of length
Fig.[(a,b): we present the movement trajectories as the¥i anlegP(Qi |Hp, 5;™") is the log probab|I|Fy of the
are mapped onto the initial 2D signing space before they ar@bservatlogkgwen the HMM model and the optimum state
employed in the sub-unit construction process; we demonS€duences;™, for k = 1,2. The sequences used to com-
strate thesame trajectories with and without normalization. Pute the log probabilities are generatively constructed by
Moreover, normalization methods are well-known in the®ach Hx model employing20 sequences. The distance
ASR community[Rabiner1989]. Another advantage of theSimilarity matrix among all models is exploited via an ag-
normalization is the increase of the data requirements peflomerative hierarchical clustering algorithm. We end up

model and at the same time we decrease the total numb®fith the total likelihood of the specific clustering, givdret
of models required. number of clusters employed.

Scale Similarly to the above, scale also affects the model-3-3.  Dynamic Sub-Units for Each Feature

ing of movement trajectories. Scale normalization of eachNext, we explore the modeling of features that are appro-
movement results in scale invariant modeling, increase opriate for dynamic segments modeling. The output of the
data examples per model, end more efficient modeling witttlustering on the HMM level corresponds to a partition on
less models. At the same time, we do keep the scale pararthe feature space. Each cluster in this partition is defined
eter itself for further incorporation and modeling as a sep-as a distinct sub-unit, presented next for different cases o
arate feature. An example of this normalization is shownfeatures.

in Fig.[d(a,c): the figure shows the same segments beforlglovement TrajectoriesAfter the normalization steps each
they are employed in the sub-unit construction procedursegment is modeling the plain normalized trajectory in the
with and without normalization. Finally Fi§] 6(d) shows 2D planar signing space. We show in Hig. J(b) indicative
the same trajectories after both scale and initial positiorsub-units: these are clusters that have been constructed by
normalization. It shall be next more efficient to incorpo-the HMM hierarchical clustering at the model level, and
rate these normalized segments in the corresponding HMMre then mapped onto the 2D signing space. This map-
models instead of the non-normalized, since they shall cagping retains the sub-unit identity that is encoded by means
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Figure 7: The trajectories for different sub-units as thayehbeen mapped on the 2D signing space. With different color
we represent different sub-units that correspond to thfereifit clusters. (a)Trajectories of sub-units obtainadguas
feature the movement trajectories (Mhout any normalization. (b)Trajectories of sub-units that ipooate both scale
and initial position normalization. (c) Trajectories obsunits that incorporate the Direction cue after normaiiraof the
trajectories to the initial position. (d) Trajectories taro different sub-units that correspond to different ssale

of color in the presented figures. In F[g._{(a) we show amalized trajectories. As expected each sub-unit consists
case of sub-units as a result of clustering, but without theef movements with similar on average direction over time.
normalization steps. It is evident by comparing with the Figure[7{d) shows indicative examples of movements over
previous case (Fi_7{b)) that the modeling is much loosethe same or different clusters having similar on average or
since the models are consumed totally on the explanation different directions respectively.

the different initial positions or scales. The non-normedi

constructed sub-units as shown mapped on the original 2D

signing space make it hard to understand what exactly each , Dynamic Sub-Units for Multiple Features
cluster represents. The clusters after normalization-actu

ally implicitly incorporate direction information. Thisi . . .
. . . .. Inthe previous section we presented the sub-unit construc-
something expected as the modeling contains the directioj] : ) )
ion for the dynamic segments using a single cue at each

information encapsulated with the geometry of the whole

traiectory. As a matter of fact. each model's state from th time for each sub-unit type. Thus we constructed sub-units
4 Y- . S . Shat account for single different characteristics of a move
first to the last explains points in the trajectory that hawe o

. . : L ment such as the direction, the scale or the movement tra-
average increasing distance from the segments initiat posi : .
tion. Jectory. Next, we explore sub-unit construction fo_r the dy-

) ) namic segments by using for each sub-unit multiple cues.
ScaleWe may have normalized with the scale of each tra-Thjs extension is seamlessly incorporated given the dis-
jectory, being the maximum distance of all points in a tra-cyssed framework. As mentioned in Secfion3dl2.2. the sub-
jectory, but this information shall not be disregardedslti it clustering is based on HMMs. In order to account for
modeled on its own in order to investigate how it affectsyytiple features during sub-unit construction we employ
the modeling. We show in Fif. 7{d) indicative sub-units: 3 my|ti-stream HMM instead of one simple single-stream
these are clusters that have been constructed by the elusteinvm. More specifically by incorporating both direction
ing at the model level, and are afterwards mapped on the 2B scale into a multi-stream HMM we create multiple-cue
signing space. This mapping retains the sub-unitidentity ogyp-units that model movements based jointly on their di-
equivalently the cluster index that is encoded by means ofection and their scale. This sub-unit construction is show
color in the presented figures. The presented sub-units aig, the corresponding trajectories that correspond toithe d
presented to model trajectories entirely based on thelie scatinct sub-units of Fi@d8. In these, instead of the different
independently to their direction. directions (as seen in Fifll 7(c)) we have created sub-units
Direction The sub-units constructed by the direction fea-that explain at the same time the direction for each one of
ture show similar results as the ones that model the notthe different scales.
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tures (from left to right) SPn, S for the dynamic and P for

