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Abstract

In this paper, we introduce a neural rendering pipeline
for transferring the facial expressions, head pose, and body
movements of one person in a source video to another in a
target video. We apply our method to the challenging case
of Sign Language videos: given a source video of a sign lan-
guage user, we can faithfully transfer the performed manual
(e.g. handshape, palm orientation, movement, location) and
non-manual (e.g. eye gaze, facial expressions, mouth pat-
terns, head, and body movements) signs to a target video
in a photo-realistic manner. Our method can be used for
Sign Language Anonymization, Sign Language Production
(synthesis module), as well as for reenacting other types of
full body activities (dancing, acting performance, exercis-
ing, etc.). We conduct detailed qualitative and quantitative
evaluations and comparisons, which demonstrate the par-
ticularly promising and realistic results that we obtain and
the advantages of our method over existing approaches.

1. Introduction
One of the most challenging open problems of Sign

Language (SL) technologies is the generation of synthetic
SL videos that allow SL users to experience natural and
fluid communication, similar to human-to-human commu-
nication. Prior to the deep learning era, the SL Produc-
tion (SLP) problem was historically tackled using animated
avatars (e.g. VisiCast [10], Tessa [17], eSign [55] and Dicta-
Sign [19]). However, in terms of the avatars’ appearance
and motion, this typically resulted in a low level of realism,
reducing the plausibility and engagement of users with such
technologies.

With the advent of deep learning, novel methods have
been introduced that build upon the latest advances in
photo-realistic neural rendering and synthesize SL videos
with avatars that have the appearance of real persons. Ini-
tial approaches (e.g. [39, 40, 52]) dealt with this problem

Figure 1. Given an input sign language video, our Neural Sign
Reenactor synthesizes a photo-realistic and temporally coherent
video of a target signer imitating the source signer’s body and fa-
cial movements. Please also refer to Suppl. Video [1].

by concatenating isolated signs disregarding the natural co-
articulation between them. In addition, other works (e.g.
[34, 36, 52]) used skeleton pose representations rather than
photo-realistic videos, which was shown to reduce Deaf un-
derstanding [44]. To improve sign comprehension, more
recent approaches go one step further and apply human mo-
tion retargeting techniques to transform the predicted skele-
ton pose sequences into a photo-realistic human actor video.
Human motion retargeting is an emerging topic at the in-
tersection of computer vision and graphics due to its ex-
tensive potential for content creation. Over the last years,
a plethora of deep learning-based methods has been intro-
duced in this field. Some of them require high-fidelity 3D
pose estimation or reconstruction [27–29, 45]. Retarget-
ing motion from 2D inputs has also been studied in sev-
eral works [7, 8, 16, 50, 54]. SignGAN [35] was the first
SLP model to produce photo-realistic continuous SL videos
by conditioning synthesis on the predicted skeletal pose se-
quence and the style image of a reference signer. The clos-
est work to this paper is that of Saunders et al. [37], who
presented a deep learning framework for the generation of
photo-realistic retargeted videos, using novel synthesized
human appearances instead of the original signer appear-
ance. However, their generated frames include artifacts and
the synthesized human appearances are not always convinc-
ing as being real. This work overcomes the aforementioned

1

nancy
Text Box
Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), AI for Content Creation Workshop (AI4CC),Vancouver, Canada, June 2023.�



limitations and synthesizes videos of unprecedented real-
ism that include the upper body movements and facial ex-
pressions of a virtual signer who is almost indistinguishable
from a real person. The motivation of our work is discussed
in further detail in the Suppl. Material. Our contributions
can be summarized as follows: 1) We build upon an effec-
tive combination of two different body trackers for imple-
menting high-fidelity body and face tracking. 2) We pro-
pose a novel scheme for conditioning the neural renderer.
3) We introduce a novel pose retargeting step that enables
our model to work reliably across signers of different gen-
ders and body structures. 4) We conduct detailed qualitative
and quantitative evaluations and user studies to evaluate our
method and compare it with previous human motion trans-
fer methods. The experiments demonstrate the particularly
promising and realistic results that we obtain under chal-
lenging continuous signing scenarios.

