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Morphological  Skeleton  Representation  and  Coding 
of Binary  Images 

PETROS A. MARAGOS, MEMBER, IEEE, AND RONALD W. SCHAFER, FEILOW, IEEE 

Abstract-This paper  presents  the  results  of  a  study  on  the  use of 
morphological set operations to represent  and  encode  a  discrete  binary 
image by parts of its  skeleton,  a  thinned  version of the  image  contain- 
ing complete  information  about its shape  and  size.  Using  morphologi- 
cal  erosions  and  openings,  a  finite  image  can  be  uniquely  decomposed 
into  a  finite  number  of  skeleton  subsets  and  then  the  image  can be ex- 
actly  reconstructed by dilating  the  skeleton  subsets.  The  morphological 
skeleton  is  shown to unify  many  previous  approaches  to  skeletoniza- 
tion,  and  some of its theoretical  properties  are  investigated.  Fast  al- 
gorithms  that  reduce  the  original  qnadratic  complexity  to  linear  are 
developed  for  skeleton  decomposition  and  reconstruction.  Partial  re- 
constructions  of  the  image  are  quantified  through  the  omission  of  sub- 
sets  of  skeleton  points.  The  concepts of a  globally  and  locally  minimal 
skeleton  are  introduced  and  fast  algorithms  are  developed  for  obtain- 
ing minimal  skeletons. 

For  images  containing  blobs  and  large  areas,  the  skeleton  subsets 
are  much  thinner  than  the  original  image.  Therefore,  encoding  of  the 
skeleton  information  results  in loner information  rates  than  optimum 
block-Huffman  or  optimum  runlength-Huffman  coding  of  the  original 
image.  The  highest  level  of  image  compression was obtained by using 
Elias  coding  of  the  skeleton. 

I. INTRODUCTION 

A UTOREGRESSIVE  modeling  and  orthogonal  trans- 
forms  such  as  Fourier  or Karhunen-Loi3ve trans- 

forms  have  provided  the  theoretical  basis  for  most of the 
research  in  digital  image  coding  during  the past decade. 
Both of these  approaches  exploit  primarily  the  algebraic 
structure  of  signals.  However, in the  case of binary image 
signals,  which are mainly  perceived as geometrical  pat- 
terns,  there  is a need for representations  that  emphasize 
geometric  rather  than  algebraic  structure.  One  such  geo- 
metric  representation  is  the skeleton. In  general,  the term 
skeleton  has  been  used  to  describe a line-thinned carica- 
ture of the  binary  image  which  summarizes  its  shape  and 
conveys  information  about its size,  orientation,  and  con- 
nectivity. The skeleton has already  been  applied in bio- 
logical  shape  description [1]-[3], pattern  recognition  [3], 
[9], [25],  image  coding [7 ] ,  [18],  [22],  quantitative 
metallography [ 131, [ 141, and  automated  industrial in- 
spection 11.51, 

The skeleton  of a continuous  binary  image  was first in- 
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troduced by  Blum [I] ,  who originally  called it the “me- 
dial axis” and  later  the “symmetric axis” [2]. Blum’s 
initial  procedure  for  obtaining  the  medial  axis  was  to set 
up “grassjres” at  time t = 0 along  all  the points of the 
object  boundary,  and  to let these grassfires propagate as 
wavefronts  toward  the  center of the object  at uniform 
speed  following  Huygen’s  principle. The medial axis 
points,  where  these  wavefronts would intersect  and  extin- 
guish,  together with their  arrival  times defined the “me- 
dial (symmetric)  axis  finction.” A very important  prop- 
erty  of  this  symmetric  axis  function  is the ability to 
reconstruct  the  object  boundary by propagating  the wave- 
fronts  backward.  Subsequently, a number of people  de- 
veloped a mathematical  theory  for  the  skeleton: Kotelly 
[ 121 and  Calabi [4] (with  Hartnett  [5]  later)  for  continuous 
images,  and  Rosenfeld  and  Pfaltz  [27],  [24], Mott-Smith 
[21],  and  Montanari [20] for  discrete  images. Influenced 
by all the  above  contributions  and many others  referenced 
in  his  epitomizing  work  [2], Blum considered  two new 
approaches  to find the  medial  axis.  First, he used the 
“symmetric  point distance’‘ from a skeleton point to  the 
boundary.  Second,  he  showed that the  symmetric  axis  is 
the  locus of the  centers  of  the “maximal disks” inscrib- 
able  inside a filled-in image  object.  Blum’s  second  inter- 
pretation  motivated  Frank et al. [7] to use  the  concepts of 
a point  and a growth in a progressive binary image trans- 
mission  scheme. 

Parallel  to  and  independently  from  the  evolution of all 
the  above  skeletonization  ideas, mathematical morphol- 
ogy evolved  as a set-theoretical method for  image  analysis 
whose  purpose  is  the  quantitative  description of geomet- 
rical structures.  Mathematical  morphology,  after its  first 
introduction by Matheron [19] and  Serra [28] in 1964, has 
found  numerous  applications  [28],  [32].  Some  contribu- 
tions to the  morphology of graytone  functions were also 
made by Sternberg [31], [32].  One  important  feature of 
mathematical  morphology is the fact that it  unifies the re- 
alization  of many linear  and  nonlinear  translation-invari- 
ant  systems [16], [17]. As a particular  application of this 
unifying  power,  Lantuejoul [ 131, [ 141 proved that the 
skeleton  can be obtained by morphological  set  transfor- 
mations.  This  important result provides  the theory that is 
presented in this  paper. For this  reason, we refer to the 
skeleton as a morphological skeleton to distinguish it from 
the  skeletons  obtained using other  approaches. 

In this  paper,  which  is  the  continuation of [18], we are 
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concerned  only  with the use  of  morphological skeletons 
for  image representation and  coding.  Although Serra's 
monograph [28] is an  excellent treatment of mathematical 
morphology,  for reasons of clarity in this paper  we  sum- 
marize (in Section 11) the basic morphological  set trans- 
formations  that are necessary to understand the morpho- 
logical skeleton.  We  also  explore issues concerned  with 
the practical implementation of skeleton transformations. 
In Section 111, we present some  new results on the mor- 
phological skeleton representation of binary images  to- 
gether  with fast implementation algorithms for skeletal 
decomposition  and  image  reconstruction, we investigate 
theoretical properties of the  skeleton, its partial recon- 
structions,  and fast searching algorithms  for obtaining 
minimal  skeletons,  and  we  comment briefly on  some sim- 
ilarities and differences between  our  work  and related pre- 
vious work.  The  use of the skeleton in image  coding is 
described in Section IV.  Finally, in Section V, we sum- 
marize  the results of  our  research. 

Nolation 

Euclidean  space R 2  or Z2. 
R = set of real numbers; 2 = set of all  integers; E = 

X ,  Y ,  A ,   B ,  C, * = subsets  of E ;  0 = empty  set. 
X' = set complement  of X with respect to E .  
x, y ,  z ,  a ,  b ,  c ,  * = elements  or  vector points of E .  
{x : P } = set of points x satisfying a property P. 
A C B = set A is a subset of B .  
U ( n ) = set union  (intersection). 
A - B = set difference between A and B. 

11. CONCEPTS FROM MATHEMATICAL  MORPHOLOGY 
A.  Basic  Morphological Set Transformations 

Mathematical  morphology extracts information  about 
the geometrical  structure of an image  object by trans- 
forming it through its interation with  another  object, called 
the structuring  element, which is of  simpler  shape  and 
size  than  the original image  object.  Information  about  size, 
spatial distribution,  shape,  connectivity,  convexity, 
smoothness,  and  orientation  can  be  obtained by trans- 
forming  the  image  object  using different structuring ele- 
ments. 

Mathematical  morphology represents two-dimensional 
image  objects as mathematical sets in a  Euclidean  space 
E ,  which  can be  either  the  continuous  space R 2  or  the 
discrete  space Z2. For  example,  a  single binary sampled 
image is viewed as  a  subset of Z 2 ,  i.e., as a set of integer 
pairs. These  integer pairs can be viewed as  the coordi- 
nates with respect to two basis unit vectors whose length 
equals  the  sampling period in each  direction.  This repre- 
sentation of sampled binary images by subsets of Z2 is 
suitable  both  for rectangularly and  hexagonally  sampled 
images  depending  on  whether the  angle  between  the basis 
vectors is 90"  or 60", respectively.  The  concept, how- 
ever, of  a set is more general than needed to represent an 
image.  According to Matheron's  approach  [19],  each  im- 
age  object is assumed to contain its boundary and,  thus, 
can  be represented by a closed subset of E .  In addition, 

every structuring element is represented by a compact 
subset of E so that  the  morphological transformations are 
uppersemicontinuous  transformations. 

It is appropriate  to restrict the class of  mophological set 
transformations by imposing constraints which  are  con- 
sistent with goals such as efficient image representation 
and  automatic extraction of  information  from  the  image. 
Therefore,  a  morphological  transformation of an  image 
object is said to  be quantitative only if it satisfies four 
quantification constraints,  which  correspond  to  the  four 
basic principles of the theory of mathematical  morphol- 
ogy: 1) invariance  under  translation, 2) compatibility with 
change of scale, 3) local  knowledge,  and 4) uppersemi- 
continuity [28]. 

