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ABSTRACT

The visual processing of Sign Language (SL) videos offerkiphel
interdisciplinary challenges for image processing anageion.
Based on tracking and visual feature extraction, we ingatsi SL
visual phonetic modeling by exploiting statistical suliBiU) mod-
els of movement-position and handshape. We further propossv
framework to construct a data-driven lexicon that retaimsnetics’
movement information and to perform automatic recognitiboon-
tinuous SL videos. We construct phonetically meaningfamsition
SU, named asaw canonical phonetic subuni(SU-CanRaw). Then,
we integrate via a Hidden Markov Model multistream schene th
SU-CanRaw extended for both hands, with handshape SU, based
our previous work on Affine-invariant Shape-Appearance &sd
By applying the all-inclusive framework on continuous Skdebs,
we automatically generate a data-driven lexicon that cafutiber
exploited, for automatic analysis of SL corpora, and cartirs SL
recognition. The recognition experiments, conducted oevdyac-
quired continuous SL corpus, lead to promising results.

Index Terms— Automatic Sign Language (SL) Recognition,
Phonetic Models, Movement Handshape Integration, Autmmat
Data-Driven Phonetic Lexicon, Greek SL.

1. INTRODUCTION

Sign Languages (SL'’s) are languages employing manual and no

manual visual patterns, and their automatic processingy®averal
interdisciplinary challenges [12], e.g. the tracking,tfea extrac-
tion and statistical visual-phonetic modeling. The lackphbnetic
transcriptions, standardized phonetic models and lexic&E cor-
pora render continuous Sign Language Recognition (SLR¢ qlif-
ficult[19, 16]. SLR tasks are found even more demanding dtigeto
variability of continuous signing characteristics and maltiple in-
formation streams, as for instance handshape and moveidext,
we present a framework for continuous SLR incorporating & ne
visual-phonetic modeling approach and constructing a-datan
lexicon without any prior phonetic information.

Speech recognition systems require a phoneme set, a ptione

lexicon, and an annotated data corpus. SLR is required tondera
manynewissues compared to speech [12, 17], however the above
gredients are somehow indispensable. Despite the intiptiisary
SL research progress such things, as a phonetic lexicomoaneet
standard. Nor is it easy to produce precise phonetic SL carpan-
scriptions given the multiple parallel cues. Phonetic scaiptions
refer to the annonation of visual events. A phoneme in sign co
responds to the basic components of the multiple cues, ebgsia

lack of well-defined and accepted computational phonemebéen
dealt by either employing sign-level models [2, 3], or ddtaen
methods [4, 5, 6, 7, 8]. However the latter result in lingaiity
meaningless subunits (SU). A few approaches have incdagtblia-
guistic knowledge such as [9, 3, 10]. Recently in [11] setjaén
phonetic descriptions are mapped with statistical phoratdels
advancing towards a direction that is by-default availébtespeech.

Another issue for SL is the articulation of multiple infortita
streams. Their integration is still open for automatic SLR][ From
the linguistic viewpoint there is an ongoing evolution ohcepts on
the relations of the multiple streams [13, 14]. Integratschemes
such as parallel Hidden Markov Models (HMM) given manuahira
scriptions have been presented, in [15] . Multiple cues anehined
in [10] for isolated sign recognition. Another aspect cansecon-
tinuous SLR [16, 18, 19, 20] and issues such as coarticalatial
movement epenthesis. Nested dynamic programming is eexbloy
in [18] to handle movement epenthesis. Transition-movenmerd-
els are employed for large-vocabulary continuous SLR [12(]
presents a threshold model based on conditional randons field

