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ABSTRACT
In this paper, along with recent trends in segmentation using mul-
tiple image cues, we examine the integration of modulation tex-
ture features, image contrast and region size for decomposition of
an image in homogenous regions. First, we propose the use of a
morphological PDE-based segmentation scheme of the watershed
type, based on seeded region-growing and level curve evolution
with speed depending on contrast and size. Second, we analyze
object surface texture by modelling image variations as local spa-
tial modulation components estimated via multi-frequency filter-
ing and instantaneous energy-tracking operators. By separately
exploiting contrast and texture information, through multiscale im-
age decomposition, we propose a PDE-based coupled segmenta-
tion method. Experimental results on various classes of images
such as soilsections, aerial and natural scenes indicate that the
combined effect of image decomposition and multi-cue segmen-
tation improves the overall segmentation process.

1. INTRODUCTION

Although image segmentation forms the basis of almost any im-
age analysis task, it still remains a hard to solve problem since it
appears to be application dependent with usually no a priori in-
formation available regarding the image structure. Moreover, the
increasing demands of image analysis tasks in terms of segmenta-
tion results’ quality introduce the necessity of employing multiple
cues for improving image segmentation results. In this paper we
attempt to incorporate cues such as intensity contrast, region size
and texture in the segmentation procedure and derive improved re-
sults compared to using individual cues separately.

Based on the well known morphological paradigm of water-
shed transform segmentation which exploits intensity contrast and
region size criteria, we introduce a watershed-like segmentation
scheme which couples contrast and texture information. The mod-
elling of the proposed scheme is done via Partial Differential Equa-
tions (PDEs) since they ensure better and more intuitive mathe-
matical formulation, direct connections with physics, and better
approximation to the continuous geometry of the problem. By
well-motivated texture modelling, we propose efficient extraction
of image features capable of quantifying important characteristics
like geometrical complexity, rate of change in local contrast vari-
ations and orientation. Finally, by selecting the U + V image de-
composition as an efficient way to incorporate the available con-
trast and texture information, we propose a coupled segmentation
scheme driven by two separate image components: Cartoon U (for
contrast information) and Texture component V .

This work was supported by the Greek GSRT research program
PENED-2001 , the European NoE MUSCLE, the Greek Educ. Ministry
program ‘Pythagoras’ and the NTUA research program ‘Protagoras’.

2. GENERALIZED WATERSHED AND PDES

Image segmentation is one of the most important but yet difficult
tasks in computer vision, as it requires to some extent a seman-
tic understanding of the image. Amongst segmentation methods,
the morphological watershed transform has proved to be robust,
powerful and effective, especially when coupled with nonlinear
multiscale morphological operators [1, 2]. Apart from the well-
known morphological flooding approach implemented either via
immersion simulations [2] or hierarchical queues [1], the water-
shed transform has also been modelled in a continuous way via
the eikonal Partial Differential Equation (PDE) [3, 4], and imple-
mented in [5] using curve evolution and level sets. Using PDE
modelling in the flooding process of watershed transform, each
emanating wave’s boundary is viewed as a curve, which evolves
with predefined speed. In the case of uniform height watershed
flooding, let us consider a moving smooth closed curve, which is
the boundary of the marker, ~C(p, t) where p ∈ [0, 1] parameter-
izes the curve and t is an artificial marching parameter. The PDE
that implements the watershed flooding is of the form:

∂ ~C

∂t
=

c

A(t)‖∇I‖ ·
~N (1)

where c is a constant, ‖∇I‖ is the gradient magnitude of the image
function I , ~N is the unit outward vector normal to the curve, and
A(t) is either 1 if we perform only contrast-based segmentation
(height flooding) or A(t) = Area( ~C) in case of contrast and size
segmentation (volume flooding) [6]. The above propagation PDE
implies that the evolution speed is inversely proportional to the
intensity (volume) variation at each image point, in the direction of
the outward normal vector. For implementation we use the level set
approach [7] where at each time the evolving curve is embedded
as the zero level set Γ(t) = {(x, y) : Φ(x, y, t) = 0} of a higher
dimension space-time function Φ(x, y, t). Then this embedding
function Φ evolves in space-time according to the following PDE:

∂Φ

∂t
=

c

A(t)‖∇I(x, y)‖‖∇Φ‖ (2)

Modelling generalized watersheds via the eikonal has the advan-
tage of a more isotropic flooding but it also introduces some chal-
lenges in the implementation. In general, efficient algorithms [8]
to solve time-dependent eikonal PDEs are the narrow-band level
sets methods, and more specifically, the fast marching method, an
algorithm for stationary formulations of eikonal PDEs.