: . . . . static segments.
Figure 8: The trajectories for four different sub-units g

mapped on the 2D signing space represented with differ-
ent color/marker. Sub-units account for the multiple-cuest.2. Multiple Pronunciations
of both direction and scale of the dynamic segments. The realization of signs during continuous natural sign-
ing introduces factors that increase the articulation-vari
ability. Among the reasons responsible for these multiple
pronunciations is the existence of features that do not re-
main constant during each gloss articulation. For instance
there might be cases of the same gloss that is represented
by the same sequence of movements but in multiple real-
izations that involve different initial positions. An exaie
of varying pronunciation for a specific gloss is illustrated
by the sample lexicons shown in FHig]l 10. Each line in a lex-
icon sample consists of 1) a gloss identifier concatenated
by 2) an index that corresponds to the pronunciation real-
Figure 9: Partitioning of the 2D signing space by K-meansization case. FigurE10 includes two cases of features for
Different colors discriminate the sub-unit. the Dynamic segments combined in all cases with the Posi-
tion feature for the Static segments. In the shown example,
gloss “BECAUSE" is being mapped to three different sub-
3.5. Modeling Static Segments unit sequences. These specific sub-unit sequences share the
Given the discrimination and separate modeling of the dyfirst sub-unit of static modeling, while the second one adds
namic segments, the remaining segments correspond to tiada movement sub-unit, e.g. MSPn1, and the third one adds
low velocity profiles. We modednly these static positions another static sub-unit.
and not all positions as they lay across time within move- ) ) )
ment segments. After applying k-means clustering to thé-3: Sub-Unit sequences to Multiple Glosses Mapping
non-normalized positions we get a partitioning of the stati Among the reasons responsible for these multiple pronun-
positions relative to the head of the signer. Fidre 9 showsiations is the non-sufficient during this stage of modeling

the constructed sub-units as they are mapped on the 2m.I.t. the features employed. For instance there might be
signing space. cases of glosses that are represented by the same sequence

of movements-positions but they involve different hand-
4. Lexicon: Recombining the Dynamic and shapg configurations that are not accoynted yet. Such a case
Static Segments are signs “WITH” and “FOOTB_ALL" Whlchlshare common
sequence of movements-positions but different handshape
4.1. Lexicon Construction configuration. Another factor is the model order we em-
After decomposing the dynamic and static segments foPloy, or in other words how loose is the sub-unit clustering
separate modeling, we re-compose them via the lexicon s¢/€ apply. For example if we use a small number of clus-
as to form the complete signs via a concatenation of théers in order to represent all space of movements, although
sub-units at a symbolic level. Each sub-unit is in this casave might have used sufficient features, multiple different
a ‘symbol’ that is uniquely identified by the feature that movements shall be mapped to the same sub-unit creating
has been employed for its construction and the index thdPoser models.
has been assigned during the clustering procedure. This .. )
lexicon is completely data-driven and does not employ any 5. Recognition Experiments
linguistic information. The lexicon re-composes the two Experimental configuration
levels of 1) the Dynamic Movement Segments (D) and thdn the experiments described we use only the front cam-
2) Static Position Segments (S). An example of three differera video stream. Among the whole corpus, we restrict our
ent lexicons that have been obtained using Position (P) foprocessing on six videos that contain stories narrated from
the static segments and Direction (D) or Movement Trajeca single sign& We utilize 50 randomly selected signs
tories (SPn) or Scale (S) for the dynamic segments respec-
tively is shown in Fig[ZID. 2Videos are identified namely as: accident,
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among the most frequent ones. We employ 60% of the datdon (DSC) obtained during segmentation. The second one,
for training and 40% for testing. This partitioning samplescorresponds to the case in which we employ only the seg-
data from all videos, and among all realizations per sign irmentationwithout the Dynamic-Static Classification (no-
order to equalize gloss occurrence. For the evaluation dbSC) of the segments. For the first case above (DSC) we
the recognition results we employ the standard measure @mploy for the Dynamic segments the cues of D, SPnand S.
accuracy in the sub-unit level and the gloss level. On the contrary for the static segments we employ only the
Experiments: Next we describe recognition experiments P cue. For the second case of no-DSC all segments share
that evaluate the main aspects discussed. 1) We exarthe same cue. For this case among all multiple-cue combi-
ine the incorporation of the segmentation and classifinatio nations we show the one that performs best (SPn-S-P). The
component referred to as Static vs. Dynamic Classificaincorporation of the DSC is encoded in the Higl 11 by the
tion; this step affects also the adapted modeling w.r.t thé+” symbol, e.g. A+B shall correspond to the A cue for the
employed multiple cues and clustering. 2) Another contri-dynamic modeling and the B cue for the static. Where two
bution discussed is the feature normalization for the Dy-cues are concatenated by “-” as in A-B, this corresponds to
namic parts that on its turn affects both the modeling andhe plain concatenation via multiple streams.