The simplest quantitative  morphological set transfor- 
mations are  erosion,  dilation,  opening,  and  closing.  These 
transformations are based  on  the  Minkowski  set addition 
and subtraction [8]. The Minkowski  set  addition A 0 B 
of two  sets A and B consists of all points c which  can  be 
expressed as  an  algebraic  vector addition c = a + b ,  
where the vectors a and b belong to  the  sets A and B ,  
respectively. If Ah = { a  + b : a E A )  denotes the translate 
of the set A by the  vector b,  then  the  Minkowski  sum  of 
A and B is equal  to  the set union of all  the translates Ab 
of A when  the  vector b sweeps  the  set B: 

A @ B = { ~ + ~ : ~ E A , ~ E B } =  U A b .  (1) 

The Minkowski  set  subtraction of B from A ,  denoted as A 
O B, is the operation dual to Minkowski set addition with 
respect to complementation: 

b e B  

A o B = (A' B)C = n A ~ .  (2) 
bcB 

Morphological erosion and  dilation  are defined from  a 
geometric point of  view as  set  transformations that shrink 
or expand  a  set.  Algebraically,  however,  they are actually 
Minkowski  set subtraction and  addition,  respectively.  Let 
the closed set X represent a  binary  image  and  the  compact 
set B a structuring element.  The complement X "  of X rep- 
resents the  image  background.  We  denote by B' the sym- 
metric set of B with respect to origin; i.e., B' is obtained 
by rotating B 180" on  the  plane so that B S  = { - b  : b E B )  . 
Then, the erosion of X by B is defined geometrically as 
the set of those points z such  that  the  translate B, is con- 
tained in the  original  image  set X .  Algebraically, the ero- 
sion of X by B is equal to the  Minkowski  set subtraction 
of B' from X 

xo B S  = { z : ~ ,  s x} = n X+ (3) 
b s B  

Fig. 1 shows that erosion  shrinks  the  object.  The dual 
operation of erosion with respect to complementation is 
the dilation. Dilation of X by B is defined geometrically 
as the  set of all  those points z such that the  translate B, 
intersects X .  Algebraically,  the  dilation of X by B is equal 
to the Minkowski  sum of X and B': 

X @  Bs = { z : B ,  n X # a} = u X-,,. (4) 
beB  
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EROSION : X 0 B DILATION : X @ B 

, .._ -._. .. .. 

OPENING: X, CLOSING : XB 

Fig. 1. Erosion,  dilation,  opening, and closing of X by B (the  shaded  areas 
correspond  to  the  interior of the  objects,  the  dark  solid  curve  to the 
boundary of the transformed object,  and  the  dashed  curve  to  the  bound- 
ary  of  the  original  object). 

..... 0 . .  

I ..+.. ..... 
0 . .  

Fig. 2. Shrinking and expanding  discrete  sets. (a) Minkowski  subtraction, 
(b) erosion, (c) Minkowski  addition,  (d)  dilation, (e) and (f) illustrations 
of forming  larger  structuring  elements as the Minkowski sum of two 
simpler  sets. ( 0  = object  points, + = origin). 

Fig. 1  shows that dilation expands  the  object. Dilating the 
object is equivalent to eroding its background,  as  implied 
by (2). Both erosion and dilation are nonlinear operations 
which are generally noninvertible, and only dilation is 
commutative and associative. Fig. 2(a)-(d) shows  exam- 
ples of dilations and  erosions  of  discrete  sets. It also il- 
lustrates  the difference between  Minkowski addition-sub- 
traction and  dilation-erosion,  respectively, Of course, 
there is no difference between these two pairs of opera- 
tions if B is a  symmetric structuring element.  Therefore, 
whenever  there is no risk of confusion, we will refer to 
X 0 B or X 0 B as simply  the erosion or dilation of X by 
B. We next comment briefly on some selected properties 
of erosion and  dilation. 

1)  Translation  Invariance: For any  vector z in E ,  we 
have X ,  0 B = ( X  0 B)z. In addition, erosion or dilation 

by a  single point is just  a  translation;  i.e., X 0 ( 6 )  = X 

2) Erosion and Dilation of X by B are  increasing 
0 ( b )  = X,. 

Transformations  with  Respect to X:  

X ,  C X ,  => X ,  0 B C X ,  0 B. (5 )  

Erosion  of X by B is decreasing  with respect to B; i.e., 
B1 C B2 => X 0 B2 C X 0 B,. From the above prop- 
erties, if B contains the origin, then erosion is an antiex- 
tensive transformation,  whereas  the dilation is extensive; 
i.e., X 0 B C X C X 0 B. 
3) Parallel  Composition: The operation of dilation 

distributes over set union,  whereas erosion distributes 
over set intersection: 

(X U Y )  0 B = ( X  0 B) U (Y 0 B)  (6a) 

( X  fl Y) 0 B = ( X  0 B) fl (Y  0 B) (6b) 

X 0 (A  U B) = ( X  0 A )  fl ( X  0 B). ( 6 ~ )  

4) Serial Composition: Successively  eroding (respec- 
tively, dilating) a set X first  by A and  then by B is equiv- 
alent to eroding  (respectively, dilating) X by their  Min- 
kowski  sum A 0 B: 

( X @ A ) @ B = X O ( A O B )  (74  

( X G A )  0 B = X 0  ( A  0 B). t7b) 

5) Local  Knowledge: Let M be  a  bounded analysis 
mask or  frame  and X an  image  object  which may exceed 
the  mask M .  Inside  the  mask M we can know without 
error  only  the  masked  set X f l  M and its transformed  ver- 
sions.  However, we can obtain erosions or dilations of the 
original unmasked  set X by a structuring element B with- 
out error inside a new mask M* = M 0 B S .  

Another  pair of dual morphological transformations are 
the opening  and  the  closing. If we erode X by B and then 
dilate  the  eroded  set X 0 B s  by B S ,  we generally do not 
recover X ,  but  rather  a simplified and less detailed version 
of X .  This new set is called the opening, X,, of X by B. 
By duality,  the closing, X,, of X by B comes  from dilating 
first and then eroding.  Thus,  the  opening  and closing are 
defined, respectively, as 

X ,  = ( X  0 23’) 0 B (84 

X B  = (X  0 B S )  0 B. (8b) 

Fig. 1 illustrates that the opening transformation sup- 
presses the  sharp  capes  and  cuts  the  narrow  isthmuses of 
the object,  whereas  the closing transformation fills up the 
thin gulfs  and small holes.  Thus, if the structuring ele- 
ment B has a regular shape,  both  opening  and closing can 
be  thought of as being nonlinear filters which  smooth the 
contours of the object.  Both transformations are generally 
noninvertible. The  opening is always antiextensive, 
whereas  the closing is always  extensive;  i.e., X ,  C X C 
X B .  Both opening and closing are increasing and transla- 
tion-invariant transformations. Moreover, they are idem- 
potent; i.e., (X,), = X,. 
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Fig. 3. (Adapted  from  Sternberg [31].) Parallel  implementation of erosion 
and  dilation. 

The  above  operations may appear superficially simple, 
but  an  enormous variety [28] of image  processing tasks 
can be performed by combining  erosions,  dilations,  open- 
ings,  and  closings.  A  particular  case is the morphological 
skeleton transformation of a binary image. 
B.  Computational  Complexity of Morphological Set 
Transformations 

To implement the  basic  morphological set operations 
on  a  conventional  computer, one could  simply represent 
the  sets by binary functions,  whose values are equal to 
one  and  zero at points of the  object  and its background, 
respectively,  and  take  the local minimum  and  maximum 
inside a  running  window (set) B for  the erosion and dila- 
tion by B ,  respectively.  This local minimum or maximum 
will shnnk  or  expand,  respectively,  the o n p  of this binary 
function,  as investigated in [23]. However, (3)  and (4) 
give us simple  ways  to practically implement erosions and 
dilations using just Boolean set logic.  That  is, erosion and 
dilation of X by B are  algebraically interpreted as the in- 
tersection and  union,  respectively,  of  all  the translates X - ,  
of X when b sweeps B. The structuring element B is a 
compact set, which for discrete  sets  means  that B contains 
a finite number  of points. Thus,  the number of required 
translates of X is finite. The  outline  of  a practical imple- 
mentation for erosion and  dilation is shown in Fig. 3. We 
need two bit planes for  the  image X and  the structuring 
element B and  a third accumulation  plane  for the resulting 
transformed  image. The image  plane is shifted in parallel 
to  the  accumulator  plane,  and  the  amount of shifting is 
controlled by the points belonging to  the structuring ele- 
ment B. The  accumulator  plane  holds the parallel logical 
AND or OR of all  the  shifted versions of the image  plane, 
and  after  all  the  points of B have been  spanned, it will 
contain the ero'sion or dilation,  respectively, of the orig- 
inal image.  The  above  implementation exploits the de- 
sired parallelism in image processing tasks [31] and  is  very 
well suited for  cellular  or  bit-plane  computers. 

In  addition,  the  parallel  and serial composition prop- 
erties of erosion  and  dilation  can  be  exploited to speed  up 
the practical implementation of these  operations.  That  is, 
the parallel composition  laws of (6) allow  the  formation 
of  more  complex  structuring  elements by taking the  union 
or intersection of simpler  elements.  The serial composi- 
tion laws  (see (7) and  Fig. 2) enable us to erode  and  dilate 
by two-dimensional (2-D) structuring elements  using  only 

CIXLE WJ: micwaE EomE 
D D D  

. * D D D  .. . . .+* *+*  * + *  + *  
.. 

. * D D D  .. . 
. * *  
LINOOO  LIN045  LINOSO  LIN135 . 
* + *  + ? + 
YECOO0 vEc045 vEc090 VEC135 . 

+ *  + + + 
Fig. 4. Some  structuring  elements  on  the  rectangular  grid ( 0  = object 

points, + = origin). 

one-dimensional (l-D) elements.  For  example,  the 3 X 3 
pixels square  is  the  dilation  of  one horizontal by one  ver- 
tical line  segment  of 3 pixels [see Fig. 2(e)]. Thus,  the 
shape  and the size of the structuring element  can  be pro- 
grammed. Fig.  4  shows  some  examples of  discrete  sym-. 
metric and  asymmetric structuring elements  on  the rect- 
angular  grid. The  circular (21 pixels) element  CIRCLE 
results from  Minkowski  sum of the  square  (9 pixels) ele- 
ment  SQUARE  and  the  rhomboid (5 pixels) element 
RHOMBUS as Fig. 2(f) illustrates.  Similarly;  the  4-pix- 
els Square element  BOXNE  in  the NE quadrant is the 
Minkowski  sum of the 2-pixels vectors VECOOO and 
VECO9O. In Table  I we compare  the  computational  com- 
plexity of three different methods of implementing the 
erosion-dilation of an  object X by  a structuring element 
nB of size n obtained by the n-fold Minkowski  sum of B 
with itself.  Method 1 implements the  operation X 0 nB 
by directly using (3)  and (4). Method 2 exploits  the serial 
composition  laws  of (7). For  example,  suppose that we 
want to erode X by 2 B  = B 0 B. Then, from (7),  we 
have 

X @ 2 B = X G ( B @ B ) = ( X @ B ) O B .  