2. Methodology
Given an input video Y, our method generates a photo-

realistic and temporally coherent video Ỹ of a target actor
imitating the source actor’s upper body movements and
facial expressions. An overview of the proposed pipeline is
presented in Fig. 2. It consists of four main components:
1) Upper Body Detection: We first extract the skeleton
pose sequences from the SL videos (source and target) us-
ing the MediaPipe (MP) [30] Pose and Holistic modules.
More specifically, we use MP Holistic to track the head and
hands, inferring 520 landmarks in total, while for the torso
we use 9 from the 33 3D landmarks detected by the MP
Pose model (since the Holistic module does not capture the
depth of the pose landmarks). After preprocessing, every
frame is represented by a pose vector that stores the 3D co-
ordinates of K = 529 tracked joints. Hereafter, the joint in
the middle of the shoulders will be referred to as the root
joint. Finally, for every video, we crop every frame with a
fixed-size and fixed-position bounding box that surrounds
all locations of the skeleton’s joints over all frames, leaving
at each side (left/right/top/bottom) a margin whose size is
5% of the corresponding average dimension (width/height).
The cropped frames are then resized to the constant resolu-
tion of 256×256 pixels.
2) Pose Retargeting: We propose a novel pose retargeting
algorithm based on Procrustes Analysis for transferring the
motion from a source character to a target. It is applied sep-
arately for two parts of the upper body, namely the head
and the torso along with the hands, taking into considera-
tion possible differences between their body shapes. For
the head, similarly to [11], we use a subset of n = 94 fa-
cial landmarks from the most rigid area of the face that are
less affected by facial deformations during facial expres-
sions and mouth motions. For the sake of simplicity, we
call these landmarks rigid and all the rest non-rigid. For
every frame and every video (either source or target), we

consider the set of rigid 3D landmarks and perform Pro-
crustes Analysis [42] to rigidly align them to a common
reference face template, which is defined in an anatomical
coordinate system with axes aligned to the axial, coronal
and sagittal planes. For each video (either source or target),
we consider the aligned rigid landmarks and apply geomet-
ric median [43] over all frames to extract a median face
that robustly approximates the subject’s facial geometry. To
account for cross-subject anatomical differences in the fa-
cial shape, we find the non-uniform per-axis scaling S that
optimally registers the median face of the source to the me-
dian face of the target. Note that both median faces live
in the anatomical coordinate system, therefore considering
per-axis scaling only provides a satisfactory approximation.
Finally, for each frame of the source video, we consider all
facial landmarks (rigid and non-rigid) and apply the follow-
ing transformations: T 1) the already estimated Procrustes
transformation from the source domain to the anatomical
coordinate system, T 2) the non-uniform scaling S , T 3) the
inverse of transformation T 1. For the remaining part of
the upper body, we follow a similar procedure to that out-
lined for the head, ending up with two independent skele-
tons: one for the target subject’s head pose and the other
for his/her torso and hands movements. However, since the
final sequence of retargeted skeletons must match the tar-
get actor’s upper body movements, additional translations
are required to combine the two separate skeletons into one
and then adjust its overall position. To achieve this, every
head skeleton in the output sequence is first attached to the
nose joint of the corresponding torso skeleton. As a final
step, a global translation and scaling are applied to the uni-
fied skeleton (head, torso, hands) to align it with the target
subject’s median scale and position at the target video’s do-
main. This helps the neural renderer during reenactment
since it ensures that the retargeted skeleton is as similar to
the skeleton of the training video as possible.