the recognition results. 3) Finally, we further evaluate th First, we should note that by comparing the single cue ex-
incorporation of multiple cues in the Dynamic parts mod-periments with the DSC multiple cue case the latter show
eling. The employed cues are encoded as Direction (Dmproved performance. The overall recognition perfor-

Movement Trajectory after scale and initial-position nor- mance for the DSC case Flgd11(a,b). outperforms the no-
malization (SPn), Scale (S) and non-normalized Positiorhsc case Fig—11(c,d). More specifically, using the Posi-
(P). The results contain both gloss-level and sub-unit levetion (P) cue naively combined with other features (S, SPn,
accuracies. D) implies increased model variance. On the contrary, see
Number of Sub-Units: The number of sub-units we use in Fig[T](a,b), when the cues (SPn, D, S) are modeled plainly
each case is depended on the existing experimental datasgtthe dynamic parts and the Position cue (P) is only in-

and on prior linguistic information. The dynamic segmentscorporated on the static modeling the results are improved
employ 24 sub-units given motivation on the different typesjgnificantly.

of movements (8 for each of straight or curve_d or OtherFeature Normalization: The importance of normalization
more complex movements). We use four sub-units for scale, |\’ <o\ /ad for the no-DSC case since the SPnh cue outper-

modeling and 22 sub-units for the static segments’ subg, ¢ yhe non-normalized P cue. For the multiple-cue DSC
units which corresponds to different but arbitrary places 0 .. <o o1y which the P is better incorporated, the SPn+P per-

art_iculation. These numbers imp]y the total _number of S.UbT rms much higher than the non-reported accuracy of P+P
units employed on each recognition experiment describe e. non-normalized cue in the Dynamic modeling result-
next and are shown on TaH2 1. Note that for tasks th g on 38% gloss accuracy).

are to be compared we employ equal number of sub-units'\./I itinle C D ic Modeling: Bv i .
More sub-units imply a more complex task. Another point ultiple Cues in Dynamic Modeling: By incorporating

to stress, (see also the discussion in Sedfibn 4.), is tkat gnultiple cues in the Dynamic modeling as shown in the

gloss level results should be viewed given the “single subDSC case, see for instance D-S+P and SPn-S+P compared

unit sequence mapping to multiple glosses” due to the mis<© S+P, SPn+P, D+P in Figll1(a,b), there are slight im-

ing cues (e.g. handshape). The above gloss accuracy coprovements, that should be considered given the number
siders a gloss as correct if it exists in the set of targets o?f sub-units reported in Tabi@ 1.

the specific sub-unit sequence. This is the emerif other
glosses are present in the same set. That is, the recognition 6. C luSi
performance evaluation functions towards our favor even if : onclusions

there are multiple glosses mapped from a specific sub—un{;Ve propose a modeling structure that incorporates

quulené:e. Conti SL R ition: H movement-position cues in an unsupervised manner. Each
Ingle-Stream ' ontinuous ) ecognition: ere, We  cueis adopted with the appropriate modeling given its func-
evaluate the efficacy of the various movement-position Cueﬁonality during sign language articulation. The modeling

employed in single stream recognition experiments and 35 based on the discrimination between Dynamic and Static

tgle s:?lfrne _tlmeF\_NlthS)Eutllncgrp(r)]ratlnghthe D{”immft?t'ccases of the movement-position cues, which provides a seg-
assihcation. Figun (c.d) shows the results for the OUmentation and classification of the segments. Secondly,

single Clée cz;se?:”P, D S ar_1d San_. Th?_ie restl)JIts .ShOUId each type of modeling we incorporated the appropriate
seen under the following point of view. The Sub-UnitacCu-q, a5 after normalization. The dynamic sub-units are con-

racy is dependent each time on the complexity of the aSKstructed by clustering at theodel level. The evaluation of

For the case of S the employed_ number of sub-units is MUCHe proposed multiple-cue modeling approach in recogni-
lower compar_ed to the other S|_ngle cue cases thus the high, - experiments on the BU400 continuous sign language
performance is for a much easier task (see Table 1). corpus shows promising results. However, in order to be

Dynamic-Static Segmentapon and Cla§S|f|cat!onln this able to reach more mature conclusions, we shall 1) incor-
case we compare two variants. The first variant evaluate,

h deli h loits the D ic-Static Classif ﬁorate phonological and linguistic information, 2) as well
the modeling that exploits the Dynamic-Static Classitica-,q handshape information, that is currently explored via a

model based approach and shall be integrated in a common

bi ker .buddy, boston.la, football, |apdstory framework

andsi bl i ngs.
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Figure 11: Recognition performance:(a,b) Gloss and Subaocuracy of multiple cues while incorporating Dynamic-
Static Classification (DSC), (c,d) Gloss and Sub-unit a@cyiof single and one multiple cue without incorporating DSC

Table 1: Feature identifier corresponding to the recogmigixperiments and number of sub-units employed.

Feaure S D SPn P S+P SPn-S-P SPn+P D+P D-S+P SPn-S+P
#SUs 4 46 46 46 4+22(46) 24x4+22(118) 24+22(46) 24+22(46)x4282(118) 24x4+22(118)
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