Thus, method  1  erodes Xby 2B, whereas  method 2 erodes 
X first by B and  then it erodes  the result by B. Of course, 
both  methods  give  the  same result. Method 3 combines 
method 2 and  further exploits (7) if B is decomposable 
into simpler elements. For  example, let B be  the  SQUARE 
of Fig.  4; then B = B, 0 B2, where B,  and B2 are, re- 
spectively,  the  horizontal  and vertical structuring ele- 
ments LINOOO and  LIN090 of Fig.  4.  Thus, method 3 
implements  the erosion of X by 2B as  follows: 

X 0 2B = ( ( (X  0 B,) 0 B2) 0 B,) 0 B2. 

Table I (compare  methods 2 and 3 for  size n = 1) shows 
the  computational savings in parallel AND/OR'S of the 
whole  image  which result when  we do  erosions  or  dila- 
tions by some of the  composite  structuring  elements of 
Fig.  4 by using  their  decomposition  in  simpler  elements, 
as explained above. 

111. MORPHOLOGICAL  SKELETON  IMAGE 
REPRESENTATION 

A. Background  on  Morphological  Skeleton and Skeleton 
Function 

The skeleton SK(X) of a  continuous  image object X ,  
viewed as  a  subset  of R 2 ,  is defined as the set of the cen- 
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0 

TABLE I 
NUMBER OF PARALLEL AND/OR’S OF THE IMAGE XTO  IMPLEMENT ITS EROSION-DILATION BY nB. 

(n 5: 1 AND B IS ONE OF THE STRUCTURING ELEMENTS OF FIG. 4 )  

Method 2 Method 3 

Structuring Method 1 (X Q B)  (Method 2 with Savings  (percent) of 
Element B (X Q nB) Q B * . . Q B B = B ,  @ B2) Method 3 over 2 

CIRCLE 14n2 + 6n  20n 8n 60 
SQUARE 4n2 + 4n  8n  4n 50 
RHOMBUS 2n2 + 2n  4n 
BOXNE n2 + 2n  3n  2n  33 
LINOOO 2n  2n - - 
VECOOO 

- - 

n  n - - 

a Method 3 is feasible  only if E is decomposable  in  simpler  elements. 

I/. a-p-a R” n - m  R 

Fig. 5 .  Examples of skeletons of continuous images. 

ters of the maximal  disks  inscribable inside X. A  disk is 
maximal if it is not properly contained  in  any  other  disk 
totally included  in X .  Hence,  a  maximal  disk  must  touch 
the boundary  of the object X at  least at two different 
points.  Some  examples  of  skeletons  are  shown in Fig. 5 ,  
where  we  see  that  the skeleton of  a  circle is just its center 
and the skeleton of  the  angular  sector is its bisector. In 
the  same figure (angular  sector),  we  see  that, if at each 
skeleton point we  draw its corresponding  maximal disk, 
then the  union  of all  these  maximal disks will be exactly 
equal  to  the original object  and  the  envelope  of the max- 
imal  disks. will be  the  boundary  of  the  object.  Let $ ( X ) ,  
r > 0, denote the.rth skeleton  subset, i.e., the  set of the 
centers of the  maximal  disks  whose radius is  equal to r. 
These skeleton subsets can be obtained by using mor- 
phological erosions and  openings.  More  precisely, as- 
sume that the  class  of subsets of R 2  on  which the skeleton 
is defined is  the  class  of  open  sets,  which is equivalent to 
the previously selected class  of closed sets by considering 
their  complements. Selecting open sets as the  class of skel- 
etonizable  sets  excludes isolated points and lines of  zero 
thickness,  which  are closed sets  and  their  own  skeletons. 
Further,  the  open set X is assumed to be  nonempty and to 
contain no half-space.  Under these assumptions,  Lantue- 
joul proved [28, p. 3761 that  its skeleton S K ( X )  exists and 
is equal to 

SK(X)  = u $ ( X )  
r > O  

= u [(X 0 rB) - (X 0 (9) 

where rB denotes  the  open  disk  of radius r and drB is a 
closed disk of infinitesimally small radius dr. The bound- 
aries of the  eroded sets ( X  0 rB) can  be  viewed as the 
propagating  wavefronts of Blum’s grassfires where the 
propagation  time  coincides  with the radius r. Subtracting 
from  these  eroded versions of X their  opening by drB re- 
tains  only  the  angular  points,  which  are points of the skel- 
eton.  The original set X can  be reconstructed as  the  union 
for  all r > 0 of  the  subsets $(X) dilated by the  open disks 
rB, respectively. 

The  main topological properties of the  morphological 
skeleton are summarized  in [28] in the form of a  few theo- 
rems due to Calabi  and  Matheron.  The transformation of 
a binary image  into  its skeleton is not continuous. For 
example,  Fig. 5 shows  a  sequence  of rectangles R, having 
on  the  outside of their  boundary  a triangular notch of width 
(wln) and height (hln). In  the  limit  as n -+ (x, we see that 
the  limit  of  the  sequence  of rectangles R, is the rectangle 
R without  the notch. The notch  of  every  member R, of the 
sequence  induces  a  bone  in its skeleton, but the bone  dis- 
appears discontinuously in  the skeleton of the limit rec- 
tangle R .  This  inducement  of  a  bone in the skeleton by 
an  angle  or notch  in  the  image object boundary causes 
the skeleton transformation to violate the  morphological 
principle of local knowledge and,  hence, it is not a  quan- 
titative morphological transformation. However, it is still 
invariant under  translation  and  scale  change  and  is lower- 
semicontinuous. For more discussion about  morphologi- 
cal skeletons of  continuous  images  and  their differences 
from  Blum’s  medial axis,  refer to [28]. Henceforth, we 
restrict our discussion only to  discrete  images. 

Although  the skeleton is not an easily digitalizable  con- 
cept, we can  still define the morphological skeleton of 
binary images  sampled  on  a rectangular or hexagonal grid. 
In addition, digitization gives us a practical advantage be- 
cause we can  program the shape  and  size of the structur- 
ing element (discussed later).  Let the subset X of Z2 rep- 
resent a  discrete binary image. It makes no difference 
whether X is open  or closed because  all subsets of Z2 are 
both  open  and closed using the Euclidean  topology. 
Henceforth, we assume that X is nonempty  and  bounded. 

r > O  
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Serra [28] provided  an  algorithm for  the  morphological 
skeleton S K ( X )  of a  discrete binary image X sampled on 
a  hexagonal  grid: 

Sn(X)  = ( X  0 nBS) - ( X  0 nBS)B, 

n = 0 ,  1,2, , N  (10) 
N 

SK(X)  = u & ( X )  (1 1) 
n=O 

where & ( X ) ,  or simply Sn if there is no risk of confusion, 
denotes,  henceforth,  the nth skeleton subset of X .  In Ser- 
ra’s formulation,  the  discrete structuring element B was 
the seven  pixel  symmetric  hexagon  on  a  hexagonal  grid. 
This  seven pixels hexagon  can  be said to have  a  ‘‘discrete 
radius”  of  one,  since  the  distance from  any  of its six ver- 
tices to the  center pixel (expressed  in  number  of pixels) 
is  equal to one.  Then  the  element nB in (10) denotes  a 
discrete  hexagon of ‘‘radius n .  ” The index N denotes  the 
maximum “radius” of  a  hexagonal  element nB after 
which  a  further erosion erodes X down to the  empty  set. 
Equation  (1 1) implies that  the skeleton % ( X )  of X is ob- 
tained as  the finite union  of  these N + 1 skeleton subsets. 

An intriguing property  of the morphological skeleton 
transformation is that  it  has  an  inverse.  That  is, the dis- 
crete binary image X can  be exactly reconstructed as the 
finite union of its N + 1 skeleton subsets dilated by the 
hexagonal structuring element  of  proper  size: 

N 

X = u [&(X) 0 nB]. (12) 
n = O  

We  postpone  the  proof  of (12) until Section 111-C. 

B. Some New  Considerations  on  Morphological 
Skeletons 

Serra’s digital algorithms  for skeleton decomposition 
and reconstruction (lo)-(  12)  refer  to hexagonally  sampled 
binary images.  Comparing (9) to (la),  we  see that the 
continuous  disks  were replaced by discrete  hexagons. In 
addition,  the  continuously  varying radius r of  the  maxi- 
mal disks rB was replaced by  the discretely varying “ra- 
dius” n of the discrete  hexagons nB. Finally,  the  opening 
by a  disk drB of infinitesimally small radius in (9) was 
replaced in the  discrete  case by an  opening by a  hexagon 
B of “radius”  one  in  (10). 

