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ABSTRACT
Analyzing the structure of music signals at multiple time scales is
of importance both for modeling music signals and their automatic
computer-based recognition. In this paper we propose the multi-
scale fractal dimension profile as a descriptor useful to quantify
the multiscale complexity of the music waveform. We have experi-
mentally found that this descriptor can discriminate several aspects
among different music instruments. We compare the descriptive-
ness of our features against that of Mel frequency cepstral coef-
ficients (MFCCs) using both static and dynamic classifiers, such
as Gaussian mixture models (GMMs) and hidden Markov models
(HMMs). The methods and features proposed in this paper are
promising for music signal analysis and of direct applicability in
large-scale music classification tasks.

1. INTRODUCTION

The analysis of musical content and information is of importance in
many different contexts and applications, such as music retrieval,
automatic music transcription, indexing of multimedia databases
and other. These applications require solutions to information pro-
cessing problems such as automatic musical instrument classifica-
tion and genre classification [1, 15, 18]. Toward this goal, it is re-
quired to develop efficient digital signal processing techniques for
analyzing the structure of music signals and extracting relevant fea-
tures. Our paper proposes such methods and algorithms to quantify
fractal-like structures in music signals at multiple time scales.

Previous analysis of musical structure has revealed evidence of
both fractal aspects and self-similarity properties in musical instru-
ment tones and genres. Voss and Clark [19] were the first to in-
vestigate 1/ f β aspects in music and speech, using the estimation
of power spectra for slowly varying quantities such as loudness and
frequency. In [2] the fractal and multifractal aspects of different
genres of music were analyzed, using the Variation and the ANAM
method and it was proposed that the fractal dimension could help in
discrimination of different genres of music. Su and Wu [16] applied
Hurst exponent and Fourier spectral analysis in sequences of musi-
cal notes, noticing that they share similar fractal properties with the
fractional Brownian motion. Aspects of fractal geometry were also
studied in [8], where observations of self-similarity properties re-
garding the acoustic frequency of the signals were made.

None the less, over the years many different feature schemes
have been proposed and pattern recognition algorithms have been
employed in order to clarify the complex issue of modeling mu-
sical instruments. Such feature schemes employ perception-based
features, temporal, spectral and timbral features.

Cepstral coefficients were used and have been favored a long
way back, not only in speech processing but also in recognition
tasks regarding musical instruments, as in Brown et al. [3] where
cepstral coefficients, constant Q transform, spectral centroid and au-
tocorrelation coefficients were used on identifying four instruments
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of the woodwind family. Eronen [4] compared the performance of
several features, among them MFCCs, spectral and temporal fea-
tures such as amplitude envelope and spectral centroids for instru-
ment recognition, using the Karhunen-Loeve transform for decorre-
lation of the features and k-nearest neighbor (k-NN) for classifica-
tion. The results favored the MFCC features, which gave the best
accuracy in instrument family classification. Experiments on real
instrument recordings [13] also favored the MFCCs over Harmonic
Representations.

Previous work has used classifiers that are not necessarily effec-
tive in modeling the temporal evolution of the features. For instance
the Gaussian mixture models (GMMs) are capable of parameteriz-
ing the distribution of observations, although, they could not model
the dynamic evolution of the features within a note as for example
hidden Markov models (HMMs) could do. In [5] the feature dis-
tribution of MFCCs and delta-MFCCs was modeled with HMMs
while in [15] Variable Duration HMMs were used for classification
of musical patterns.

In our work, the analysis concerns isolated musical instrument
tones. The signals are derived from UIOWA database with musical
instrument samples [14]. We propose new algorithms and features,
based on multiscale fractal exponents, which are validated by both
static and dynamic classification algorithms, and we compare their
descriptiveness with a standard feature set of MFCCs which have
been found to be well-performing in musical instrument recogni-
tion. For the recognition evaluation, we choose Markov models and
report on promising experimental results.

2. MULTISCALE FRACTAL EXPONENTS

Most features extracted from music signals for classification pur-
poses are inspired by similar work in speech. Many speech sounds
contain some amounts of turbulence at some time scales. Mandel-
brot [9] conjectured that multiscale structures in turbulence can be
modeled using fractals. This motivated Maragos [10] to use the
short-time fractal dimension of speech sounds as a feature to ap-
proximately quantify the degree of turbulence in them. He also de-
veloped in [10, 11] an efficient algorithm to measure it using non-
linear multiscale morphological filters that can create geometrical
covers around the graph of the speech signal, whose fractal dimen-
sion D can then be found by

D = lim
s→0

log[Area of dilated graph by disks of radius s/s2]

log(1/s)
(1)

D is between 1 and 2 for one-dimensional signals; the larger D is,
the larger the amount of geometrical fragmentation of the signal
graph. D is estimated at the smallest possible discretized time scale
as a short-time feature for purposes of audio signal segmentation
and event detection.

