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Type Session Sequence Zone
1 S1: PH-DK - DC B
Static 2 S1: PH-DK - DC B
Single Spk 3 S1: PH-DK - DC B
4 S1: PH-DK - DC A
5 S1: PH-DK - DC A
Static 6 S1: CS-DK - DC & S2: CS B
2 Spks 7 S1: CS - DK - DC & S2: CS B
8 S1: CS - DK - DC & S2: CS B
Moving 9 S1: PH-DK - DC A
Single Spk 10 S1: PH-DK - DC A
Moving 11 S1: CS-DK - DC & S2: CS A
2 Spks 12 S1: CS - DK - DC & S2: CS A

Table 2: Sequences per session, where DK is the keyword, DC
is the command, PH is a phonetically rich sentence and CS con-
versational speech. S1 is the main speaker and S2 the second
speaker (always static) when there is a conversation.

duced several background events and noises occurring in ev-
ery session, performed by people. Table 1 presents the various
background events, categorized by duration in long and short
events. In each simulation, one long and one short event takes
place, with four instances each, randomly distributed into the
1-minute session. Thus, there may be either isolated events or
events overlapping with speech.

Regarding noises, we employed 5 different types: a) Si-
lence b) Radio played from a laptop c¢) Fan d) Ambient noise
from open window e) Vacuum cleaner placed in the corridor.
Noises occur during the whole 1-minute session.

3.3. Gesture

For purposes of multi-modal processing and interaction, as well
as to further aid a system activation and keyword spotting pro-
cess, we introduced a gesture while the speaker was uttering a
keyword in Kinect sessions. The gesture type is a raised hand
in fist, in order for the Kinect to be able to track the gesture
independently of the speaker’s orientation. An example can be
found in Fig. 2, where the three captured Kinect streams, RGB,
Depth, Skeleton are being depicted along with the MEMS mi-
crophones outputs for a keyword instance.

3.4. Impulse response estimation

Apart from the collection of real data, we also measured the
room impulse responses (IRs) from each source position and
orientation to the microphones. The IRs measurements were
based on a professional studio monitor (Genelec 8030A) able
to excite the target environment with long sequences of Expo-
nential Sine Sweep (ESS) signal [13]. As pointed out in [14],
ESS method ensures IRs measurements with high SNR and ro-
bustness against harmonic distortions.

4. Real data collection and annotation

In order to achieve a fair distribution of source positions, utter-
ances, events positions and time boundaries over all sessions,
we randomized all the above parameters, ensuring that each ut-
terance should appear in at least one session of one speaker.

The Athena-RC team used ELAN annotation tool [15] to
guide the speakers during the recording process to follow the
recording script. The tool indicated the speaker positions, the
sentences he/she should pronounce and the background events
in time slots, as can be seen in Fig. 3.

The speaker guidance was achieved through synchronized
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Figure 3: ELAN annotation tool: The different tiers represent
speech, position, events etc. The red contour indicates the sen-
tence to be uttered.

monitors distributed in the two rooms displaying the annota-
tion information. Before the session beginning, the speaker was
prompted to stand on the position marker indicated by the anno-
tation tool, looking towards the direction indicated by a number
next to the source position information.

After the recordings, we re-annotated the data, in order to
correct the time boundaries and also annotate some external
events that were not included in the recording scenarios. Such
events may concern babble noise coming from neighbouring of-
fices, doors opening and closing or walking steps.

5. Baseline experiments

We conducted some preliminary experiments on the ATHENA
database, concerning voice activity detection and far-field com-
mand recognition using at this point the 20 condenser micro-
phones. The methodologies and the corresponding results are
being described in the following sections.

5.1. Voice activity detection (VAD)

Both single and multi-channel VAD approaches have been pro-
posed in the bibliography [16—18]. The proposed VAD system
implements a multichannel approach to determining the tempo-
ral boundaries of speech activity in the smart home. The se-
quence of audio events, namely speech or non-speech, is es-
timated by means of the Viterbi algorithm [19] on combined
scores coming from single-channel event models for the entire
observation sequence. These combined scores are estimated
as averages of scores based on channel-specific event models
(“sum of log-likelihoods™).

The probability distributions for each event at each channel
are modelled as Gaussian mixture models. The features used are
baseline MFCCs with A’s and AA’s. The Viterbi algorithm al-
lows the identification of the optimal sequence of audio events
in the smart home for a given recording session. The incorpo-
ration of the multichannel score essentially leads to a decision
that is informed by all the microphones in the home. The details
of the proposed VAD are presented in [20].