In this article, we present a SU-based statistical framkwfor
the automatic recognition of continuous SL videos, thasésia of:
1) The visual processing and feature extraction [21]. 2) Jtaés-
tical SU construction. 3) The automatic unsupervised t@xicon-
struction and 4) continuous recognition. We introduce a m@thod
for statistical visual SU models referred to r@sv canonical pho-
netic subunit{SU-CanRaw). These are built 1) by uniformly sam-
pling the feature space and constructing statistical HMMlet®that
carry by-constructionphonetic information, and 2) by encapsulat-
ing data-driven phonetic information of dynamic and stpticts (as
in [8]) to handle sequentiality of movements and posturspee-
tively. In addition, we enhance the phonetic modeling vidma-s
ple tying, sharing of model parameters, scheme for the maite
incorporation of the non-dominant hand. We also integratedh
shape information by adapting our previous works on featubeac-
tion [22], on SU construction [21] and on preliminary moverie
handshape integration [23]. Finally, we generate a datemsign-
tevel lexicon which retains phonetics’ movement inforroatidue
b the SU-CanRaw models, and despite the lack of phonetjmusor

. transcriptions. This is in contrast to data-driven SUs. Yeutd also
Niress that the phonetics-based SU presented in [11] catléen

employed as is, due to the lack of precise phonetic data atioos.

The whole framework is applied on a newly acquired contirsul

corpus leading to promising results.
2. DATA AND VISUAL PROCESSING

movement, or handshape: see for instance the downwardsmeate The Greek Sign Language (GSL) Corpusentains data of multi-

or the V-like handshape in Fig. 1(a) for sign SATISFACTIOMeT

This research work was supported by the EU under the respesgham
Dictasign with grant FP7-ICT-3-231135.

ple tasks [1]*. Figure 1 shows a data sample. For the segmenta-

1We focus on data from Task-4. The processed videos have latieso
of 720x576 pixels at 25 fps and sign-level transcriptions.
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(2) SATISFACTION ORS (c) LOOK

Fig. 1. Sample of continuous signing utterance: “SATISFACTION

(C/a

(e) AIRPLANE

T (g) SHOCK

@K AIRPLANE SHOCK?”; epenthesis transitions (T) are shown in

between signs due to coarticulation. For each transitieritht and the last frames of each are superimposed withatidicarrows.

tion and detection of the signer’s hands and head in the G8L co

Transition Raw Canonical SU Models. For the transition

pus we employ a skin color model with a Gaussian Markov Modelmodels we employ HMM models [26] considering the curved and

(GMM) and morphological processing to enhance skin deieetnd
face/hand region segmentation (as in [21]). For trackingemeloy
linear prediction, and template matching to disambiguatdusions.
The movement feature vector consists of the 2D coordindtéseo
hand, the instantaneous direction, and the velocity. Fer#nd-
shape feature extraction we employ an affine-invariant rimglef
hand shape-appearance images that model the handshapestwit
any landmark points, employing a linear combination of aton
images followed by affine transformations. The fitting isdzhsn
optimization, resulting on the estimated variation coéffits, i.e.
the handshape features as in [22].

3. MOVEMENT RAW CANONICAL SUB-UNIT MODELS

3.1. Why Go Raw ?

SU-CanRaw Statistical Sub-Unit Models. The Phonetics-Based
SU of [11] can be employed when precise phonetic transoripti
exist. In their absence and since the low-level phonetiotation
is time consuming, the alternatives are either to work td&grho-
netic adaptation for continuous signing, or to construet nedels
that account for the missing phonetic information. Next,imesti-
gate the latter. We introduce the Raw Canonical SU (SU-CafiRa
statistical models that by default carry phonetics infdiora

Feature Space IssuesA usual issue when training models is
the unequally or sparsely populated feature space. Thibudrei-
ther data-driven or phonetic-based approaches. Espeémlthe
phonetics-based case [11] due to the large number of pleolaeti
bels (HamNoSysymbols), it is common that phonetic models are
barely populated or not at all. Thus during model trainirgréhshall
be both missing or poorly trained models. This fact affeetsog-
nition as well. With SU-CanRaw models this situation is tiegl
deterministically populating the feature space with msdélerein
we deal with the simplest case in which the feature spacefisrom
i.e. the case of transition straight and curved movements.