3) Color-coded Conditioning: Having adjusted the motion
of the source person subject to the body shape and location
of the target person, we follow [18, 21] and generate con-
venient for neural rendering semantic representations of the
body pose in the 2D image space, which we term color-
coded body representations, CCBR ∈ R256×256×3. In
more detail, these representations are 8-bit RGB images
where each tracked joint is plotted as a disk of fixed ra-
dius and assigned a unique color based on a novel coloring
scheme of a template skeleton. Please refer to Suppl. Mate-
rial for more details. Moreover, we found out that increas-
ing the number of skeleton joints boosted our reenactment
performance, and therefore we apply bone interpolation as
a data augmentation technique, where both the color and
number of interpolated points along a certain bone are fixed.
For their coloring, we interpolate between the RGB colors
of the tracked joints that define each bone. Similarly to [18],
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Figure 2. (Top) Training: We extract each target signer’s skeleton pose sequence from his/her training video and use it to generate
the corresponding color-coded body representations and eye gaze images, which are concatenated and fed into the neural renderer as
conditional input. (Bottom) Reenactment: We extract the source signer’s skeleton pose sequence from his/her source video and then
transform the estimated landmarks to match the target actor’s body shape and location within each frame. The output frames are generated
by the neural renderer from the corresponding conditional inputs using the previously trained model for the specific target signer.

we also condition our video rendering network to eye gaze
images, E ∈ R256×256×3, which are generated by drawing
the left and right pupils as disks of fixed radius and con-
necting the eyes’ contour landmarks. At each time step t,
the CCBR is concatenated with the corresponding eye gaze
image and fed to the neural renderer as conditional input,
xt = (CCBRt,Et) ∈ R256×256×6.
4) Photo-realistic Synthesis: We build upon the publicly
available video rendering network of Head2Head++ [18]
for producing photo-realistic, temporally coherent videos.
Our neural renderer is person-specific, which indicates that
it is trained separately for every target actor using his/her
reference video as the only training data. During train-
ing, we follow a self-reenactment setting where the source
signer coincides with the target, thus we have access to the
ground truth frames. The network consists of: a) a Gener-
ator G, b) an Image Discriminator DI , and c) a Dynamics
Discriminator DD. In contrast to [18], we also use a body
segmentation model to prevent some artifacts in the back-
ground of the generated images. In terms of the network’s
architecture and training process, we follow Head2Head++.
Please refer to Suppl. Material for more details.

3. Comparison with other methods
We compare our method with two previous human

motion transfer methods, namely Everybody Dance Now
(EDN) [16] and Video-to-Video Synthesis (Vid2Vid) [47].
It is important to note that these approaches have been tested
for reenacting full body activities, but we were unable to
find a method that addresses the same problem as us and
also has source code available. For additional results and
visualizations, please refer to Suppl. Video [1].
Qualitative Results: Fig. 3 displays the qualitative re-
sults of the three methods for a few representative frames of
a male and female source actor signing in Greek SL (GSL).

As can be seen, our method is capable of efficiently transfer-
ring the source person’s head, torso, and hands movements,
facial expressions, and eye gaze to the target subject. It also
works reliably for different body types, generating frames
with respect to the target subject’s body structure. More-
over, it is evident that our approach outperforms the other
two baselines in terms of both realism and pose transfer. In
particular, we synthesize frames that look more realistic and
natural, whereas EDN and Vid2Vid significantly distort the
target’s appearance. Compared to [16] and [47] that even
use a specialized GAN to add realism to a certain region
(e.g. Face GAN in EDN), we also result in a more accurate
transfer of the source actor’s facial expressions and hand-
shapes to the target subjects. In general, our method gen-
erates photo-realistic videos of the target actor signing in
the source actor’s SL even though he/she has never used the
particular SL and has never seen or performed the retargeted
motions, which are determined by the input video.

