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ABSTRACT

In this work, we investigate the efficacy of Micro Electro-Mechanical
System (MEMS) microphones, a newly developed technology of
very compact sensors, for multichannel speech enhancement. Exper-
iments are conducted on real speech data collected using a MEMS
microphone array. First, the effectiveness of the array geometry for
noise suppression is explored, using a new corpus containing speech
recorded in diffuse and localized noise fields with a MEMS micro-
phone array configured in linear and hexagonal array geometries.
Our results indicate superior performance of the hexagonal geome-
try. Then, MEMS microphones are compared to Electret Condenser
Microphones (ECMs), using the ATHENA database, which con-
tains speech recorded in realistic smart home noise conditions with
hexagonal-type arrays of both microphone types. MEMS micro-
phones exhibit performance similar to ECMs. Good performance,
versatility in placement, small size, and low cost, make MEMS
microphones attractive for multichannel speech processing.

Index Terms— microphone array speech processing, multi-
channel speech enhancement, MEMS microphone array

1. INTRODUCTION

In recent years, much effort has been devoted to designing and im-
plementing ambient intelligence environments, such as smart homes
and smart rooms, able to interact with humans through speech [1–3].
For example, among others, ongoing such research is being con-
ducted within the EU project named “Distant-speech Interaction for
Robust Home Applications” (DIRHA) [4]. Sound acquisition is a
key element of such systems. It is desirable that sound sensors be
embedded in the background, imperceptible to human users, so the
latter can interact with the system in a seamless, natural way.

The newly developed technology of ultra-compact sensors,
namely Micro Electro-Mechanical System (MEMS) microphones,
facilitates the integration of sound sensing elements within ambient
intelligence environments. Their very small size implies versatility
in their placement, making them very appealing for use in smart
homes. However, the need for far-field speech acquisition gives
rise to the problem of noise suppression. Therefore, aside from the
MEMS microphones advantage in terms of size, an evaluation of
their effectiveness for multichannel speech enhancement is needed.

In this work, the focus is on investigating the performance of
MEMS microphone arrays for speech enhancement. First, we ex-
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perimentally compare the effectiveness of linear and hexagonal ar-
ray geometries for this task. Using the versatile MEMS array, a new
speech corpus was collected, which contains speech in both diffuse
and localized noise fields, captured with linear and hexagonal array
configurations. A variety of multichannel speech enhancement algo-
rithms exist [5–8]. Here, a state-of-the-art such algorithm proposed
in [9] is used on the new speech corpus, in order to explore the effec-
tiveness of the MEMS microphones and the array geometry for sup-
pression of various noise fields. The results indicate that the hexag-
onal array configuration achieves superior speech enhancement per-
formance. Then, MEMS microphones are compared to Electret Con-
denser Microphones (ECMs) using the ATHENA database [10], a
corpus containing speech recorded in a realistic smart home envi-
ronment. This corpus contains recordings from closely positioned
pentagonal MEMS and ECM arrays. The use of hexagonal-type con-
figuration was motivated by its superior performance on the first set
of experiments. The MEMS array achieves similar performance to
the ECM array on the ATHENA data. Therefore, MEMS are a viable
low-cost alternative to high-cost ECMs for smart home applications.

The rest of this paper is organized as follows: Section 2 pro-
vides technical details for the MEMS microphone array; Section 3
describes the speech corpora used in this study; Section 4 presents
the experimental procedure and results.

2. MEMS MICROPHONE ARRAY

Microphone arrays are currently being explored in many different
applications, most notably for sound source localization, beamform-
ing, and far-field speech recognition. However, the cost and the com-
plexity of commercially available arrays often becomes prohibitively
high for routine applications. Using multiple sensors in arrays has
many advantages, but it is also more challenging: as the number
of signals increases, the complexity of the electronics to acquire
and process the data grows as well. Such challenges can be quite
formidable depending on the number of sensors, processing speed,
and complexity of the target application.

The newly developed technology of ultra-compact MEMS mi-
crophones [11] facilitates the integration of sound sensing elements
with ambient intelligence environments. MEMS microphones have
some significant advantages over ECMs: they can be reflow sol-
dered, have higher “performance density” and less variation in
sensitivity over temperature. Recent research has demonstrated
that MEMS microphones are a suitable low-cost alternative to
ECMs [12]. Since their cost can be as much as three orders of
magnitude lower than ECMs, they present an attractive choice.