3.2. How to costruct them

The phonetic movement related transcriptions (correspgntb
HamNoSys symbols) are characterized by symmetry. Forriosta
the straight lines sample the 3D directions in the signiracef We
take advantage of the above and deterministicadlfinestatistical
models that correspond to these equally spaced initiadizsit

2The Hamburg SL Notation System [24]: a “phonetic” transtimip Sys-
tem employed for SL phonetic description.

3We consider the straight and curved transitions. In spita@gxistence
of more HamNoSys symbols, the accounted ones provide enaugtbility
to describe a variety of movements and signs. Signing spefeesrto the
physical 3D space in which the hands move.

straight transitions. We uniformly partition the hand'artsition di-
rection feature space generating all the different modgdhlizations
for the straight and curved types. The straight lines pariitg is il-
lustrated for the spatial signing space in Fig. 2 (a), noizivad the
transitions at the same initial poi®, 0). We then construct a 5-
state HMM for each transition on the direction feature spatiee
mean parameters for each HMM state correspond to the poiht ma
ers shown in Fig. 2 (a) after the equal directions partitigniEqual
model variance is employed for each state requiring nomkapging
gaussians. This is illustrated in the models’ states Fig) @ each
transition. An example of these transition SU-CanRaw is\shim
Fig. 3(b): there the transition in the sign SHOCK correspoiadthe
T2 transition SU-CanRaw model Fig. 2(b) green dotted liree @n
upper-right transition). All the above concern the direstfeature
and require no training. We incorporate statistics on vgjoe Sec-
tion 3.3. Similarly we construct curved SUs transitions.

Posture SU Models For the postures we uniformly partition the
2D sign space creating the canonical posture models. Fifa)e
shows the partitioning in the 2D sign space. Then we corisituc
GMM for each postureR;,i = 1,..,9) employing as feature the
X,y coordinates. These models are not “canonical” as thmsitian
models w.r.t. HamNoSys. They are rather initialized in afam
way. Posture SU model examples are illustrated in Fig. B(dhése
correspond to theRf4, P5) posture SU’s of sign SATISFACTION.

3.3. Adding Dynamic-Static Data-Driven Statistics

The main characteristics prevailing during SL articulatare mul-
tiple streams and sequentiality. Driven by the MovemenidHse-
quential structure [14] and given the lack of phonetic infation,

it is essential to enhance the SU-CanRaw models so that they a
count for sequentiality. For this, we employ the Dynamiatist
data-driven method [8] on unsupervised detection of setpldtos-
tures (Static) and Transitions (Dynamic). For the sepamaif the
dynamic/static parts, we employ the velocity feature. Dwyita(D)
parts correspond to movements and Static (S) to non-mousmen
Considering that the transition SU-CanRaw models are buoithe
direction feature space, they contain no information oocig}. We
incorporate such dynamics by increasing with an extra istréee
SU-CanRaw models. In this way the final SU models contain the
statistics on direction that partition the spatial domand @t the
same time they encapsulate data-driven information trebean ef-
ficient for the sequential detection of dynamic (transiovs. static
(postures). Similarly we enhance the posture models.

4. INCORPORATION OF NON-DOMINANT HAND

The multiple information sources are integrated via a ratriam
HMM scheme. From the SL articulation perspective a singladha
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Fig. 2. Canonical SU-CanRaw movement SU (top row): a) Straighsitens’ partitioning (right (r), left (1), up (u), down fiin the signing
space. b) Corresponding SU-CanRaw HMM Models. c) Uniforstriiuted posture SU. d) Samples of handshape SU.e) DatarDBU.