Quantitative Results: To assess the performance of the
various methods, we conduct a cycle reenactment experi-
ment, where the signing of a source actor is transferred to
a target subject and then back to the same source. Ideally,
the final video at the end of the experiment should be a re-
construction of the input one, so we can measure the per-
pixel differences and calculate performance metrics. In par-
ticular, we use the Average Pixel Distance (APD) metric,
which is computed as the average l2 distance of RGB values
across all pixels and frames, between the ground truth and
final synthesized video. Table 1 shows the APD values for
the three methods over the entire test sequence of our male
and female target actors (1, 000 frames each). As can be
seen, our method outperforms EDN [16] and Vid2Vid [47]
overall. Examples from our cycle reenactment experiments’
results are displayed in Fig. 4. As already mentioned, our
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Figure 3. Visual comparison with EDN [16] and Vid2Vid [47] on different reenactment examples. We illustrate some erroneous results
with red boxes and some successful examples of preserving the original mouth patterns and handshapes with green boxes. Please zoom in
for details and refer to Suppl. Video [1].

Figure 4. Cycle reenactment comparisons with EDN [16] and
Vid2Vid [47]. From left to right: source actor, intermediate-target
actor, original source actor driven by the manipulated target actor
in the column before, and per-pixel differences between the first
and third column.

method synthesizes highly realistic frames, as opposed to
the blurry and substantially distorted images that the other
methods produce.

Ours EDN Vid2Vid

Male 14.40 13.43 10.99
Female 10.55 13.60 108.42
Average 12.48 13.52 59.71

Table 1. Quantitative comparison of the three methods.
User Studies: We designed and implemented [25] two
user studies to evaluate the realism and faithful reenact-
ment of different glosses from human users of GSL. The
first study was a Realism Study which consisted of four
questions, each including a pair of synthesized videos, one
from our method and one from EDN or Vid2Vid, and ask-
ing the user to pick the one that seemed more realistic to
him/her. The study was completed by 21 users and the pref-
erence results are presented in Table 2. As can be seen, the
overwhelming majority of users have rated our method as
more realistic than the other two.

Ours vs. EDN Ours vs. Vid2Vid
Ours EDN Ours Vid2Vid

(39/42) 92.9% (3/42) 7.1% (40/42) 95.2% (2/42) 4.8%

Table 2. Preference results on the realism of each method. Our
method is significantly (p ≈ 10−9 and p ≈ 10−8, binomial test)
more realistic compared to EDN and Vid2Vid.
In our second study, which was a Sign Classification
Study, we evaluated how faithfully each method reenacted

a number of different GSL glosses. For that, we carefully
selected based on the guidance of an SL expert 14 glosses
and reenacted them using our method, EDN, and Vid2Vid.
Then, we showed each user 12 glosses (3 for each method,
plus 3 for the source videos) and asked them which gloss
was being signed, from a list of 7 choices (including “None
of the above”). A total of 23 users completed this study, and
the results are shown in Table 3, where we can see that all
methods achieve high accuracy regardless of their realism,
in the cost however of the user experience. The small dis-
crepancies between the different methods are statistically
insignificant and can be attributed to: a) the random sam-
pling from the question bank leading to a slightly different
distribution of glosses between the various methods and b)
the fact that some participants might not have identified the
specific signing style of the source actor for some glosses,
leading them to mistakenly select “None of the above” if
the source video had a different signing style from the one
they are familiar with.

Ours EDN Vid2Vid Real video
(53/69) 76.8% (55/69) 79.7% (53/69) 76.8% (51/69) 73.9%

Table 3. Classification accuracy of each method on different GSL
glosses. There is no significant difference between all methods
(p=1 for all pairwise proportion tests with Bonferroni correction).

4. Conclusions
We proposed Neural Sign Reenactor, a novel neural ren-

dering pipeline for transferring the body movements, head
pose, and facial expressions of a source actor in a driving
video to a target subject in a reference video. We have ap-
plied our approach to the challenging case of SL videos.
Our extensive qualitative and quantitative evaluations have
demonstrated that our method faithfully transfers the source
signer’s manual and non-manual signs to a target signer and
works reliably across signers of different genders and body
structures. Compared to earlier methods for human mo-
tion retargeting that dramatically alter the target subject’s
appearance, it produces highly realistic and natural-looking
results. We believe that our work paves the way for the de-
velopment of novel SLP systems that go beyond computer-
generated avatars and produce photo-realistic SL videos in-
creasing the appeal and engagement of the users.
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Supplementary Material

A. Motivation

In this section, we provide a more detailed discussion of
the motivation of our work.