For  images  sampled  on  a  hexagonal  grid, the/ hexagon 
is a natural and  close  approximation to a  circle.  However, 
symmetric  hexagonal  shapes  cannot be  formed  on  a rect- 
angular  sampling  raster. In  addition,  although  circles  and 
hexagons are  desirable  as structuring elements  due to their 
high  degree  of  symmetry,  there i s  no  need to restrict 
structuring elements to be  circular  in  shape.  For  this rea- 
son,  we considered  extensions  of digital skeletonization 
algorithms to rectangularly sampled binary images  by 
using symmetric  convex  structuring  elements  on  the rect- 
angular grid, such as  the  CIRCLE,  SQUARE,  and 
RHOMBUS  elements  of  Fig. 4. If we consider these three 
elements to have  a  discrete radius one,  then,  as in the  case 

n=O 

n= 1 

n=2 

n=3 

Fig. 6 .  Step-by-step  skeletal  decomposition of an  image X and  reconstruc- 
tion of the  image  from  its  skeleton  subsets  (structuring  element = CIR- 
CLE). 

of the  discrete  hexagon, we can  form similarly shaped 
elements  of  discrete radius n .  For  example,  a SQUARE 
element  of radius n will consist of (2n + 1) X (2n + 1) 
pixels. Fig. 6 illustrates in a detailed way how  a rectangu- 
larly sampled  binary  image  can be decomposed  into its 
skeleton subsets and reconstructed from  them.  The struc- 
turing element B used  in  this  example is  the  CIRCLE of 
Fig. 4. More specifically, in Fig. 6, proceeding  from  left 
to right columns, we see  an  image  object X and its ero- 
sions by nB, the  openings of these  erosions by B,  the  skel- 
eton subsets & ( X ) ,  the dilated subsets,  the  composition 
of  the skeleton S K ( X )  as  the union  of  the skeleton subsets 
(1 l ) ,  and the composition  of the  image X as  the union of 
the dilated skeleton subsets (12). Fig. 6 shows  that  the 
nth s’keleton subset  is  obtained by eroding X by nB, and 
then  keeping  from  every  eroded set ( X  0 nB’) only those 
parts which consist of  angular points and lines without 
thickness.  These  parts  are  the  only  ones  remaining  after 
the set difference between ( X  0 nBs) and its opening ( X  
0 nBS)B. The  maximum skeleton subset  index required 
for  the  example in Fig. 6 is  equal to N = 3. In general, 
if the  bounded object X is contained inside a  square  anal- 
ysis mask  of M X M pixels,  then N 5 M - 1. Finally, 
from Fig. 6 and  (12),  we  see  that  the  subsets of large 
indexes reconstruct the bulky  parts  in the center  of the 
image  object,  whereas  the small index skeleton subset are 
responsible for reconstructing the finer details of the  im- 
age  toward its boundary. 

So far, we have  considered  only  convex  symmetric 
structuring elements for  skeletonization,  because they of- 
fer  a  discrete version of the disk on  the real plane.  These 
convex  symmetric  elements  have  a  ‘‘discrete radius n ,  ” 
which  assumes  only  integer  values.  However,  the  concept 
of  the radius limits  our  potential structuring elements  only 
to those which  have an approximately  circular  shape.  Mo- 
tivated by our  intuitive idea to skeletonize  an  image object 
using an arbitrarily shaped structuring element B,  and by 
the  fact  that  the  discrete  symmetric  convex  elements nB, 
considered  above,  can be  also  obtained  through  an n-fold 
dilation  of B by itself,  we  were  led  to quantify the size of 
any  discrete  structuring  element  in  the  following  way. If 
an arbitrary discrete  structuring  element B is considered 
to  be of “size  one,” then  the respective element of “size 
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Fig. 7. (a)  Test  image of 64 X 64 pixels.  (b) Its skeletons  with  respect to 
all structuring  elements of Fig.  4  (keeping  the  same  order  from  top  left 
to  bottom  right). 

n,” denoted as “nB,” is defined henceforth  in our  anal- 
ysis as  the  Minkowski  sum of B with itself n times: 

nB = B 0 B 0 - * 0 B (n times). (13) 

Thus,  our definition here of  the  “size” is used  hence- 
forth as  a  concept  analogous  to  the  disk radius in  the  con- 
tinuous case, and the role of the  continuous  maximal disk 
of radius r will be played now by  the  maximal  element 
nB of size n. The  size  of  discrete  element nB is quantified 
by the discrete  index n,  whereas its shape is quantified by 
the  shape of the unit size  primary  element B. For n = 0, 
nB is just  the one-point set (0). If B is convex,  then nB 
will have  the ‘same  shape  as B but magnified n times. 
Henceforth, we assume that B is bounded and that B con- 
tains the origin of  the  plane.  Obviously, different unit size 
structuring elements B will result in different skeletons, 
and Fig.  7 illustrates this idea.  That  is,  Fig.  7(a)  shows  a 
test image  of  64 X 64’pixels,  and  Fig.  7(b) illustrates its 
skeletons with respect to  all  the structuring elements  of 
Fig. 4.  For  a  symmetric structuring element, the resulting 
skeleton may be  disconnected but it will lie in the  middle 
of the object as  an  approximate  symmetric  axis. How- 
ever,  the  asymmetric structuring elements  give skeletons 
which no longer  look  like  a  symmetric  axis. 

Independently of which  stiucturing  element is used for 
skeletonization,  the resulting skeleton subsets are  able to 
exactly recon’struct the original image  using (12). Thus, 
the total information in the original finite image X is 
equivalent to that in the finite ensemble  of  all its skeleton 
subsets & ( X )  together with their  corresponding  index 
“n. ” In  order to represent more  compactly  all the infor- 
mation in the skeleton,  we defined the morphological 

skeleton function skf ( X )  of X as the following 2-D dis- 
crete  image  array: 

where (i,  j )  E Z 2 .  We will prove  later that the skeleton 
subsets  are disjoint sets and,  hence, the skeleton function 
is a single-valued function.  The skeleton function is a 
graytone  function  which  has the same region of support 
as  the binary skeleton S K ( X ) ,  and it is equivalent to the 
finite ensemble  of  all  the binary skeleton subsets. Thus, 
if we know the skeleton function,  then we also know the 
skeleton subsets;  i.e.,  the nth skeleton subset is the set of 
all  those points of Z 2  at which  the  value of the skeleton 
function is  equal to n + 1 .  

C. Fast Algorithms for Skeleton Decomposition and 
Reconstruction 

In  this Section  we exploit  some  algebraic properties of 
the morphological set operations in  order to develop two 
fast algorithms for skeleton decomposition  and recon- 
struction, respectively, which  reduce  the  complexity of 
Serra’s algorithms  from quadratic to linear. 

Table‘I shows that erosion of X by nB,’ which requires 
O(n2) parallel logical AND’S of the whole  image,  can  be 
done  much  faster  by successively eroding X by B  n times, 
which requires O(n) parallel AND’S. Thus, adopting the 
latter  method, we see from (10) that the skeleton decom- 
position of X requires ( N 2  + N)/2 erosions by B for  the 
erosions X 8 nB, plus N + 1 erosiqris and N dilations by 
B for  the  openings by B, which  amounts ’to-a total of ( N 2  
+ 5N + 2)/2 erosions-dilations of the  image by B. A new 
algorithm  which  avoids this quadratic complexity of the 
decomposition  of  the  image  into skeleton subsets is given 
below.  Let  EROSl , EROS2,  OPEN  denote three accu- 
mulator sets large  enough to hold  the  image object and its 
background;  then, 

step 1: n : = 0, EROSl := X 

step 2: EROS2 : = EROSl 0 Bs 

step 3:  if EROS2 = @ , 

then N : = n, &(X)  : = EROSl , and STOP 

step 4: OPEN : = EROS2 0 B 

step 5:  & ( X )  : = EROSl - OPEN 

step 6: n := n + 1, EROSl := EROS2, 

and go to step 2 (15) 
where “: =” means  “replaced  by.”  The above algo- 
rithm, depicted in Fig,. 8(a), requires only N erosions and 
N dilations of the image by B and,  hence, it has linear 
complexity. 

In the  process  of  proving  (12), we provide  below  a 
faster  algorithm  for exact reconstruction from the skeleton 
function. Let A be  an  accumulator set large enough to  hold 
the  image object and its background;  then, 
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Fig. 8. Fast  algorithms for (a) decompositon  into  skeleton  subsets and (b) 
reconstruction from skeleton  subsets. 

step 1: n := N ,  A := 0 
step 2: A : = A U &(X)  

step 3: if n = 0 STOP, otherwise A : = A 0 B 

step 4: n : = n - 1 and go to step 2. 

Let us go through some  iterations  of  the  above algo- 
rithm,  which  is  also illustrated in  Fig.  8(b). 

First Iteration: For  a .bounded  image X ,  the  last subset 
S N ( X )  must  equal X 8 NB’, because  otherwise  the (N  + 
1)th skeleton subset  would  be  nonempty.  Thus,  after  step 

Second  Iteration: After  step 2, A = X 8 (N  - 1)B’. 
Thus,  after  step 3 of  the mth iteration, A = [ X  8 ( N  - 
m)Bs], ,  and  after  step 2 of the (m + 1)th  iteration, A = 
X 0 (N  - m)Bs.  At the  end, when m = N (after N + 1 
iterations),  the  accumulator set A contains the original im- 
age X .  The  above  algorithm requires only N dilations of 
the  entire  image by the unit-size structuring element B s .  
In contrast,  Serra’s  algorithm (12) requires ( N 2  + N)/2 
such dilations since,  for n = 1,  2, , N ,  it involves 
dilation of the nth skeleton subset by nB’. The algorithm 
(16)  is summarized by the  equation  below: 

3, A = ( X  8 NB’) O B = [ X  8 ( N  - l ) B S ] , .  

0 B U So(X). (17) 

The algorithm (17) is equivalent to algorithm (12), be- 
cause  dilation  distributes  over set union  and is associa- 
tive.  In (17) ,  the reconstruction propagates  from  the cen- 
ter of the  object  toward its boundary.  However,  in  (12), 
the reconstruction can  propagate  either  direction,  depend- 
ing on whether  we start the union of the dilated skeleton 
subsets from n = N or from n = 0. Mott-Smith [21] also 
proved (17), but in his approach  only  symmetric structur- 
ing elements  were  considered. 

By using the  decomposition, if possible, of B into a 
Minkowski  sum of simpler elements,  both algorithms (15) 
and (16) can  be  further  speeded  up  by 33-60 percent as 
Table  I  explains. 

D. Partial  Reconstruction from Skeleton Function 
Using all the  skeleton  subsets  guarantees  exact recon- 

struction of the  original  image. If some  of  the skeleton 
subsets are  omitted,  the  image will be partially recon- 
structed. Our  objective  in this section is  to quantify this 
partial  reconstruction. 