3. TEXTURE MODULATION ANALYSIS

Elementary natural texture components can be interpreted as lo-
cally smooth modulations and hence assumed nonstationary sig-
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nals, well localized within a narrow band in the spatial frequency
plane. As so, textured surfaces can be modeled by a sum of 2D
spatial Amplitude and Frequency Modulation (AM–FM) signals

I(x, y) =

KX

k=1

ak(x, y) cos[φk(x, y)] (3)

where each of the K components is a 2D nonstationary sine with
a spatially-varying amplitude ak(x, y) and a spatially-varying in-
stantaneous frequency vector ~ωk(x, y) = ∇φk(x, y). The am-
plitude is used to model local image contrast variations and the
frequency vector contains rich information about the locally emer-
gent spatial frequencies [9, 10].

Estimation of the 2D modulation signals can be done simply,
efficiently and with small estimation error [11] based on an energy
operator Ψ(f) , ||∇f ||2 − f∇2f , which is a multidimensional
extension of the 1D Teager energy operator. Applying Ψ to a 2D
AM–FM signal f(x, y) = ak(x, y) cos[φk(x, y)] modelling a tex-
ture component yields

Ψ[ak cos(φk)] ≈ a2
k||~ωk||2 (4)

The product in (4), which couples the squares of the instanta-
neous amplitude and frequency magnitude may be called the tex-
ture modulation energy. By the assumption that the instantaneous
amplitude and frequency do not vary rapidly in space or too greatly
in value compared with the carriers, the above approximation error
becomes negligible.

Modulation models are applied on bandpass filtered versions
of an image [9] through filtering mechanisms with sufficient spa-
tial and spectral localization, usually done by banks-of-filters span-
ning various radial frequencies and orientations. To obtain repre-
sentations indicative of the dominant texture components we re-
cently proposed an energy tracking mechanism in the multidimen-
sional feature space consisting of the filter responses [12]. Specifi-
cally the narrowband texture components in the outputs of a Gabor
filterbank are subjected to energy measurements via the 2D en-
ergy operator Ψ, post-averaged by a local averaging filter ha and
compared pixelwise. The filter with the Maximum Average Teager
Energy per pixel, given by

Ψmat(I(x, y)) = max
k

Ψ[((I ∗ hk) ∗ ha)(x, y)], (5)

where ∗ denotes 2D signal convolution and hk the response of
filter k, indicates the most prominent texture component. The de-
rived Ψmat is a slowly-varying indication of texture modulation
energy, which can classify various energy levels and thus different
textures with respect to their Teager energy signatures.

By demodulating the most-active in this energy sense texture
components we can also derive a low-dimensional feature set which
was found to be useful for unsupervised curve-evolution based tex-
tured image segmentation [13]. In this work however we examine
and propose the modulation energy Ψmat as a compact, efficient
and well localized texture detection cue.

4. COUPLED SEGMENTATION SCHEME

A recently proposed method for image decomposition is the I =
U + V model [14, 15], where U is the “cartoon component” and
consists of relatively flat plateaus for the object regions surrounded
by abrupt edges, whereas V is the “texture oscillation” and con-
tains texture plus noise information. By treating and processing the

two components separately a powerful joint segmentation scheme
is proposed. Contrast variations are taken into account from the
U part and texture oscillations are approached through modulation
analysis on the V component.