Tens of millions of Deaf worldwide use Sign Language
(SL) as their native language [9, 13, 20, 49]. At the same
time, most of them have limited reading and writing skills in
the spoken language, which for them is a foreign language
with a fundamentally different grammatical structure. Be-
cause of that, the Deaf are still disadvantaged in many con-
texts of their daily life, such as social relations, education,
work, usage of computers, and the Internet. SL technologies
can be a valuable ally of the Deaf community in their strug-
gle to overcome these barriers, by building systems that fa-
cilitate their communication with the rest population [32].
This has been an active research area during the last three
decades, but it was only in the last years that it started ma-
turing, thanks to the introduction of novel deep learning
methods that yielded highly robust and promising results on
the challenging tasks of Sign Language Recognition (SLR)
[15, 23, 24, 33, 41, 53], Translation (SLT) [14, 46, 51] and
Production (SLP) [34, 36, 40].

Deep learning approaches require the availability of
large-scale SL corpora which is very limited due to partici-
pants’ concerns over privacy and video misuse [12]. There-
fore, there is an urge to increase the amount of publicly
available data and thereby further improve the performance
of SL systems. In addition, special attention must be paid
to cases of videos of SL datasets that refer to third-party
personal information (e.g. names or personal data of other
people). At the same time, one of the important barriers
that the Deaf are currently facing is related to their ability
for online participation, especially in cases where the op-
tion of anonymity is a valuable tool for constructing a safe
space to discuss sensitive, controversial or personal topics
in social media or other online platforms [26]: In contrast
to the users of spoken languages who can easily commu-
nicate anonymously by just typing a text, the SL users can
only communicate in their native language by using a cam-
era capturing their hands, body, and face during signing,
which reveals their identity. Since all these body parts con-
vey cues that are important for SL communication [9], it
becomes evident that there is no easy way to conceal the
signers’ identity through simple video editing approaches.

The aforementioned problems have recently attracted the
interest of the research community, resulting in some spe-
cialized systems that seek to anonymize SL videos. This is
a particularly difficult task due to the challenges in captur-
ing, representing, and retargeting the human motions during
signing, for example: extremely fast motion and articula-
tion of the hands, complex interactions between the differ-
ent body parts (e.g. between the two hands or between each

of the hands and the face), large variability and complexity
of hand configurations, and inter-signer variations due to
anatomical differences. Our method can conceal the iden-
tity of the original signers by reproducing their videos using
other actors who have given their informed consent for their
recordings to be shared publicly and therefore can support
the Deaf in increasing their online participation.

Regarding the applications of our framework, it can also
be beneficial for the following purposes: 1) It can be read-
ily used as the backend module in SLP systems, offering
the option to have virtual interpreters with the appearance
of real persons, going well beyond the traditional graphics-
generated avatars. 2) Although it is developed and tested
on the especially challenging problem of SL reenactment, it
can be readily applied to other types of full body activities
(dancing, exercising, etc.).

B. Color-coded Conditioning

In this section, we provide more details about our novel
color-coding scheme, which is used in the Color-coded
Conditioning module of our pipeline for generating the
color-coded body representations and eye gaze images.

Regarding the CCBRs, the joints are colored using the
following scheme, which assigns each joint a unique color:
The Red and Green channels are given values directly from
the x and y coordinates, respectively, of a template body’s
joints in the 2D image space, after being normalized be-
tween 0 and 1. Similarly, for the coloring of the face, we are
based on its UV visualization and 2D texture coordinates
by MediaPipe Face Mesh [4]. The Blue channel has prede-
fined and independent of the landmarks values for the torso,
left hand, right hand, and face (see Fig. 5). Because we give
each joint a unique, fixed color regardless of the signer, this
indicates that all of them will have the exact same color in
any such representation. This is why these representations
are also referred to as semantic and they have generally been
shown to help neural renderers learn the mapping to the out-
put images since they are both in the RGB space.