In practice, real-world signals do not have the same structure
over all scales; hence D is computed by fitting a line to the log-
log data of (1) over a small scale window that can move along the
s axis and thus create a profile of local multiscale fractal dimen-
sions (MFDs) D(s, t) at each time location t of the short speech
analysis frame. The function D(s, t) can also be called a fractogram
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Averaged MFDs (Standard Deviation)
Time Scale (ms) st = 1/44 st = 0.5 st = 1 st = 1.5 st = 2 st = 2.5

Double Bass 1.11 (0.050) 1.21 (0.037) 1.31 (0.04) 1.39 (0.04) 1.52 (0.039) 1.61 (0.038)
Bassoon 1.04 (0.004) 1.47 (0.006) 1.75 (0.070) 1.78 (0.08) 1.80 (0.090) 1.83 (0.010)

Cello 1.12 (0.017) 1.47 (0.066) 1.63 (0.076) 1.73 (0.077) 1.80 (0.067) 1.85 (0.058)
Bb Clarinet 1.14 (0.035) 1.69 (0.033) 1.84 (0.035) 1.90 (0.027) 1.95 (0.021) 1.96 (0.017)

Flute 1.13 (0.018) 1.77 (0.036) 1.90 (0.037) 1.95 (0.021) 1.98 (0.010) 1.98 (0.010)
French Horn 1.06 (0.002) 1.38 (0.006) 1.49 (0.009) 1.54 (0.019) 1.59 (0.022) 1.64 (0.024)

Tuba 1.10 (0.026) 1.35 (0.013) 1.40 (0.120) 1.36 (0.015) 1.38 (0.017) 1.42 (0.022)

Table 1: Averaged MFDs and Standard Deviation for time scale points of the MFD profiles at st = 1/44,0.5,1,1.5,2,2.5 ms.

and can provide information about the degree of turbulence inher-
ent in short-time speech sounds at multiple scales. In general, the
short-time fractal dimension at the smallest discrete scale (s = 1)
can provide some discrimination among various classes of sounds.
At higher scales, the MFD profile can also offer additional informa-
tion that helps the discrimination among sounds. Actually, there is
strong evidence from [12] that using such MFDs as features reduces
the error in speech recognizers. In this paper, we have used MFDs
as an efficient tool to analyze short-time music signal structure at
multiple time scales. The results are quite interesting as we discuss
next by also showing examples of MFDs for music signals from
various instruments.

3. MULTISCALE FRACTAL DIMENSION FOR TIMBRE
ANALYSIS

3.1 Timbre characteristics
One of the main relations among sound attributes is the determi-
nation of timbre by the waveform. This relation is one of the most
difficult to describe (in contrast to i.e., loudness or pitch), since both
timbre and waveform are two complex quantities. For people and
especially trained musicians is quite easy to recognize which instru-
ment is heard, but this is not the case if the part of the note allowed
to hear is the steady middle state only. Instrument recognition de-
pends a great deal on hearing the transients of a tone, meaning the
beginning (attack) and the ending (release) [7]. It is namely vital to
hear even the scrape of the bow on a violin string, or the squeak of
a clarinet reed or even the first puff of the air released by a trumpet
player.

According to Hall [7], the duration of those transients vary not
only among instruments but between higher and lower octave notes
too. Some typical attack durations he reported are from 20ms or
less for an oboe, 30-40 ms for clarinet or trumpet, to 70-90ms for
flute or violin. Additionally, notes in the octaves above middle C
(designated as C4 at ca. 261 Hz), have periods of 2 to 4 ms which
means several dozen vibrations periods for the steady state to be
established. On the other hand, in [6] is reported that the duration of
the attack transients is typically 50±20 ms, independent of the note
or the instrument. Because of such evidence about the differences
of the transients of the tones, we conclude that the whole duration
of a tone is important and gives vital clues for its identity. In the
following sections our main hypothesis is that the multiscale fractal
dimension can help in discrimination of timbre by discriminating
not only the steady state of the tones but the attacks too.
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Figure 1: Onset, steady state and release for Bb Clarinet A3, Fs =
44.1Hz

Musical instruments include different instrument families. The
four main categories or families are: strings (e.g. violin, upright

bass), woodwind (e.g. clarinet, bassoon), brass (e.g. French horn,
tuba) and percussion (e.g. piano). In many applications, classifi-
cation down to the level of instruments families could be sufficient
although in our approach we focus more on the distinction of in-
dividual instruments, pointing out similarities that are observed for
the families.