In the reconstruction algorithm (1 6 ) ,  if  we omit  all  the 
implied  operations  which  take  place  after  adding  the (N  
- m)th skeleton subset,  then  we reconstruct only X 0 ( N  
- m)BS. Replacing N - m by k and  using distributivity 
and associativity of  dilation  yields  the following: 

N 

X . 8  kBs = u [&(X) 8 (n - k)B] (18) 

for 1 5 k 5 N .  The  above formula  allows us to  obtain 
eroded versions of X by omitting some  skeleton subsets 
and dilating the rest of  them by elements  of  smaller  size. 
Of course,  using (17) and  stopping the algorithm at  the 
proper point leads  to  faster  implementation  of (18) .  If  we 
dilate  both sides of (1  8) by kB, we  obtain  the openings of 
Xby kB, where 1 I k I N 

n = k  

N 

XkB = u [&(X) 8 nB].  (19) 

By comparing (12) and  (19),  we  see  that, if we  omit  the 
first k skeleton subsets, we reconstruct the  opening of X 
by kB. Since  the  opening  can  be  viewed  as  a nonlinear 
filter for  the  image  boundary, it may be  of interest to com- 
pare this property of the  skeleton  to  a  conceptually  similar 
property of the  Fourier  transform.  That  is, omitting or 
filtering out the  high-frequency coefficients or portion of 
the spectrum of a  signal  corresponds  to  smoothing  the sig- 
nal.  Similarly,  omitting  the  skeleton  subsets  with small 
indexes  gives  smoothed  versions  of  the  object (its open- 
ings). Again,  using  (17) to obtain X 8 k B S  and  dilating 
the  latter by kB gives XkB much  faster  than  the  algorithm 
implied  in (19). Finally, we can  obtain dilated versions 
of the original object X and  its  erosions or openings by 
directly dilating  both  sides  of  (12),  (18),  and  (19), re- 
spectively.  A  general  formula results then: 

n = k  

N 

[X  8 kB‘] 0 mB = u [Sn(X)  0 (n - k + m)B] 
n = k  

(20) 
where 0 I k I Nand 0 I m. If m = k ,  we  get  openings. 
If k = 0 or m = 0, we get dilations  or  erosions, respec- 
tively. If m > k ,  we get dilation of X,, by (m - k)Bs.  In 
short, if  we omit  some  skeleton subsets of X and  dilate 
the rest by elements  of  proper  size,  we  obtain partial re- 
constructions of X which  can be  either  smoothed versions 
(openings) or  thinner  and  thicker versions (erosions and 
dilations). 

E. Properties of the  Morphological  Skeleton 
Assume  everywhere  that B contains  the  origin; i.e., { O >  
E B.  The nontrivial proofs of the following properties 
and  theorems are  given  in  the  Appendix. 



1236 LEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-34, NO. 5, OCTOBER 1986 

Property 1: a) B = (0) => SK(X)  = @. b)  X 0 BS 

Property 2: The skeleton  subsets  are  disjoint  sets. 
Property 3: The morphological  skeleton  is a set  trans- 

formation  which  is a) translation-invariant, b) antiexten- 
sive and c) idempotent. 

Dejinition: The structuring  element (nB), of  size n lo- 
cated  at  point z is  said  to  be maximal in X provided  that 
(nB)Z S X and  there  does not exist  any  other  element 
(mB), in X with m > n such that (nB), C (mB), C X. 

Theorem 1: If  the  skeleton of X is  obtained with respect 
to a bounded  and  convex  structuring  element B,  then a 
point z belongs  to  the  nth  skeleton  subset  of X if and  only 
if the  element (nB), is  maximal in X .  

Theorem 2: If the  skeleton  of a convex  image  object X 
is obtained  with  respect  to a bounded  and  convex  struc- 
turing  element B ,  then X is equal  to  its  opening X,, by kB 
if and  only if its first k skeleton  subsets &(X), n = 0, 1, 

Theorem 2 is  important  because it explicitly relates the 
skeleton  subsets  of X with the  smoothness of the  boundary 
of X. That  is,  since B is  convex,  the  openings X,, will 
have a smoothing effect on  the boundary  of X for  any  size 
k .  In  addition,  the  larger  the  size k of kB, the  more  severe 
the  smoothing. Thus, an object X  is “smoothed  to a de- 
gree k” (i.e., X = X,,) if and  only if  its  first k skeleton 
subsets are  empty.  Therefore,  the  smaller  the  index n of 
&(X),  the  greater its  contribution  to  the  roughness of the 
boundary of X .  

F. Globally and Locally Minimal Skeleton 
Can  we find some  skeleton  points  which, if removed 

from  the  original  skeleton,  still  leave  the  remaining  skel- 
eton function  with  the  property  of  exact  reconstruction? 
Mott-Smith  [21],  Rosenfeld  and Kak [26],  and  Frank et 
al. [7] speculated  that it may be possible to remove  some 
points of the  skeleton  and  still  reconstruct  the  image  ex- 
actly,  obviously by exploiting  the  overlapping of the di- 
lated  skeleton  subsets; but they did not indicate  how. Of 
course,  this  idea  applies  only  for  2-D  structuring  elements 
because  we  cannot  remove any points  from  skeletons  ob- 
tained using 1-D structuring  elements  and  still  have  exact 
reconstruction.  Motivated by the  above  questions  and 
speculations,  we tried to find minimal  subsets of the  orig- 
inal  morphological  skeleton. 

First,  we define a minimal subset of the  skeleton  to be 
a part of the  original  skeleton  whose  points  are sufficient 
for  exact  reconstruction  but  removal of just  one of these 
points will result in partial  reconstruction. A minimal  sub- 
set may have  points  belonging to different skeleton  sub- 
sets.  Note  that  the word “subset” in our definition of a 
“minimal  subset”  means  only a subcollection of skeleton 
points  and it  is not to be  confused with the  “skeleton  sub- 
sets”as defined in (10). A minimal  subset  always  exists 
since, in the  worst  case  (no  redundancy  in  the  skeleton), 
the  original  skeleton  is  the  minimal  subset. The most 
straightforward way to find a minimal subset would be to 
sequentially  remove  each  skeleton  point,  one  at a time, 

= @ => SK(X) = x. 

2 ,  * * .  , k - 1,  are  empty. 

and  use (12) or (17) to  reconstruct  the  image  from the 
remaining  skeleton. If exact  reconstruction were ob- 
tained, then the  skeleton  point in question  could be re- 
moved and  we  could  proceed  to  the  next skeleton point. 
However,  the  above  search  procedure would require  the 
use of the reconstruction algorithm  (12), or the  faster  (17), 
as many times  as  the  total  number of skeleton  points,  and 
hence, it would  be  very  time  consuming.  Therefore,  we 
developed  two  algorithms  which  find, if it  exists, a min- 
imal  subset  of  the  original  skeleton in a more efficient 
(computationally  faster)  way. 

The first algorithm finds a globally minimal skeleton, 
which is a subset of the  original  skeleton  guaranteeing the 
exact  reconstruction of the  entire  image but not its partial 
reconstructions as quantified by (19). Let X be  the  original 
image  and  let  &(X), n = 0, 1, , N ,  be its skeleton 
subsets  with  respect to a structuring  element B. For each 
skeleton  subset  index n ,  we create a binary function k,(i, 
j ) ,  ( i ,  j )  E Z2, whose  value is equal  to one  at points ( i ,  j )  
E nB and  zero  everywhere  else; i.e., k, is the character- 
isticfinction of the  set nB. Then,  for each n,  we shift  the 
function k, to  all  the  points of & ( X ) ,  and  add  algebra- 
ically  all  these  contributions  for  all  the  points of &(X) 
and  for  all n. In the  end,  we will have  created a pseudo- 
graytone  function, pgf(X), whose region of support is 
identical with the  original binary image X and whose value 
at  every point of the  image  is 1 1 ; this  pseudograytone 
function is equal  to 

N 

[pgf(X)] (i, j j  = k,(i - r,  j - t )  (21) 
n=O ( r , t )ESn(X)  

for  any ( i , j )  E Z2. Now, to decide  whether a certain point 
( r ,  t )  E &(X)  can  be  removed,  we  check first whether  the 
value of the  pseudograytone  function  pgf(X)  at all the 
points of the  region of support of the  respective  shifted 
characteristic  function k,(i - r,  j - t )  is 1 2 .  If so, then 
we  remove  this  skeleton  point ( r ,  t ) ,  and we  subtract  al- 
gebraically k,(i - r,  j - t )  from  [pfg(X)] (i, j j .  Other- 
wise,  we  proceed to the  next  skeleton point until all the 
skeleton  points  have  been  searched. The question of how 
to  scan the skeleton is still  open. The method that we  used 
was  to  successively  search  each  skeleton  subset  beginning 
from S , ( X )  or S N ( X )  and  continuing,  respectively, in as- 
cending or descending  order  of  their  indexes.  Note that 
the  points of the  0th  subset &(X) cannot be removed be- 
cause they do not belong  to  any of the  openings of X; 
hence,  there is no  structuring  element nB of nonzero size 
n included in X that  contains  any of the points of &(X). 
Both scanning methods resulted in approximately the  same 
minimal  skeleton. The only  difference was that, in a few 
cases,  scanning  the  skeleton  subsets in ascending  order 
resulted in a minimal  skeleton  with  slightly  fewer  points. 
One intuitive reason for this may be  the fact that the points 
of the  skeleton  subsets with large  indexes  are  associated 
with structuring  elements  of  larger  size,  and,  hence, a 
smaller  number  of  those  is  able to remove  the redundancy 
of the  skeleton. 
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Fig. 9.  (a) Original  skeleton,  (b)  globally  minima]  skeleton, (c) locally 
minimal  skeleton  (structuring  element = SQUARE, 0, 0 = image 
points, 0 = skeleton  points), 

TABLE I1 
NUMBER OF SKELETON POINTS [64 X 64 PIXELS TEST  IMAGE OF FIG. 7(a)] 

Structuring  Original  Globally  Minimal  Locally  Minimal 
Element  Skeleton  Skeleton  Skeleton 

CIRCLE 175 
SQUARE 121 
RHOMBUS  149 
BOXNE  100 

~ 

77 
61 

149 
49 

88 
68 

149 
66 

The  above-defined globally minimal skeleton does not 
guarantee  that the partial reconstructions of the image will 
be quantified as  in  (19).  Therefore,  we introduced the 
concept of the  locally  minimal skeleton defined as  fol- 
lows.  Consider the fast reconstruction algorithm (17). 
When  we add the nth skeleton subset &(X) and  dilate  the 
partial sum by B', we reconstruct [X 0 (n - l)B']B, i.e., 
the opening  of  the (n  - 1)th erosion.  Using  the  latter  con- 
dition as  a  criterion,  we  created  for  each 12 a  pseudogray- 
tone function for  the  opening [X 0 (n  - 1)Bsl1,, as in 
(21), and we searched to find which points of & ( X )  can 
be  removed in the same way as  done  for  the globally min- 
imal  skeleton.  This  algorithm  provides  a  minimal skele- 
ton whose  modified skeleton subsets satisfy the partial re- 
construction (19).  That  is, if we  do not use the first n 
modified skeleton subsets, then we reconstruct XnB. Ob- 
viously,  the locally minimal skeleton guarantees exact re- 
construction,  but it will have  more points than ,the glob- 
ally minimal skeleton because it  was obtained by imposing 
an additional constraint. 