The microphones used in this research are the STMicroelectron-
ics MP34DT01 [13]: ultra-compact, low-power, omnidirectional,
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Fig. 1. The MEMS microphone array architecture developed for the
DIRHA project [4] and used in this paper.

digital MEMS microphones built with a capacitive sensing element
and an Integrated Circuit (IC) interface. The sensing element, capa-
ble of detecting acoustic waves, is manufactured using a specialized
silicon micromachining process dedicated to the production of audio
sensors. The MP34DT01 has an acoustic overload point of 120dB
sound pressure level with a 63dB signal-to-noise ratio and 26dB
relative to full scale sensitivity. The IC interface is manufactured us-
ing a CMOS process that allows designing a dedicated circuit able
to provide a digital signal externally in pulse-density modulation
(PDM) format, which is a high frequency (1 to 3.25MHz) stream
of 1-bit digital samples.

Our architecture demonstrates the design of a MEMS micro-
phone array with a special focus on low cost and ease of use. Up to
8 digital MEMS microphones are connected to an ARM© Cortex™-
M4 STM32F4 microcontroller [14], which decodes the PDM of the
microphones in order to obtain a pulse code modulation (PCM) and
stream it using the selected interface (USB, Ethernet) (Fig. 1).

The PDM output of the 8 microphones is acquired in paral-
lel by using the GPIO port of the STM32F4 microcontroller. The
STM32F4 is based on the high-performance ARM© Cortex™-M4
32-bit RISC core operating at a frequency of up to 168MHz, it incor-
porates high-speed embedded memories (Flash memory up to 1Mb,
up to 192Kb of SRAM), and it offers an extensive set of standard
and advanced communication interfaces, like I2S full duplex, SPI,
USB FS/HS, and Ethernet. The microphone’s PDM output is syn-
chronous with its input clock, therefore an STM32 timer generates a
single clock signal for all 8 microphones.

The data coming from the microphones are sent to the decima-
tion process, which first employs a decimation filter, converting 1-bit
PDM to PCM data. The frequency of the PDM data output from the
microphone (which is the clock input to the microphone) must be a
multiple of the final audio output needed from the system. The filter
is implemented with two predefined decimation factors (64 or 80), so
for example, to have an output of 48kHz using the filter with 64 dec-
imation factor, we need to provide a clock frequency of 3.072MHz
to the microphone. Subsequently, the resulting digital audio sig-
nal is further processed by multiple stages in order to obtain 16-bit
signed resolution in PCM format (Fig. 2). The first stage is a high
pass filter designed mainly to remove the DC offset of the signal. It
has been implemented via an IIR filter with configurable cutoff fre-
quency. The second stage is a low pass filter implemented using an
IIR filter with configurable cutoff frequency. Gain can be controlled
by an external integer variable (from 0 to 64). The saturation stage

Fig. 2. Filtering pipeline used in the MEMS microphone array for
converting each microphone data stream into a 16-bit PCM signal.

Fig. 3. Delay-and-sum beampattern of the 8-element MEMS micro-
phone array in linear configuration with 42mm microphone spacing.

sets the range for output audio samples to 16-bit signed.
As already mentioned, the system allows data streaming via

USB or Ethernet. When the USB output is selected and the device is
plugged into a host, the microphone array is recognized as a standard
multiple channel USB audio device. Therefore, no additional drivers
need to be installed. Thus, the array can be interfaced directly with
third-party PC audio acquisition software. The microphone array
can be configured using a dip-switch in order to change the num-
ber of microphones (1 to 8) and the output frequency (16kHz to
48kHz). The delay-and-sum beampattern for a linear MEMS array
of 8 elements with 42mm uniform spacing is shown in Fig. 3.