3.2 MFDs on steady state
We base our analysis not only on the distinction of different instru-
ments classes, but on the exploration of the differences between the
attack and steady state of the tones too. We aim to show that the
multiscale fractal dimension distribution of the attacks of different
instrument tones differs sufficiently in order to add adequate infor-
mation in a recognition task.

For the analysis of the steady state we used the whole range
of tones for the instruments Double Bass, Bassoon, Bb Clarinet,
Cello, Flute, French Horn and Tuba. Specifically, we calculated the
short-time MFDs of the tones using 30-ms segments from the whole
duration of the tones. Although, regarding the state-specific analy-
sis the appropriate segments have been processed. The signals are
sampled at 44.1 kHz, and their corresponding profiles of MFD[s]
are analyzed for discrete scales s = 1, ...,133. This range of s corre-
sponds to time scales st from 1/(44.1) to 3 ms. Similar results were
gained for analysis of 50-ms windows.

In Fig. 2, the mean and standard deviation (shown as error-
bars) of the MFDs is computed for the note A3 for the analyzed in-
struments, except Flute which is shown for B3 instead. Regarding
the MFDs of each instrument tone, the profile presented is typical
for the following octaves of every instrument: Double Bass for the
whole range, Bassoon for octave 3-5, Bb Clarinet for octave 3-4,
Cello for octave 2-4, Flute for octave 3-4 and Horn for octave 3-
5. For the lower octaves of Bassoon, Tuba and Horn (i.e., octaves
1-2) the MFD profiles as shown in Fig. 3 shows some similarities.
They get to their higher value D at about st = 0.5 and then decreases
to an intermediate value. Still, they exhibit some important differ-
ences; for Bassoon the maximum D is at about 1.8, while Tuba and
Horn share the values of ca. D = 1.5, thus again Tuba tones show
more important deviations of D inside each tone than Horn. About
the higher octaves of Bb Clarinet and Flute (octaves 5-6) another
tendency was observed, see Fig. 3. The MFD profiles for those
ranges gains its higher value around D = 1.9 at very small time
scales, ca. st = 0.5, and beholds this value for the whole profile.
The analysis of Double Bass and Cello have shown more uniform
MFD profiles with an increased deviation of D across frames for
lower range tones. Thus, apart from these two cases, for the rest of
the analyzed instruments, certain differences are observed between
their lower and higher octaves, still with unvarying characteristics
across the specific octave tones as discussed in detail before. Table
1 presents the averaged values of the instrument related MFDs, for
the steady state averaged over the whole range of each instrument
(and dynamic range forte), for specific time scales st assumed nodal
points after the analysis. In the brackets, the standard deviation is
calculated to demonstrate the variability observed in each case. For
those measurements we did not take into account the variability of
MFDs through the different octaves as discussed above. The most
homogeneous with less variability MFD profiles are noted for Horn
and Tuba.
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Figure 2: Mean and standard deviation (error bars) of the multiscale fractal dimension distribution of the same note A3 for the instruments
Double Bass, Bassoon, Bb Clarinet (first row) and Cello, Horn and Tuba, and the note B3 for Flute (second row) (for 30-ms analysis window,
updated every 15 ms).
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Figure 3: Mean and standard deviation (error bars) of the multiscale fractal dimension distribution for the note F2 for the instruments Horn,
Bassoon and Tuba (first row) and the note C5 for Flute and Bb Clarinet (second row). The MFD profiles shown are typical for the lower
octaves of the three first row instruments, respectively for the higher octaves of the two second row instruments, (30-ms analysis window,
updated every 15 ms).

Analysis of the multiscale fractal dimension on the steady state
of the instrument’s tones reinforce the claims that the MFDs con-
veys information that is instrument related. Even for the cases of
instruments that belong to the same family or the same frequency
range and show similar tendencies, specific differences can be ob-
served regarding either the dimension D, the scale st , or the devi-
ation of D across scales. Additionally, we notice a dependence on
the acoustical frequency of the sound and the MFDs, which will be

further explained in 3.4.