Fig. 9(a) shows  an  image and its original morphologi- 
cal skeleton with respect to the  SQUARE  element.  Fig. 
9(b) and (c) shows,  respectively, its globally and locally 
minimal  skeleton.  We  see  that  the original skeleton con- 
sists  of 11 points,  where  the globally and locally minimal 
skeletons consist of  only 3 and 5 points, respectively. Ta- 
ble I1 shows  the  redundancy  removed globally or locally 
from the skeleton of  the test image of Fig.  7(a)  using  dif- 
ferent structuring elements.  The globally minimal skele- 
tons were  found by searching  the skeleton subsets in 
ascending  order. The results in Table I1 indicate that the 
globally minimal skeleton may have  more  than 50 percent 
fewer points than  the  original  skeleton. Fig. 10 shows  two 
original images  of different resolution (the 64 X 64 pixels 

ORIGINAL 
IMAGES 

ORIGINAL 
SKELETONS 

"AL 
SKELETONS 

Fig. 10. Original  images,  original  skeletons,  and  globally  minimal  skele- 
tons  (structuring  element = SQUARE). 

test  image  and  a 256 X 256 pixels image  showing  a  hand 
and  a  face shape),  but magnified differently for display 
purposes.  Fig. 10  also  shows their original skeletons with 
respect to the  SQUARE  element  and  their globally min- 
imal  skeletons.  The reduction in skeleton points can be 
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clearly seen in the minimal  skeletons,  although,  for these 
two  images, the original skeletons are more aesthetically 
pleasing. 

G. Related  Previous Work and Discussion 
To explain the similarities and differences of our work 

with  previous  work,  we will interpret parts of previous 
research using  morphologial  concepts and definitions, al- 
though the respective researchers have  used  quite differ- 
ent notation and  mathematical  algorithms to obtain their 
results.  Let D, = [X  0 nB’] - [ X  0 (n  + l ) B S ]  for n = 
0,  1 ,  * - , N - 1.  Then, Rosenfeld  and Pfaltz [27] find 
the skeleton by first computing  a  “distance  transform” 
image  whose  value at points of D, is equal to n + 1.  The 
implied structuring element is either  the  SQUARE  or  the 
RHOMBUS  of  Fig. 4, which  correspond to the  “chess- 
board”  or  “city-block’’ [26] distance  metric, respec- 
tively,  on  discrete  images.  The skeleton points are then 
found as  the points of local maxima  of this distance trans- 
form  image,  whose restriction to the skeleton points is 
equal to the skeleton function in (14). In Pfaltz and Ro- 
senfeld [24], the image is represented as  the  union of 
maximal  neighborhoods,  which are equivalent to  the  di- 
lated skeleton subsets in (12) using the  RHOMBUS  ele- 
ment. In [26, pp. 213 and 2171, the  two parallel algo- 
rithms for skeletal decomposition  and reconstruction from 
the  distance  transform  image  have  comparable  complexity 
with  our  two fast algorithms (15) and (16); the other  two 
algorithms in [26, pp. 214, 2171 require only three scans 
of the  image, but they are strictly serial and need some 
modifications to handle general asymmetric structuring 
elements. The  advantage,  however, of the  morphological 
approach is that it is  simpler  and  faster  (for parallel al- 
gorithms)  since it requires only parallel AND/OR’S on bi- 
nary  images,  whereas  the  distance  transform  approach re- 
quires local minima  and  maxima  on  graytone  transform 
images. In [24],  [26] , and [27], the structuring elements 
are limited only to those related to some  distance  metric, 
and there is no explicit use  of  the partitioning of the skel- 
eton into  subsets.  However,  Mott-Smith [21] discrimi- 
nated  among  the different skeleton subsets and  used sym- 
metric “neighborhoods”  for structuring elements.  He 
defined an  “expansion”  operation  (Minkowski sum), but 
not an erosion or  opening.  Hence, he peels off the suc- 
cessive layers D, from  the  image  object by dilating the 
background and then intersecting it with  the  object. As a 
result, his skeletal decomposition  algorithm requires two 
additional parallel operations on the whole  image per each 
skeleton subset when  compared to our  algorithm (15). The 
full generality offered by selecting an arbitrarily shaped 
structuring element in the  morphological skeleton is con- 
ceptually found  only in the work by Frank et aZ. [7]. They 
implicitly used skeletonization ideas when they talked 
about  ‘‘growth  patterns” (structuring elements), ‘‘seed 
pixels’ ’ (skeleton points),  ‘‘number of growth  stages” 
(index of skeleton subset), and “increasing  or decreasing 
growth” (dilation or  erosion). 

The  morphological  skeleton,  and our work in this  area, 

is different from  the  above  approaches  because it allows 
us to view  the original image as a set and to quantify, 
using a  compact notation and  mathematical  formalism, the 
required shrinking and  expanding of the image by using 
erosion and dilation of sets.  Moreover,  these  morpho- 
logical set operations can  be  implemented with simple 
parallel computer  architectures  and  are the prototypes for 
a large class of systems [16],  [17]. In addition,  the  mor- 
phological skeleton has the  following  advantages. 1) It 
can be defined for both  continuous  and discrete images. 
2)  The morphological set operations are inherently sepa- 
rable,  and  this results in  a significant computational sav- 
ings. 3) The  morphological structuring element frees the 
skeleton from  the limitations of  a  distance  or  a  symmetric 
neighborhood and,  thus, it unifies and generalizes pre- 
vious approaches. 4) The partial reconstruction (open- 
ings,  erosions,  and dilations of  the original) can be ad- 
dressed and quantified by simply omitting a  few skeleton 
subsets. 5 )  The global and local minimality of the skele- 
ton can  be defined and investigated. 6 )  By using a differ- 
ent structuring element  for the successive erosions of the 
image, we can  further  generalize  the  morphological skel- 
eton  as  explained in Maragos [ 16, p. 19 11. 

IV. SKELETON CODING OF BINARY  IMAGES 
The  most  prominent  methods for coding binary images 

are block coding  and runlength coding, as summarized by 
Huang [lo]. Intuitively,  the  compression efficiency of both 
of these methods is dependent  upon how “thin” (sparse) 
the binary image  is. In Section I11 we saw that the skele- 
ton S K ( X )  of X is guaranteed to  be thinner than X (antiex- 
tensive transformation).  Moreover,  the skeleton subsets 
form  a partition of  the skeleton and,  hence,  each skeleton 
subset is even  thinner than SK(X) .  Each. skeleton subset 
is a binary image by itself.  Thus, it is natural to consider 
techniques for coding the skeleton rather than the image 
itself. In this section we describe  our study of a binary 
image  coding  method in which  each skeleton subset is 
coded individually using  block,  runlength,  or Elias [6] 
coding (explained later and suitable to code very sparse 
binary signals),  and  then  all  or  some skeleton subsets are 
used to fully or partially reconstruct the  image.  The  mo- 
tivation for  the  above  method is the intuitive idea that, 
because of the thinness of  the skeleton subsets,  the  sum 
of the bit rates required to code  all of them may be smaller 
than the bit rate required to code the original image di- 
rectly using  block or runlength coding. In addition,  the 
information  of  the original binary image is totally con- 
tained in its skeleton function,  which is a  graytone  image. 
Hence, we can alternatively code this graytone skeleton 
function using  an efficient scheme.  Coding the skeleton 
subsets or coding  the skeleton function have  the  same re- 
sult with respect to reconstructing the  image at the de- 
coder  (receiver). In both  cases,  the  image will be recon- 
structed progressively,  either starting from the inside 
“bulky” parts and propagating  toward the image  bound- 
ary,  or starting from the outside fine details and recon- 
structing toward the center of the  image.  This aestheti- 
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TABLE I11 

STRUCTURING  ELEMENT BOXNE, X = 64 x 64  PIXELS  TEST IMAGE OF FIG.  7(a)] 

Coding  Skeleton  Subsets 

Runlength-Huffman 

NUMBER OF BITS TO ENCODE ORIGINAL  IMAGE x AND ITS  GLOBALLY MINIMAL SKELETON [ B  = 

Image  Block-Huffman  Elias 
Coded 

Image 
(P = 2 x 4)  Commona  Separate (rn = 3)  Reconstructed 

X 946 837 714  4080  X 

k = O  5712 1153 999  496 X 
k = l  5195 1063 920  462 x, 
{sN(x), sN- * . . 1 sk(x)} 

S K   ( X )  625 419 420  344 SK(X) 
skf (XIb 179 633  574  498 X 

Coding  Skeleton  Function 

““Common” = same Huffman code  for  black  and  white  runlengths, as opposed to  “sepa- 

bThe Huffman rate  for the amulitudes of s k f l X )  is  the  difference  between the rates  for S K ( X )  
rate.” 