3. SPEECH CORPORA

3.1. MEMS microphone array corpus

To evaluate the effectiveness of MEMS microphone arrays and their
geometric configuration for speech enhancement, a corpus contain-
ing multichannel recordings of real speech with various array config-
urations and in various noise conditions was collected. The speech
data was recorded using a 7-element array of MEMS microphones
resting on a flat desk. Speech was recorded for both linear and
hexagonal array geometries (Fig. 4 (a) and (b), respectively). Lin-
ear array configurations are often used in practice, however hexago-
nal arrays possess, in theory, certain advantages [7], such as optimal
spatial sampling [15–17]. Linear configurations with uniform mi-
crophone spacing of 4cm, 8cm, 12cm and hexagonal configurations
with radius 8cm, 12cm, 16cm were used in the recordings. For
each array configuration, speech was recorded for two frequently
occurring in practice types of noise fields: diffuse and localized.
The diffuse noise field arises in environments such as offices, cars,
etc. [18, 19]. To generate a diffuse noise field in the recording room,
computer and heater fans and air blowers were utilized. To generate

(a)

(b)

(c)

Fig. 4. (a) Linear and (b) hexagonal MEMS array configurations.
(c) Schematic of the recording setup for the MEMS array corpus:
the two source positions (only one active source for each recording)
and the position of the loudspeaker generating the localized noise
field (not active for the diffuse noise field recordings) are shown.
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Fig. 5. ATHENA database setup: MEMS and ECM pentagons

a localized noise field, a single loudspeaker playing a radio program
was used. The loudspeaker was placed at a distance of 1.5m at an
angle of 135o relative to the array center (Fig. 4 (c)). For each com-
bination of array geometry and noise field, speech was recorded for
two subject positions: angles 45o and 90o at a distance of 1.5m rel-
ative to the center of the array (Fig. 4 (c)). Data was recorded for 6
subjects, 3 male and 3 female. For each combination of array geom-
etry, noise field and subject position, each speaker, standing, uttered
a total of 30 short command-like sentences, related to controlling
a smart home such as the one being developed under the DIRHA
project [4]. When standing, the speaker’s head elevation was within
40− 50cm from the elevation of the plane where the MEMS micro-
phones rested. Aside from the MEMS array, a close-talk microphone
was used to capture a high SNR reference of the desired speech sig-
nal. All signals were recorded at a rate of 48kHz. In total, the corpus
contains 4320 utterances, 720 per array configuration.

3.2. ATHENA Database
To compare MEMS microphones and ECMs, the ATHENA database
was used [10]. This corpus contains 4 hours of speech from 20
speakers (10 male, 10 female) recorded in a realistic smart envi-
ronment. To realistically approximate an everyday home scenario,
speech (comprised of phonetically rich sentences, conversations,
system activation keywords, and commands) was corrupted by both
ambient noise and various background events. Data was collected
from 20 ECMs distributed on the walls and the ceiling, 6 MEMS
microphones, 2 close-talk microphones and a Kinect camera. The
MEMS microphones formed a pentagon on the ceiling, close to a
congruent ECM array (Fig. 5). More details can be found in [10].
For the experiments in the present paper, only the MEMS and ECM
ceiling pentagon arrays were considered.

4. EXPERIMENTS AND RESULTS

4.1. Multichannel Speech Enhancement System
Microphone array data presents the advantage that spatial infor-
mation is captured in signals recorded at different locations and
can be exploited for speech enhancement through beamforming

Fig. 6. The multichannel speech enhancement system reported in [9]
and used in our experiments.

algorithms [5–8]. To further enhance the beamformer output, post-
filtering is often applied. Commonly used optimization criteria for
speech enhancement are the Mean Square Error (MSE), the MSE
of the spectral amplitude [20] and the MSE of the log-spectral am-
plitude [21], leading to the Minimum MSE (MMSE), Short-Time
Spectral Amplitude (STSA), and log-STSA estimators, respectively.
All these estimators have been proven to factor into a Minimum
Variance Distortionless Response (MVDR) beamformer followed
by single-channel post-filtering [7, 22, 23].

For our enhancement experiments, the multichannel speech en-
hancement system proposed in [9] is used. The system implements
all aforementioned estimators using an optimal post-filtering param-
eter estimation scheme. Its structure is shown in Fig. 6.