considered as dominant (right hand) constructing the rmapomual ~ movement models the resulting lexicon retains this phoriafor-
phonetic part of signs. However, the non-dominant hand lii@id)  mation. Specifically, we concatenate the SU-CanRaw modeds i
can contribute either as a supplementary dominant companers  network and decode via HMMs each feature sequence via thevit
another place-of-articulation. However from the moven@minet-  algorithm, generating a sequence of SU labels with theit/stad
ics viewpoint we do not restrict a priori the possible movateeof  frames. Applying the above for all signs (since we consitieirt
the non-dominant hand. A crucial point is that the movemeéss S boundaries) leads to the formation of a lexicon with inigrseg-
(of any hand) could be tied with a standard set of basic moméme mentation boundaries per sign. The units of this lexicon c@y
models (the SU-CanRaw models) independent to which haretis p tain either transition based SUs (SU-CanRaw) or postureddiape
forming this movement, and whether both or a single handstakeSUs. Figures 3(a-c) and Fig. 3(d-f) show the decompositidwo
part. By tying we refer to the sharing of the statistical paeters  signs, SHOCK and SATISFACTION respectively into the SU they
of the underlying distributions, while on each update alldele are  consist. Sign SATISFACTION (Figs. 1(c), 3(a-c)) consist8 &Us:
updated. Thus, we replicate the main set of movement SU-@&nR A posture-handshape SU (P4-HS14), a transition-of-batidh SU
phonetic models via tying for the movements of either handildB  (MB-T7-T7) and a posture-handshape SUs (P5-HS14).

ing on the same concept we also construct transitions-thf-bands Utterance-level Continuous Recognition. We then consider
SU named hereafter as MB-SU models by taking the productsf po the continuous utterance-level streafithout seeing the correspond-
sible combinations. An example of these MB-SU models isillu ing sign boundariegsee Fig. 1). Our resources are: 1) the con-
trated in Fig. 3(e) which corresponds to a transition of b@thds for  structed SU models which constitute the phoneme-set tegetith
the sign SATISFACTION. Both hands perform the same downwardheir statistical SU models; 2) the modeling architect@®ethe un-
transition corresponding to the T7 transition SU-CanRawleh(see  supervised data-driven lexicon. Thus, we have accountethéo
Fig.2(b), red dotted line). Thus a combination of thesediteons  missing basic ingredients of the considered recognitiek. ta
constructs a MB-SU model (MB-T7-T7). 2 EXPERIMENTS

5. MOVEMENT-POSITION HANDSHAPE INTEGRATION . . . .
Experimental Configuration: The experiments are conducted on

data from Task-4, Signer-12B of the GSL corpus [1], whichtaors
52 utterances, 142 different signs and 461 total sign iss&nEach
utterance consists of 10 signs on average .eivaluationwe employ

O e e e metrcsSign Catect= (V)N 100 anaSign Accracy
P = (N—-D-S5-1I)/N-100%; N corresponds to the total number of

HS SU (H S7). Indicative samples of the mean shape-appearance

reconstructed images of the centroids for the HS SU are sliwown Elgtns gndD, S,SIUtoDI%eletlon,SSUulz;stltlglon z;nljj'slr:JseDrgogsrrors.
Fig. 2(d). These are intuitive as each HS SU corresponds tb a d —ata Orven (SU-DD) vs. -LanRaw SuisU- corre-

ferent hand configuration. In addition the HS employed inheac spond to dynamic and static subunits that have been cotestrag-

sign and its corresponding HS SU are similar: for instancé,HS tomatically employing 1) a model-based segmentation inoven

HS14, HS18 correspond to signs SHOCK, SATISFACTION andments and non-movements based on velocity and 2) an unsuper-

AIRPLANE respectively (see Figs. 1, 3, 2(d)). This scheme awsed clustering of segments (see [8, 25] for more detq‘ﬂb}: SU-
in [23]) results gnfusedySE.J mod(glef Posture( a)zld HS-SU Models( DD approach has been shown to have advantages within thé set o

(P;-HS;), i andj correspond to the single-cue SU index of postures‘jlat""'oIrIVeIn based SU approaches (|4, 5]). It thus considezant