”~ 
and sk f (X) .  

cally pleasing progressive  image reconstruction may be 
desirable  for  transmission  of  images  at  low bit rates, as 
emphasized in [7]. Thus,  the  decoder  can wait to receive 
all  the  skeleton  subsets  and  then  start  the reconstruction 
from  index  n = N exploiting the  fast  algorithm  (17). Al- 
ternatively,  the  incoming nth skeleton subset (transmitted 
in real time  while the  image  is progressively decomposed 
into skeleton subsets of  larger indexes) could be dilated by 
a structuring element  nB.  This  latter  approach  could  be 
speeded  up if the  structuring  elements  nB  for different 
sizes  n  are prestored as templates at the  decoder (an idea 
suggested by Frank  et al. [7]). Coding  the skeleton sub- 
sets  leads to a  faster  real-time transmission of the  image 
at  the  encoder (transmitter) than  coding  the skeleton func- 
tion,  since  each  skeleton  subset  can  be  encoded  and trans- 
mitted while the  next  one is being  obtained,  whereas  the 
skeleton function  can  be  encoded only  after  all  the subsets 
have  been  obtained. Thus, coding  the skeleton subsets 
seems  better  suited  for  real-time  image  transmission, 
whereas  coding the skeleton function may be  better  for 
storage  purposes  since the skeleton function is a  more 
compact  representation.  We  next  determine,  for  each ap- 
proach,  the best technique  to  code  the skeleton informa- 
tion of test images,  and  then we compare  the best result 
of skeleton coding to directly coding  the original image. 
To conclude,  we  give  an  application  of skeleton image 
coding. At  this point we  emphasize that we will hence- 
forth deal  only  with  the globally minimal  skeleton.  One 
reason is that it guarantees  exact reconstruction of  the 
original image  and  one of its partial reconstructions,  i.e., 
its first  opening. In addition,  since it consiSts of  a minima1 
subset of skeleton  points,  the globally minimal skeleton 
will obviously lead to a  higher  compression efficiency than 
coding  the  original  skeleton. 

A .  Coding the Skeleton Subsets 
The skeleton subsets  of  an M ’  X M pixels binary image 

will also  be finite binary images,  of M x M pixels each. 
To  code  the  original  image  or its skeleton subsets,  we 

tried three coding  techniques:  block  coding, /runlength 
coding,  and  Elias  coding,  as  explained  below. 

Block-Hufian  Coding [lo] : According to Shannon’s 
theory of discrete  source  coding [29], we  consider  the  dis- 
crete binary image X U X‘ (image  object  and its back- 
ground) as  a  sample  function of a  2-D stochastic process 
characterized by joint probability distributions of all or- 
ders.  We  further partition the  image  in  1-D  or  2-D  blocks 
of P pixels each, which  cover the  entire  image  without 
overlap.  Clearly,  there  are 2‘ different such  blocks  and 
we  copsider  them as our  source  messages.  Let pi denote 
the probability (in  practice,  we  measure  frequency of oc- 
currence)  of  the ith block. Then,  the  Pth-order  joint en- 
tropy Hp (in  bitdpixel) of the binary  image is equal to 

2p 

H p  = - ( l /P )  C pi(10g2pi). (22) 

As is well known, H p  is a  nonincreasing  function  of P, 
and  the  limit as P -+ 00 is  the entropy of the stochastic 
source.  We can  employ  Huffman [ l  11 or  other subopti- 
mum codes [lo]  to code  these 2‘ different blocks  (mes- 
sages) at rates very  close to Hp.  Specifically, if RH,, de- 
notes the rate (in bitdpixel) achieved by Huffman  encod- 
ing of the  blocks,  then Hp 5 R H U F  < Hp + ( 1 / P )  [ 101. 
We  henceforth  refer to Huffman  encoding of blocks as 
“block-Huffman”  coding.  Since for  some  classes of im- 
ages  the skeleton is a  much  thinner binary image than the 
original,  then  its  Pth-order  joint  entropy  (and  hence,  the 
Huffman  rate to  encode it) will be  lower too: Table I11 
(look at  the  case of  coding  the skeleton function,  as ex- 
plained in Section IV-B) verifies the  above intuition for 
the 64 X 64 pixels test image of Fig.  7(a).  Henceforth, 
all  our results concerning  block-Huffman  coding will re- 
fer to coding  2-D  blocks  whose  size is P = 2 X 4 = 8 
pixels. For larger  values  of P ,  the number  of  Huffman 
codewords  exceeds 256 and,  hence, it becomes  imprac- 
tical for  tabie  lookup. 

Runlength-Huffman  Coding [lo]: The M X M pixels 
binary images  of 0’s and 1’s (with 0 = white  and 1 = 

i =  1 
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black) is scanned  line by line, and  blocks of L consecutive 
black  (respectively, white) pixels are  found,  where 1 4 
L I M .  These  1-D  blocks  are called black  (respectively, 
white) runs, and their length L is called the runlength. If 
we know the runlengths of  all  the  black  and  white  runs, 
which  obviously  alternate,  together with the first column 
of  the  image  (for identification of the first run on  each 
image line), then we know the whole  image.  Thus, we 
can  code  the  image by encoding  the runlengths, either by 
using  Huffman  codes  (which  are  optimum  among  all vari- 
able-length codes),  or  other suboptimum  codes [lo] to 
avoid  some  disadvantages  of  the  Huffman  codes  such as 
their high sensitivity to a  change of the  source  statistics. 
In using  Huffman  codes  for the runlengths, we can  either 
use  the  same  Huffman  code for both  black  and  white run- 
lengths or, reaching the upper  limit of optimality [ lo], use 
two  separate  Huffman  codes distinguishing between  black 
and  white  runlengths.  In this paper, we investigated both 
ways  of  Huffman  encoding  of  the runlengths for  both  the 
original image  and its skeleton subsets.  Table I11 shows 
the bit rates for runlength coding of the skeleton infor- 
mation,  where we see that the runlength coding rate for 
the skeleton function is smaller than the rate resulting from 
runlength coding of the  original  image.  In  the entries of 
Table I11 corresponding to runlength coding, we added  a 
constant equal to A4 bits (in the  case of  coding the subsets 
we added this constant only on the first subset),  because 
of the required image  column to identify black or white 
runs at the  beginning of each  line  of  an  encoded  image. 
However, we did not add  the extra bit rate required either 
for end-of-line synchronization,  or  for a symbol  separat- 
ing successive skeleton subsets. 

Elias Coding (61: Suppose that a binary image is very 
sparce consisting mainly of 0’s with  a  few 1’s.  We can 
concatenate  all  the  image lines to form  an M’-pixels im- 
age  vector  and  we find all the runs of 0’s of length L 1 
0. If  we  know all  these runlengths and separate them by 
some  symbol  marking the end  of  a run (equivalently, the 
presence of a l ) ,  then we  know the original image ex- 
actly. Elias’s idea was to code  these runlengths L of 0’s 
(viewed as decimal  numbers) by representing them using 
the m symbols of a m-ary arithmetic  system  and  a (m + 
1)th  symbol (referred to henceforth as  “comma”) to rep- 
resent the 1’s separating  the  consecutive runs of 0’s. For 
m = 1, the Elias  code is the  same as the original binary 
signal.  For m = 2, we  have  a binary system to represent 
the runlengths L.  Since,  however, the comma is an  extra 
symbol, the coded  sequence will be in ternary digits.  For 
m = 3 ,  the runlengths are represented in a ternary system 
and  Elias  code requires m + 1 = 4 different symbols 
which  can be obtained  using  a 2-bit code. Specifically, 
we  chose  the 4 required symbols “ 0 ,  I ,  2, comma” to 
correspond to the 2-bit codes 00 = “comma,” 01 = “0,” 
10 = “ I , ”  11 = “2.” Consider,  for  example,  the 40- 
bit binary sequence 

0000000000010000001000000011001000000001. 

The sequence  of runlengths L is 1 1, 6 ,  7 ,  0 ,  2, 8 and the 
Elias  code (m = 3) is 

100111 00 1101 00 1110 00 01 00 11 00 1111. 

The  coded  sequence is shorter  (32 bits) than the original, 
and this compression will increase with  the  average run- 
length. By using larger values of m,  provided that the bi- 
nary input sequence is very  sparse, we can further in- 
crease the compression efficiency up to certain limits 161. 

We  coded  the skeleton subsets of the globally minimal 
skeleton using Elias codes (m = 3) and,  for each skeleton 
subset,  after its last point had been  encoded, we trans- 
mitted two consecutive  commas to signal the  end of this 
subset and to separate  successive  subsets. In this way, the 
presence of an  empty skeleton subset manifests itself as 
four  consecutive  commas, By looking at the fast recon- 
struction algorithm (17) we  see  that,  before we  add the 
nth skeleton subset & ( X ) ,  we have already reconstructed 
( X  0 nBS)B.  By its definition, & ( X )  is disjoint from this 
previous partial sum  and  surrounds it from the outside 
since  the reconstruction in (17) has an  outward flow. 
Hence, we computed the runlength between  two  consec- 
utive points of $,(X) by skipping  over  all  the intervening 
points of the partial sum ( X  0 nBS)B.  This  technique, 
which we call masking, results obviously in shorter run- 
lengths  and,  consequently, in smaller bit rates using Elias 
codes,  since  the  number  of bits in Elias codes decreases 
logarithmically with the runlength. Table I11 contains 
some results which  show that Elias coding  of the skeleton 
subsets performed  better  than  any  other  method of coding 
the skeleton subsets or the original image  itself,  mainly 
because the skeleton subsets are very sparse images  for 
which Elias coding  performs  very  well.  Elias  coding  of 
the original image  performed  very  poorly, as expected, 
because of the  presence of too many consecutive 1’s which 
require a  lot  of  commas. 

B. Coding the Skeleton Function 
The skeleton function skf(X) of  a binary image X con- 

veys  two types of  information.  First, the location of skel- 
eton points,  and,  second, its values at such points which 
are related to the  indexes of the respective skeleton sub- 
sets.  Thus, we coded the skeleton function by coding first 
the whole skeleton SK(X),  which is a binary image, using 
block,  runlength,  or Elias coding, and then the graytone 
information (the values n + 1 for n = 0,  1, * * , N )  
using a  Huffman code.  The results for  the original test 
image  of  Fig. 7(a) are  shown in Table 111. There, we see 
that coding  the skeleton function using block or runlength 
coding  of  the  whole skeleton performs  better than coding 
the skeleton subsets or  the original image.  However, in 
the case of using Elias codes, the criterion for choosing 
between  coding the skeleton subsets or coding the skele- 
ton function should  be  other  than  their  compression effi- 
ciency,  because  both  methods  achieve  approximately the 
same  compression  ratio.  Again, Elias coding  was the best 
method to code  the binary image of the  whole skeleton. 