The inputs to the system are the signals recorded at the various
microphones, modeled as:

xm(n) = dm(n) ∗ s(n) + vm(n), m = 1, 2, . . . , N, (1)

where n is the sample index, ∗ denotes convolution, xm(n) is the
signal at microphone m, s(n) is the desired speech signal, dm(n) is
the acoustic path impulse response from the source to microphone
m, and vm(n) denotes the noise. Assuming that reverberation is
negligible, dm(n) = amδ(n − τm), where τm is the propagation
time from the source to microphone m in samples.

In the employed algorithm, the input signals are first temporally
aligned, to account for the propagation delays τm. Subsequently,
due to the non-stationarity of speech signals, short-time analysis of
the aligned input signals is employed, through a Short-Time Fourier
Transform (STFT). The MVDR beamformer followed by the re-
spective post-filter provide an implementation of one of the MMSE,
STSA, or log-STSA estimators. Finally, the output signal is synthe-
sized using the overlap and add method [24].

To estimate the MVDR weights and the post-filter parameters,
the algorithm used requires prior knowledge of a model for the noise
field. The spatial characteristics of noise fields are captured in the
degree of correlation of the noise signals recorded by spatially sepa-
rated sensors. Thus, to characterize noise fields, the complex coher-
ence function defined as [25]:

Cvivj (ω) =
φvivj (ω)√

φvivi(ω)φvjvj (ω)
, (2)

is often used, where ω denotes the discrete-time radian frequency
and φgigj the crosspower-spectral density between signals gi and gj .
For the ideally diffuse and localized noise fields, the analytical form
of the complex coherence function is known. For diffuse noise [25]:

Cdif
vivj (ω) =

sin(ωfsrij/c)

ωfsrij/c
, (3)

where fs is the sampling frequency, rij the distance between sensors
i, j, and c sound speed. For localized noise [26]:

C loc
vivj (ω) = e

−jω(τvi−τvj ), (4)

where τvi denotes the propagation time of the localized noise signal
to microphone i. The algorithm further assumes that the noise field
is homogeneous (the noise signal has equal power across sensors).

4.2. Experimental Results and Discussion
1) MEMS array corpus: The multichannel speech enhancement sys-
tem described in Section 4.1 was used on the MEMS array corpus.
For time alignment, to calculate propagation delays, ground truth
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MEMS array corpus
Linear geometry Hexagonal geometry

Noise Speaker Position MVDR Sensor spacing Sensor spacing
field (r, θ) in (m,o ) post-filter 4cm 8cm 12cm 8cm 12cm 16cm

Diffuse

(1.5, 90o)
MMSE 4.90 4.52 4.19 7.49 6.99 5.66
STSA 4.85 4.46 4.12 7.20 6.73 5.41

log-STSA 4.90 4.51 4.17 7.36 6.87 5.56

(1.5, 45o)
MMSE 3.48 2.87 1.99 4.13 3.75 3.12
STSA 3.44 2.80 1.95 4.00 3.63 3.01

log-STSA 3.48 2.85 1.98 4.07 3.70 3.07

Localized

(1.5, 90o)
MMSE 1.20 1.00 0.88 3.36 3.18 2.73
STSA 1.18 0.98 0.83 2.83 2.82 2.35

log-STSA 1.19 0.99 0.86 2.99 2.96 2.50

(1.5, 45o)
MMSE 6.61 3.86 2.85 4.58 3.77 3.94
STSA 6.28 3.44 2.47 3.44 3.14 3.04

log-STSA 6.45 3.61 2.62 3.75 3.36 3.29

ATHENA database
Sensor SSNRE
Type (dB)
ECM 2.09

MEMS 2.05

Table 1. Speech enhancement on MEMS array (left) and ATHENA (right) corpora. All results are reported in SSNR enhancement in dB.

was used for source and microphone positions. Having no depen-
dency on the accuracy of a localization module renders the results
comparable across array geometries in terms of speech enhancement
performance alone. To calculate the STFT, 1200-sample (25ms)
Hamming windows with 900-sample overlap (18.75ms) were used.
The noise field generated by fans was modeled as diffuse (Eq. (3)),
while the noise field generated by the loudspeaker was modeled as
ideally localized (Eq. (4)). Ground truth parameter values were used
to calculate the complex coherence function in each case.

To evaluate the quality of the enhanced output of the system,
the Segmental Signal to Noise Ratio (SSNR) [27] was used, which
has been shown to have better correlation with the human perceptual
evaluation of speech quality than global SNR. Frame SNRs were
restricted to (−15dB, 35dB) before calculating the SSNR [27].