3.3 MFDs for attack detection
For the analysis of the onset the same configuration was used as be-
fore and the process took place after considerations of the individu-
alities presented on the attack of each instrument, e.g. the duration.
The MFD profiles for the attack present similar tendencies as the
steady state of the tones. Although, they have higher D for small

Proceedings 19th European Signal Processing Conference (EUSIPCO-2011), Barcelona, Spain, Aug.29-Sep.2, 2011. pp. 684-688 686



scales st , and individually for each tone they present more fragmen-
tation in comparison to the steady state, which we assume depends
on the fragmentation of the waveform. Figure 4 shows the average
MFDs for the onset of the whole range of the analyzed instruments
(dynamic range forte). In this case, we notice the increased value of
D(s = 1) and a quite clear distinction of the D among some of the
analyzed instruments. Thus, the analysis of the attack have shown
certain differences both between attack and steady state of the same
tone, and among the instruments too.
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Figure 4: MFDs estimated for the 7 analyzed instruments onsets
(attacks), averaged over the whole range (using 30-ms analysis win-
dows). (Please see color version for better visibility.)

3.4 MFD variability for each instrument
Another important observation concerns the analysis of individual
notes of the same instrument over one octave, Fig. 5. The notes
used for the analysis (C4-B4) from Bb Clarinet, range between ca.
260-493Hz. The MFDs confirm the preceding evidence of our study
that there is a dependence on the acoustical frequency of the sound
and the multiscale fractal profile that increases rapidly for higher
frequency sounds (i.e., higher D for smaller scales st ). Still, the in-
strument’s specific MFD profile beholds the shape observed for the
specific octave ranges as discussed in 3.2. The same phenomenon
with instrument specific variabilities has been observed for all an-
alyzed instruments. These last observations give us evidence that
the MFDs could be useful not only for the discrimination of differ-
ent instrument classes but possibly for estimation of the acoustical
frequency of the tone too.

4. RECOGNITION EXPERIMENTS

In order to evaluate and confirm the results of our previous anal-
ysis, we continue with recognition experiments. The experiments
discussed in this section were carried out using 1331 notes from 7
different instruments, which are Double Bass, Bassoon, Cello, Bb
Clarinet, Flute, Horn and Tuba. The collection consists of the in-
strument’s full range and cover the dynamic range from piano to
forte. Five different cases of feature sets or feature set combina-
tions were evaluated, using static (GMMs) and dynamic (HMMs)
classifiers with diverse combinations of N states and/or M mixtures.
Dimensionality reduction of the MFD feature space was conducted
using PCA, in order to decorrelate the data, and to obtain the op-
timal number of features that accounts for the maximal variance.
In this case the principal components proved to be six. The per-
formance of the selected features was compared with a standard
feature set of 13 MFCCs, which are chosen both for their good
performance and the acceptance they have gained for instrument
recognition tasks. The analysis of the MFCCs is performed in 30
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Figure 5: MFD for steady state of Bb Clarinet notes, over one oc-
tave for one 30ms analysis window. (Please see color version for
better visibility)

ms windowed frames with a 15 ms overlap, and with 24 triangu-
lar bandpass filters. For the implementation of the Markov models
the HTK [17] HMM-recognition system was used. In all cases, the
train sets were randomly selected to be the 80% of the available
tones, and the results presented are after a five-fold cross validation.

4.1 Experimental configuration
In our experiments we evaluate the performance of fixed sets of
features, which are listed in Table 2. The first set of experiments,

1 6 MFDs after PCA decorelation (MFDPC)
2 13 MFDs logarithmicaly sampled (MFDLG)
3 13 MFCCs
4 6 MFDPCs + 13 MFCCs
5 13 MFDLGs + 13 MFCCs

Table 2: List of feature sets.

employs Gaussian Mixture Models (GMMs) up to 3 mixtures. A
GMM is a probability density function represented as a weighted
sum of Gaussian component densities, parameterized by mean vec-
tors, covariance matrices and mixture weights from all component
densities. In the second set of experiments we aimed to model the
temporal characteristics of the signals using Hidden Markov Mod-
els. HMMs are dynamic models which in that case allows the mod-
eling of the structure of a musical tone. They are statistical pro-
cesses used to model a series of unobserved states which produce
an output with a specific probability for each state. Taking into con-
sideration the structure of the instruments’ tones, as discussed in
the previous sections, we adopt a left-right topology for the model-
ing. Each subset of features was trained in a different stream and
then fused employing different stream weights for experimentation
purposes, by EM estimation using the Viterbi algorithm. The ex-
perimental methods consisted also of the variation of the number of
states N [3-9] and the number of mixtures M [1-3].