The results for the VAD task are depicted in Table 3. Per-
formance of the various approaches is reported in terms of two
metrics; “Success rate” which practically corresponds to frame
classification and “F-score” which corresponds to the harmonic
mean of precision and recall. The baseline in our experiments
corresponds to the “best-SNR channel” output per session. For
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Figure 2: RGB, Depth, Skeleton and MEMS outputs for a spoken keyword performed along with the gesture.

Success

VAD methods rate (%) F-score
average over channels 95.85 0.793
best-SNR channel 96.25 0.820
sum of log-likelihoods 96.62 0.832

Table 3: Results for the VAD task.

a given speech segment detected by a particular channel, the lo-
cal SNR is computed as the ratio of energies between the speech
segment and the preceding non-speech segment of 0.5-sec du-
ration. An average SNR across segments is computed for each
session and channel. The “average over channels” field denotes
the average scores across channels for the single-channel ex-
periment. Note that VAD output was evaluated only on non-
conversational speech, because conversational speech has not
yet been fully transcribed. As noted, the multi-channel ap-
proach outperforms the single-channel ones, yielding satisfying
results. Also, the “best-SNR channel” selection achieves a bet-
ter performance than the “average over channels”, as expected.

5.2. Far-field command recognition

This section demonstrates a baseline system for the recognition
of the 170 commands contained in the 1-minute long sessions
of ATHENA database. These first experiments are designed
to evaluate the task of far-field command recognition focusing
on the challenges that emerge due to the real conditions of the
database as described in the above sections. Thus, in this work,
the task is limited to the recognition of commands that are seg-
mented using the speech boundaries provided by the VAD out-
put for the segment following the keyword. The keyword’s lo-
cation is retrieved using the ground truth transcriptions. More-
over, as the focus is on the acoustic conditions, the language
model of the recognizer is factored out by using a finite state
grammar for the set of commands to be recognized.

The system described here is based on the baseline part of
our previous work [21] on far-field command recognition for
simulated data. Methods such as environmental adaptation of
the acoustic models and channel selection, which led to im-
provements, are also applied here for the case of real data.
The employed recognizer is our HTK [22] based system for
large vocabulary continuous speech recognition in Greek [23],
which consists of tied state triphones trained on MFCCs ex-
tracted from clean speech of “Logotypografia” database [11].
The models are adapted on the development data of each micro-
phone using Maximum Likelihood Linear Regression (MLLR)
and channel selection is based on the SNR of the speech seg-
ment to be recognized. More details on adaptation and channel
selection can be found in [21].

Table 4 presents recognition performance for the 120 ses-

models

[ microphones | clean | clean+MLLR
min 27.49 40.20

% median 55.41 73.25

< | best 62.13 80.12

& [ SNR-best | 69.74 85.67
oracle 82.02 92.69

| close-talk [ 95.47 [ 95.47 ‘

Table 4: Single-microphone command recognition: word ac-
curacy across all condenser microphones. The results are with
MLLR adaptation and SNR based channel selection. The “SNR-
best” microphone per session is the one selected based on the
highest SNR. Performances corresponding to the “oracle” mi-
crophone per session and the “close-talk” microphone are also
presented as upper limits for microphone selection and single-
channel recognition respectively.

LIS

sions of the testing set. The “min”, “median” and “best” micro-
phones depict how the performance over all sessions can vary
among the 20 microphones. The wide ranges of the distribu-
tions which are approximately 35% and 40% for the original
and adapted clean models respectively indicate that the perfor-
mance of each microphone is strongly correlated to the source
positions and the background events and noises. The perfor-
mance of the “SNR-best” microphone per session is better by
almost 7% compared to the “best” microphone over all sessions.
Regarding adaptation, microphone dependent MLLR adapta-
tion leads to an improvement of median accuracy close to 18%
and when adaptation is combined with channel selection the
performance reaches 85.67% which is the best performance of
this baseline system.

6. Conclusions

We have presented ATHENA database, a new real speech
database in Greek for smart home applications. Various back-
ground events and noises overlap with speech data uttered from
different positions, thus approximating a realistic domestic sce-
nario. The employment of multiple audio and video sensors per-
mits both multi-channel and multi-modal processing, rendering
our database suitable for developing and evaluating algorithms
for source localization, speech enhancement, acoustic event de-
tection, voice activity detection and far-field speech recognition.
For the two latter problems, the baseline results presented also
indicate that there is space for improvement and future research.
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