The results, in terms of average SSNR Enhancement (SSNRE)
across utterances recorded under the same conditions, are presented
in Table 1. For each utterance, the SSNRE is calculated as the dB
difference between the output and the mean of the input SSNRs.

Overall, significant improvements in speech quality are obtained
using the MEMS microphone array. The hexagonal geometry with
8cm radius achieves about 7.5dB average SSNRE for the diffuse
noise field, while about 6.5dB average SSNRE is observed for the
linear geometry with 4cm in the case of the localized noise field,
with the desired speech source at 45o.

In general, the hexagonal array geometry performs better than
the linear one. In detail, for the diffuse noise field, the best result
for a hexagonal geometry (7.49dB with 8cm radius) is approxi-
mately 2.5dB higher than the best result achieved by a linear ge-
ometry (4.90dB with 4cm sensor spacing). This can be attributed to
the linear array configuration having axial symmetry, which renders
it impossible to differentiate among signals traveling from the far-
field to the array along the same cone. Such signals have the same
propagation delays τm and are indiscriminable. In a diffuse noise
field, signals of equal power propagate from all spatial directions, so
the linear array is at a disadvantage. For the localized noise field,
the best performance of 6.61dB is achieved by the linear array with
4cm spacing for speaker position at 45o. However, the hexagonal
geometries with radii 12cm and 16cm produce superior results com-
pared to the linear ones with 8cm and 12cm spacing, respectively.
Namely, with sparser sampling of the acoustic field, the hexagonal
geometries still outperform the linear. Also, for talker positioned at
90o the hexagonal geometry produces superior results overall.

Intuitively, the superior performance of the hexagonal array ge-
ometry can be explained by considering the advantages of sampling

the spatial field with a hexagonal grid. It has been shown that hexag-
onal array sampling requires the least amount of samples to com-
pletely characterize a space-time field [7,15–17]. Therefore, given a
number of sensors, it is expected that the hexagonal array can capture
more spatial information than the linear one. Also, the hexagonal ar-
ray can capture the same amount of spatial information with sparser
sampling of the spatial field (larger sensor spacing).

For a given geometry, performance deteriorates as spatial sam-
pling becomes sparser. By the spatial sampling theorem, larger sen-
sor spacing decreases the maximum frequency that the array can spa-
tially resolve [7], yielding worse performance.

2) ATHENA database: To compare MEMS and ECM arrays, the
speech enhancement system was used on the ATHENA ceiling pen-
tagonal arrays data. The use of a pentagon array was motivated by
the superior performance of hexagonal-type arrays observed in the
MEMS array corpus experiments. Ground truth was used for source
and microphone locations for the same reason as in the MEMS array
corpus case. For STFT calculation, window length and overlap was
the same as for the MEMS corpus. Noise was modeled as diffuse, as
a multitude of background noises occur in each session [10]. Results
in terms of average SSNRE across the database for each microphone
type are presented in Table 1. For each utterance, the SSNRE is cal-
culated as the dB difference between the output and the central mi-
crophone SSNR. The performance of the low-cost MEMS array is
comparable to the expensive ECM array with a very small decrease
of 0.04dB in average SSNRE. Therefore, MEMS arrays are a viable
low-cost alternative to ECM arrays.

5. CONCLUSIONS AND FUTURE WORK

Using MEMS microphones, very satisfactory speech enhancement
performance was observed (7.49dB best SSNRE on the MEMS cor-
pus). The comparison of array geometries revealed superior perfor-
mance of the hexagonal array, which can be attributed to optimality
of hexagonal grid sampling. The comparison of pentagonal MEMS
and ECM arrays in a realistic smart home environment revealed
no significant difference in performance. MEMS microphones are
low-cost, compact, portable, and easy to configure in any geometry.
Combined with good speech enhancement performance in challeng-
ing conditions, comparable to that of bulky and expensive ECMs,
these attributes make them attractive for smart home applications.

In future work, we plan to investigate MEMS microphone per-
formance for other multichannel processing problems, such as time-
delay of arrival estimation and source localization, for which robust
methods are known in the literature [28–31].
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