4.2 Results
The obtained accuracy scores of the recognition results for the dif-
ferent cases of feature sets were quite promising and the more rep-
resentative are reported in Table 3.

The combination of the proposed features with the MFCCs
proved out to yield slightly better results than the MFCCs alone
for most cases (even those not presented here), although the MFDs
alone show lower discriminability. Additionally, we see that HMMs
achieved greater results, since they imply the temporal information
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Mean Accuracy
Feature Set Weights GMM HMM

MFD-MFCC M = 3 N = 3 N = 5
M = 3 M = 3

MFDPC-MFCC
0.2 - 0.8 86.01 93.01 94.68
0.5 - 1 85.78 92.31 94.22

0.5 - 0.5 86.01 92.78 94.68

MFDLG-MFCC
0.2 - 0.8 85.25 92.93 94.98
0.5 - 1 85.78 93.16 94.91

0.5 - 0.5 85.40 92.47 94.45
MFCC - 87.07 92.93 94.40

MFDPC - 69.35 75.59 76.51
MFDLG - 64.95 71.79 72.11

Table 3: Recognition Results, where N denotes the number of states
and M the number of mixtures. For feature set specific information,
see Table 2.

of the tones too. The disadvantage of the MFDs for those exper-
iments is the low discriminability between Bb Clarinet and Flute
which yield the lower results among the investigated instruments
(ca 55% recognition each). Our analysis, has already shown the
similarities of their MFD profiles for the higher frequency tones,
and this is possibly the consequence of the low accuracy rates. We
calculate the median average for this reason which for the best case
of MFDPC (N = 5, M = 3) adjusts to 79.66% recognition rate and
for the best case of MFDLG (N = 5, M = 3) to 75.87%. Never-
theless, we have to point out that Tuba, Bassoon and Double Bass
were among the best recognized instruments regarding the MFDs,
in accordance to our expectancies after the analysis.

For the combined feature set case, we can see in Table 4 the
results obtained by HMMs (N = 5,M = 3), for each individual in-
strument class in comparison with the MFCCs. We observe that the
combined feature sets enhance the discriminability of the Bassoon,
Bb Clarinet and Horn while they decrease the accuracy observed
by the MFCCs for Cello and Flute. Finally, Double Bass and Tuba
beholds the already good performance of the MFCCs.

Mean Accuracy
Instrument MFDPC MFDLG MFCCClasses + MFCC + MFCC

Double Bass 100 100 100
Bassoon 93.32 95.84 88.52

Bb Clarinet 78.54 77.07 72.25
Cello 93.64 93.94 96.73
Horn 97.9 100 92.08
Tuba 100 100 100
Flute 96.02 95.58 97.25

Table 4: Recognition Results per instrument class for the two best
combined feature sets in comparison with MFCCs.

5. CONCLUSION

In this study, we propose a multiscale fractal method for structure
analysis of musical instrument tones motivated from similar suc-
cessful ideas used for speech recognition tasks. Based on our ex-
perimental hypothesis and recognition evaluation there is strong ev-
idence that musical instruments has structure and properties that
could be emphasized by the use of multiscale fractal methods
(MFDs) as an analysis tool of their characteristics. We have shown
that they can provide information about different properties of the
notes and the instruments, while the recognition experiments have
shown to be promising in most cases if not winning.

In our ongoing research on music signal processing we are also
working to enhance these aspects of multiscale fractal methods us-
ing different feature parameterizations and modeling techniques,
such as parameterization of the actual shape of the MFD profile
and decision level fusion. Additional performance improvements

could be achieved with a more careful choice of these parameters.
The relation of such ideas with the physics of the instruments is also
in our future intensions to explore. Furthermore, we are inquiring
the usage of MFDs for genre recognition. Our initial experiments
gives evidence that MFDs could prove promising. Some first obser-
vations focuses on the fact that D(s = 1) estimated at the smallest
time scale, differs significantly for some genres, besides the varia-
tions presented in the genre related MFD profiles.
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