Figure 5. Visualization of our color-coding scheme for the torso,
hands, and face.

As also mentioned in the main paper, in addition to the
CCBRs, we condition our video rendering network to eye
gaze images, which are generated by drawing the left and
right pupils as disks of fixed radius and connecting the eyes’
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contour landmarks. For their coloring, we follow [18] and
tint the contour landmarks white and the pupils red. An
illustrative example of all types of conditional inputs that
we feed our neural renderer with is provided in Fig. 6.

Figure 6. Examples of conditional inputs generation for some rep-
resentative frames of the target actors’ training videos. For each
section, we illustrate from left to right: input frame, color-coded
body representation, and eye gaze image. Please zoom in for de-
tails and refer to Suppl. Video [1].

C. Photo-realistic Synthesis
As stated in the main paper, our video rendering net-

work’s components and training objectives are identical to
Head2Head++ [18], thus they are briefly described below.

• Generator G: Given the conditional inputs xt−2:t of
the current and the two preceding frames as well as the
two previously generated frames ỹt−2:t−1, the genera-
tor renders the frame of the output video at time step
t:

ỹt = G(xt−2:t, ỹt−2:t−1) (1)

The output video Ỹ1:T shows the target subject per-
forming the source signer’s manual and non-manual
signs, as determined by the conditional inputs se-
quence X1:T . The Generator consists of two identical
encoders, operating in parallel, as well as a decoder.
The first encoder receives the conditional inputs xt−2:t,
while the second is given the two previously generated
frames ỹt−2:t−1. The two extracted feature maps are
first added and then passed through the decoder, which
brings the output ỹt in a normalised [−1,+1] range,
using a tanh activation function.

• Image Discriminator DI : The image discriminator is
used during training and aims at telling real and syn-
thesized frames apart. At time step t, it receives the
real pair (xt, yt) and the fake one (xt, ỹt).

• Dynamics Discriminator DD: The dynamics dis-
criminator is used during training to enforce the tem-
poral coherence of the output video. It receives a
set of three consecutive real frames yt:t+2 or fake

frames ỹt:t+2 along with the optical flow wt:t+1,
computed from the target’s subject training video
Y1:T , and should learn to distinguish the fake data
(wt:t+1, ỹt:t+2) from real data (wt:t+1, yt:t+2). In this
way, the generator tries to synthesize fake frames with
the same flow/dynamics as the corresponding real ones
in order to fool the discriminator.

• Objective function: The total objective for G consists
of three terms:

LG = LG
adv + λvggL

G
vgg + λfeatL

G
feat (2)

with λvgg = λfeat = 10 as in [18].
The first loss corresponds to the adversarial objective
of the generator and is defined as in LSGAN [31] using
the 0-1 binary coding scheme (b = c = 1 and a = 0):

LG
adv =

1

2
Et[(DI(xt, ỹt)− 1)2]

+
1

2
Et[(DD(wt:t+1, ỹt:t+2)− 1)2] (3)

The second term is the VGG loss, which is computed
as in [48] and [47], by using the VGG network [38]
to extract feature representations in different layers for
both the ground truth yt and the synthesized frame ỹt
and then calculating their euclidean distance.
The final loss in the generator’s objective function is
the overall feature matching loss which is equal to:

LG
feat = LG−DI

feat + LG−DD

feat (4)

The first sub-loss, LG−DI

feat , is computed by extracting
the activations on an intermediate layer of the image
discriminator DI for a fake frame ỹt and the corre-
sponding ground truth yt and then computing their l2
squared distance. Similarly, LG−DD

feat is computed us-
ing the Dynamics Discriminator DD instead of DI .