. performing baseline. For the SU-DD construction we use #mes
|(rT ?:%ndg(haa(r:l)d :23?:?3 (?:'(i)f.) ';;rsggnssusmgz:e&Z);?jmsﬂﬁsagimo%ﬁ tr number of dynamic and static clusters as in the SU-CanRawar{d6
respectivély. For instanc,e, P4-HS4 SU is a combination efRH 9 clusters for the dynamic and static SUs respectively) tf®train-

- . ing of the SU-DD we employ a training set in contrast to the SU-
posture SU model (Fig.2(c)) and of the HS4 SU model (Fig)2(d) anRaw which have bee?] greated co?]structively without geln

6. LEXICON AND CONTINUOUS RECOGNITION of a training set. As observed in Figs. 4(a,b) the recogmitesults
are similar. Therefore, with SU-CanRaw we can still obtainis
Data-Driven Lexicon Construction. Employing resources pre- lar performance and maintain the advantage of SU-CanRavelsod
sented in the previous sections we segment each sign ingtaee i.e. the mapping of the SUs to the phonetic labels. For itgtan
model-based segmentation. For this we do not incorporat@lan  we present the transition SUs that correspond to the SU-DOTT2
netics information in terms of intra-sign ground-truth petic anno-  T6 in Fig. 2(e). By comparing these with the correspondieagsi-
tation (in contrastto [11]). Thus in these terms it is dat&eh. Nev-  tions of the SU-CanRaw model we observe that they are more com
ertheless, via the inherent phonetics incorporated byth€8nRaw  plex with increased variance and without a clear separagdween

Herein we exploit thelynamic-statimature of the SU-CanRaw mod-
els by considering Handshapes (HS) only during posturespatte
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| (b) T2

(a) P4-HS4 (c) P5-HS4

(d) P4-HS14

(e) MB-T7-T7 (f) P5-HS14

Fig. 3. Example of sign SHOCK decomposed into sub-units P4-HS4 5-2i84 (a-c). Example of sign SATISFACTION decomposed
into sub-units P4-HS14 MB-T7-T7 P5-HS14 (d-fP; correspond to posture SU model3.S; to handshape SU models; to transition
SU-CanRaw models and MB;-T; transition-of-both-hands SU models.
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Fig. 4. Continuous SL Recognition: Comparison of the proposed
Data-Driven SUs (SU-DD)

framework with 1) SU-CanRaw vs.
2) With handshape information (P+HS) and without (P).

neighboring models. The variance may results in an adveritag
recognition since they are adapted on éxactdata. However there
doesn't exist a correspondence to the clear directions arfigtic an-
notations (Fig. 2(e)). Finally, note that the SU-CanRaweaork
concerning transitions-postureses actually no datappart from a
10% of the dataset to train the dynamic-static statistics.

Handshape Integration: After incorporating the handshape stream

the recognition performance increases at least by 17% a#din8
% Correct and Accuracy respectively (Fig. 4). An examplehef t
sign decoding of 2 utterances (the first corresponds toautter in
Fig. 1) with (P+HS) and without (P) employing handshape rimia-
tion; REF corresponds to the ground truth sign transcmstioAs
observed, by incorporating the handshape informatiomstreore
signs are recognized in both cases.

REF SATISFACTION LOOK AIRPLANE  SHOCK
P OBLIGATION X X SHOCK
P+HS | SATISFACTION X AIRPLANE ~ SHOCK
REF ARRIVE SATISFACTION JOURNEY SEE
P ARRIVE FOLLOW JOURNEY X
P+HS ARRIVE SATISFACTION JOURNEY SEE

8. CONCLUSIONS

The presented new framework for automatic recognition otioce
uous SL investigates various aspects of visual-phonetidetimg,
by building a higher level of statistical modeling over nevustural
units (SU-CanRaw) of visual movement-transitions on mbarii-
ulation. This retains movement phonetics’ informationpitesthe
lack of any phonetic lexicon/corpus annotation. This frenoi to-
gether with handshape integration is applied on a demarudintin-
uous SL task with promising results; further experimenéstarcon-
sider multiple signers, increased vocabulary and non-riaues.
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