Several nonlinear edge-preserving image smoothing schemes
can create cartoon approximations of an image such as anisotropic
diffusion and image selective smoothing [15, 16]. To obtain the
cartoon component U we apply the leveling operator [17] on the
initial image, motivated by its attractive properties, as well as by
the fact that it is also used as a non-linear simplification filter at
the pre-processing stage of the segmentation procedure. More
precisely, levelings are nonlinear object-oriented filters that sim-
plify a reference image I through a simultaneous use of locally
expanding/shrinking an initial seed image, called the marker M ,
and a global constraining of the marker evolution by the reference
image. Specifically, iterations of the image operator λ(F |I) =
(δ(F )∧I)∨ε(F ), where δ(F ) (resp. ε(F )) is a dilation (resp. ero-
sion) of F by a small disk, yield in the limit the leveling of I w.r.t.
M , denoted as Λ(M |I) = limk→∞ Fk, Fk = λ(Fk−1|I), F0 =
M . The levelings have many interesting multiscale properties,
such as reconstruction of whole image objects with exact boundary
preservation if the objects are hit by the marker.

As texture component we use the residual V = I − U =
I − Λ(M |I). We construct multiscale leveling cartoons Ui by us-
ing a sequence of multiscale markers Mi, obtained from sampling
a Gaussian scale-space. The corresponding residuals Vi = I − Ui

constitute a hierarchy multiscale texture components. As an alter-
native marker selection, we consider the use of anisotropic diffu-
sion [16]. At each sequence step the leveling marker is obtained
by a version of the image with blurred regions but adequately pre-
served boundaries, caused by the constrained diffusion process. It
should be noted here that the scope of this paper is not to find the
best U + V decomposition but some efficient decomposition that
couples with segmentation methods.

The proposed new segmentation scheme is based on the fol-
lowing curve evolution PDE

∂ ~C

∂t
=

�
λ1

A||∇f1|| + λ2Ψmat(f2)− µ κ

�
~N (6)

where f1 and f2 are image transformations related to the original
I , but not necessarily the same. Thus, the curve’s speed depends on
three terms: the first two are eikonal, whereas the third (curvature
motion) is diffusive. All terms are linked with some optimality
criterion. The first term drives the curve with speed that maximizes
the flooding of the f1 image toward its watershed. The second term
can be shown to correspond to a flow that maximizes the average
texture energy: max

RR
R(C)

Ψ(f) =⇒ ∂ ~C/∂t = Ψ(f) ~N . This
term pushes the curve toward regions with large average texture
energy.

Following the level set formulation in [7], we embed this evolv-
ing planar curve as the zero-level curve of an evolving space-time
function Φ(x, y, t), and conclude to the level function PDE:

∂Φ

∂t
=

�
λ1

A||∇f1|| + λ2Ψmat(f2)− µ curv(Φ)

�
||∇Φ|| (7)

where curv(Φ) is the curvature of the level sets of Φ.
Based on the PDE (6), different scenarios can be obtained by

varying the signals f1 and f2. The most obvious choice is f1 = I ,
f2 = I , but we also propose another novel and promising sce-
nario which is f1 = U , f2 = V . The former is a curve evolution
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Quality Segmentation Method
Criteria CTS VTS WT KM
YLGC 0.25 0.09 0.6 7.7
MSF 3.25 3.30 3.40 3.69

Table 1. Quantitative evaluation by cost functionals.

with velocity inversely proportional to the intensity contrast (or
volume) of the input image and proportional to the Ψmat energy of
the image. The latter is a curve evolution with speed inversely pro-
portional to the intensity contrast (or volume) of the cartoon com-
ponent and proportional to the Ψmat energy of the textured com-
ponent, and is favored and further investigated since it integrates
edge and texture information by combining the different signals
produced by the U + V decomposition of the image.