D. Experimental Setup
In this section, we describe the experimental setup of our

method including the collected datasets and some imple-
mentation details.

D.1. Datasets

We used three datasets for our experiments, which are
presented below:

1) Target Actors dataset: We selected 2 publicly
available YouTube videos [5] for training our person-
specific neural renderer. More specifically, we chose two
individuals as our target subjects, a male and a female with
different body types, signing in American Sign Language
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Figure 7. Visualization of intermediate and retargeted results for some representative frames of a female and male source actor from the
Continuous Signing dataset. From left to right: input frame, retargeted skeleton, conditional inputs, and output frame.

(ASL) and Quebec Sign Language (QSL), respectively.
Each training video was at 30 fps and had approximately
10 minutes duration and 1280× 720 spatial resolution. The
frames of each subject were split into a training and a test
set using a 90:10 split. It’s crucial that the training videos
show the target actors performing a wide range of upper
body movements and facial expressions.

2) Source Actors dataset: We collected a small dataset
of 14 source videos from an online Greek Sign Language
(GSL) dictionary [6], which we used to assess the perfor-
mance of the various methods in our Sign Classification
Study. Six individuals, four men and two women, were
included in our source footage and each of them performed
a distinct GSL sign that lasted from one to three seconds.
Each actor’s frames from this dataset were kept as test data
and used for our reenactment experiments. In contrast to
the training videos, we only require decent pose detection
on the source footage.

3) Continuous Signing dataset: We chose 4 publicly
available videos [2, 3] of two male and two female actors
signing continuously for ≈30 seconds each. Every video in
this dataset was used as source footage and the performed
signs were retargeted at the opposite gender’s target subject,
resulting in a total of four synthesized videos. These videos
were included in our Realism Study.

We’d like to clarify that our neural renderer is trained
separately for every target actor and the only training data is
his/her training video. Therefore, each trained model at the
end is dedicated to a specific target subject from the train-
ing dataset, which is the Target Actors dataset. There is no
need to train the neural renderer using the videos from the
remaining two datasets, i.e., Source Actors and Continuous
Signing, because they only serve as source videos in our
experiments.

D.2. Implementation Details

Our person-specific video rendering network requires a
few minutes of footage for each target actor. In particu-
lar, for every subject in our Target Actors dataset, we used
a ≈10-minute video and the training task (100 epochs)
was completed in approximately 4 days on two NVIDIA
GeForce GTX 1080 Ti GPUs. The networks were opti-
mized using Adam [22] with an initial learning rate η =
2 · 10−4, β1 = 0.5 and β2 = 0.999.

E. Additional Visualizations
We show in Fig. 7 a more detailed view of our method’s

intermediate steps in a reenactment setting, including pose
retargeting and color-coded conditioning. Also, Fig 8 pro-
vides additional qualitative results of our method in compar-
ison with EDN [16] and Vid2Vid [47] in the form of static
frames for two actors of our Continuous Signing dataset.

Figure 8. Visual comparison with EDN [16] and Vid2Vid [47]
on different reenactment examples. We illustrate some erroneous
results with red boxes and some successful examples of preserv-
ing the original mouth patterns and handshapes with green boxes.
Please zoom in for details and refer to Suppl. Video [1].
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As reported in the main paper, our method performs bet-
ter in preserving the source signer’s facial expressions and
handshapes without distorting the characteristics of the spe-
cific identity. Lastly, in Fig. 9, we extend the qualitative
results of cycle reenactment presented in the main paper by
providing more comparisons of the various approaches in
the Female → Male → Female cycle reenactment ex-
periment.

Figure 9. Cycle reenactment comparisons with EDN [16] and
Vid2Vid [47]. From left to right: source actor, intermediate-target
actor, original source actor driven by the manipulated target actor
in the column before, and per-pixel differences between the first
and third column.
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