In the proposed segmentation scheme, there are multiple curves
to be propagated, which are initialized as the contours of a set of
markers, indicative of significant image regions. Since markers
provide evidence about the existence of homogeneous regions, a
variety of methodologies has been developed for their extraction.
Thus, markers can be: (i) contrast-oriented corresponding to peaks
or valleys of certain depth (obtained via reconstruction filters); (ii)
peaks of Ψmat(I), indicating areas with rich texture; (iii) com-
bination of contrast as well as texture criteria; and (iv) manually
placed at areas of interest. In general, the methodology of marker
extraction is application dependent and beyond the scope of this
paper. The implementation of (6) has been done with established
techniques from level sets methods. If µ = 0 the PDE is of pure
eikonal-type and its implementation is based on the fast marching
methodology (FMM) [8], which ensures computational speed. If
µ 6= 0 the PDE is implemented using the narrow band method [8],
and the segmentation boundaries are smoothed. The decision of
whether or not to use the κ-term is application dependent.

5. RESULTS AND APPLICATIONS

The proposed coupled method for texture analysis after decom-
position and multi-cue segmentation has been applied to various
classes of images. Such experimental results are illustrated in
Fig. 1 - 3. In [13], the region based scheme is tuned to texture
only, whereas here there is a coupling between texture detection
and geometric segmentation.

In Fig.1 the scheme is applied on a soilsection image under
polarized light, where grouping of various materials and structures
is achieved. In Fig.1(a)-(d) the initial image, the leveling cartoon,
texture and energy component, are respectively illustrated. Initial
segmentation results produced using the marker set of Fig.1(e) are
presented in Fig.1(g). Due to the multi-structured nature of such
images, these results can be refined by an area post-merging pro-
cedure, as shown in Fig.1(h). Briefly, neighboring regions with
minimum squared distance of mean region features are merged,
constrained to obey a modified Fisher criterion on the variance
and size of the combined region. A minimum distance is chosen
for convergence by histogram values. Color vector and U , V inten-
sities were used here as merging cues. The proposed scheme (cou-
pling contrast and texture information CTS as well as volume and
texture information VTS) was tested against other simpler but es-
tablished segmentation methods in order to verify its ability to im-
prove segmentation results. Comparisons were performed against
traditional watershed (WS), K-means clustering (KM) and recur-

sive shortest spanning tree (RSST) split and merge algorithm [18],
as illustrated in Fig.1(i-l)respectively. Quantitative comparison re-
sults can be found in Table.1 where as goodness criteria were used
the Liu-Yang Global Cost (LYGC) [19] and Mumford Shah Energy
Functional (MSF) [20]. The smaller their values, the better the
segmentation results are considered. In Fig. 2 the segmentation
scheme is applied on Lena image, which is characterized both by
edges (strong and medium) and texture, using manual markers as
shown in Fig. 2(a). The proposed approach in (e) outperformed
the results of the single-cue, contrast-based segmentation and the
multi-cue model of Eq.(7) with no decomposition, f1 = f2 = I ,
shown in (d). Finally in Fig.3 results on four different image
classes are illustrated. In all cases, a sufficient choice of markers
led to satisfactory region labeling.

From these and analogous tests we conclude that: 1) Using
the combined edge-contrast and texture information, the proposed
segmentation scheme ensures better results than using single cues.
2) If the edge-contrast and texture information are separately taken
from the U and V components rather than the initial image, seg-
mentation results are further improved, since texture areas are bet-
ter located, described and extracted.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Fig. 1. Soilsection Image Segmentation: (a) Soilsection Image under polarized light (b) Leveling “Cartoon component” U , (c) “Texture component” V ,
(d) Texture Energy Ψmat(V ), (e) Gradient of U , (f) Markers, (g) Coupled Contrast-Texture segmentation, (h) Refined Segmentation Regions, (i) Coupled
Volume-Texture segmentation, (j) Watershed segmentation, (k) K-means clustering segmentation, (l) RSST segmentation.

(a) (b) (c) (d) (e)
Fig. 2. Coupled Segmentation Scheme: (a) Original Image and Imposed Markers (b) Leveling “Cartoon component” U (c) “Texture Component” V
(d) Segmentation, f1 = f2 = I (e) Segmentation, f1 = U, f2 = V

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 3. Set of Segmentation Results: (a)-(e) Soil, Aerial, Medical, Mandrill, Bird images with corresponding set of markers superimposed, (f)-(j)
Segmentation results from the proposed coupled segmentation scheme
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