C. An Application 
In Fig. 1 l(a) we  see  a binary image  of 256 X 256 pixels 

showing  a  person  forming  a  symbol in a sign language. 
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I I 

Fig. 11. (a)  Original  binary  image of 256 X 256  pixels,  (b)  opening of (a) 
(65536 bits; after  skeleton  coding  5734 bits), (c)  image in (a)  decimated 
4 X 4 times and then  interpolated  (4096  bits;  after  skeleton  coding  1246 
bits), (d)  closing-opening  of  interpolated  image in (c) by a RHOMBUS 
element of size 2. 

This  image  was  obtained  by thresholding a low-detailed 
graytone  version. The interest in  this  kind  of  image  arose 
from  the  need to develop  a  videophone for visual com- 
munication  between  deaf  persons over  the public tele- 
phone  network  [30].  The  opening of the  image in Fig. 
l l (a)  by a  SQUARE  element i’s shown  in Fig. l l(b).  The 
original information  in  the  image of Fig. 1 l(b) is 65.5 
Kbits. Elias  coding  of  the globally minimal skeleton 
(using a  SQUARE  element)  of  the  image in Fig. 1 l(b) 
compressed it down  to 5.7 Kbits;  i.e.,  a compression ratio 
of 11.4 : 1. Runlength-Huffman  and  block-Huffman  cod- 
ing of the  images  in  Fig. l l (b)  gave  compression ratios 
of 8.3 : 1  and  5.1 : 1, respectively. If the quality criterion 
is only  the ability to recognize  the  hand  and  lip  shape in- 
formation in this sign image, we can  further  decimate  the 
image of Fig. 1 l(b) by a  factor  of  4 X 4  producing  an 
image  of  64 X 64 pixels image  whose interpolated ver- 
sion (repeating rows  and  columns  4 times) is shown in Fig. 
l l(c).  Furthermore,  Elias  coding of the skeleton infor- 
mation (using VEC090 as structuring element) on the  64 
X 64 pixels image  of  Fig. 1 l(c)  further compressed  the 
information  by  a  factor 3.3 : 1.  Also, omitting a few skel- 
eton subsets results in  a  compression ratio of  about  4 : 1 
for  smoother versions of  the  image  (openings).  Note that 
block-Huffman  and  runlength-Huffman  coding of the same 
uninterpolated image  gave  a  compression ratio of 3.5 : 1 
and 2.9 : 1, respectively. Thus,  for thin images containing 
isolated lines  and  points,  as  the  64 X 64 pixels image of 
Fig. 1 l(c), the. superior  compression. efficiency of the 
skeleton drops  down  and it becomes  comparable  with 
block  and  runlength  coding. The interpolated image of 
Fig. l l (c) ,  which  has  edges like  “stair  steps,” was 

smoothed  using  a  morphological  closing-opening . The 
smoothed  image is shown in Fig. 1 l(d). In going  from  the 
image of Fig. l l (a)  to the images  of  Fig. l l (c)  and (d), 
the information  has  been  compressed 16 X 3.3 = 53 
times.  The  images  of  Fig.  1  l(c)  or (d) after skeleton cod- 
ing can be encoded  using  1.2  Kbits. Hence, by using  a 
frame rate of  8-9  frames  per  second,  which  was  judged 
as sufficient in  [30],  one  could  transmit  moving  images of 
this  kind or other low-detailed scenes  over  telephone lines 
at  a  rate of 9.6 Kbits/s.  Moreover,  the skeleton represen- 
tation of these  images  facilitates  image filtering or en- 
hancement,  since it can  provide us with  eroded,  dilated, 
opened,  and  closed versions of the  original  images. 

D. Discussion  on Skeleton Coding 

The selection of  a structuring element  is  critical in skel- 
eton coding  as  Table  IV  shows.  Generally,  smaller  struc- 
turing elements  give  thinner  skeletons, but a  larger  num- 
ber of skeleton  subsets.  The question of how to choose 
the  “optimum”  structuring  element to achieve  the highest 
compression  of  the  image still remains open$. Assuming 
that the structuring element  that  minimizes  the  number of 
points in the skeleton was  the  best,  we  found the skeletons 
of  the  image  with respect to all  elements of Fig.  4, and 
then selected the  element giving the smallest number of 
skeleton points. Of course,  the  coding efficiency of  the 
skeleton depends not only on the  number  of its points, but 
also  on  their relative location.  However,  for practical pur- 
poses  and for  a  fast  decision  rule,  the  above  ‘criterion is 
relatively good; e.g.,  Table IV  shows that, searching for 
the skeleton with  the  fewest  points,  the  element  BOXNE 
is chosen  which gives the  skeleton  function  and  the skel- 
eton subsets with  the smallest bit rate. For coding the 
skeleton,  we  must also transmit  a negligible overhead  in- 
formation consisting of one bit for  signaling  whether the 
skeleton was  scanned horizontally or  vertically,  and  four 
bits for  the  choice of one (out of up to 16) structuring 
element. 

Table I11 indicates that  Elias  coding is the best way to 
code  the  skeleton,  and  this  combination  achieves  a  higher 
compression  than  “optimum”  block-Huffman or  mn- 
length-Huffman  coding  of the  original  image. By “opti- 
mum”  we  mean  a  Huffman  code  optimized  for one spe- 
cific image  and not based  on  the  average  statistics of a 
large  class  of  images.  Therefore, in practice,  the bit rates 
achieved by block or runlength  coding will be  higher than 
the results presented in this  paper. In contrast, Elias cod- 
ing is  a very  simple  code to implement,  and its imple- 
mentation  does not depend  on the source  statistics, as the 
Huffman  code  does.  Previous  researchers,  however, spec- 
ulated that  coding the  skeleton [24] or  the medial axis [22] 
will not perform  better  than  boundary or runlength  encod- 
ing,  respectively, of the  image.  The  discrepancy  between 
our results favoring  skeleton  coding  and  their  speculations 
seems to  lie  in  the fact that their arguments  were solely 
based  on the  number  of  skeleton  points. In addition to  the 
standard techniques for binary image  coding to which 
skeleton coding  was  compared in this  paper,  there  are also 



1242 IEEE  TRANSACTIONS ON ACOUSTICS, SPEECH,  AND SIGNAL PROCESSING, VOL. ASSP-34, NO. 5 ,  OCTOBER 1986 

TABLE IV 
CODING  EFFICIENCY OF GLOBALLY  MINIMAL  SKELETON  VERSUS  STRUCTURING  ELEMENT  [64 x 64 

PIXELS  TEST  IMAGE OF FIG. 7(a)] 

Max Skeleton  Number of Number of Bits ’ Number of Bits 
Structuring Subset Skeleton for” Skeleton for” Skeleton 

Element Index Points Subsets Function 

CIRCLE 3 
SQUARE  7 
RHOMBUS 7 
BOXNE 14 
LINOOO 13 
LINO9O X 
VECOOO 26 
VEC090  16 

”Using Elias  code (rn = 3). 

77 
61 

149 
49 
x3 

135 
63 

102 - 

other  techniques  which  have recently attracted interest. 
One  such  technique is quadtree representation and coding 
of binary images (briefly reviewed in [26]). Although  a 
comparison  between skeleton and  quadtree  coding is be- 
yond the scope  of  this  paper,  we point out  two differences 
between quadtrees and  skeletons.  The  quadtree represen- 
tation of a binary image is  shift-varying,  whereas the mor- 
phological skeleton is shift-invariant. In addition,  quad- 
trees  are not redundant,  whereas skeletons generally 
contain some  redundancy  because of the  overlapping be- 
tween  maximal  disks. Of course,  the globally minimal 
skeleton is  not redundant  with respect to the skeleton 
points needed  for  exact  reconstruction. 

Instead of  using  a fixed structuring element  over  the 
whole  image, we also tried to vary  the structuring element 
by segmenting the image  and adaptively finding different 
elements  that  performed  better over different segments  of 
the image.  However,  the results in  terms of coding effi- 
ciency  were not good  enough to justify the above  adap- 
tation. 

V. CONCLUSIONS 
Morphological set erosions  and dilations can be imple- 

mented  simply and fast  using  only parallel shifting and 
logical ANdORing  of the image.  Using erosions and  di- 
lations,  which  are  the prototypes of any increasing and 
translation-invariant system as shown in [ 161,  and [ 171, 
and  the  concept of a structuring element,  which general- 
izes the  concept  of  distance  and  neighborhood, we can 
obtain  the  morphological skeleton of a binary image, 
which unifies many previous  approaches to skeletoniza- 
tion. The  morphological skeleton is a translation-invari- 
ant,  antiextensive,  idempotent set transformation which 
admits  an  inverse. Thus,  a finite image  can be decom- 
posed  into  a finite number  of skeleton subsets and exactly 
reconstructed from  them.  We  developed fast algorithms 
for skeleton decomposition  and reconstruction which re- 
duce  the original quadratic complexity to linear. By omit- 
ting some skeleton subsets, we quantified the partial re- 
constructions (smoothed,  shrunk,  or  expanded versions) 
of the original image.  Some theoretical properties of  the 
skeleton were  investigated; specifically, theorems 1 and 
2 in Section 111-E shed  some light in the use  of  the skel- 

568 662 
510  548 

1008 1310 
496  498 
672  63  1 
782 1047 
592  618 
696 826 

eton as  a set transformation that quantifies shape  and size 
in binary images.  The  concepts  of  a globally and locally 
minimal skeleton were  introduced  and  investigated. By 
developing appropriate fast algorithms, we found that the 
minimal  skeleton may have  more than 50 percent fewer 
points than  the original skeleton and still guarantee  exact 
reconstruction. 

Exploiting the  fact that the skeleton is thinner than the 
original image,  we  coded  the skeleton subsets and the 
skeleton function using block-Huffman, runlength-Huff- 
man, and Elias coding. By using  each  of these three meth- 
ods for binary image  coding,  encoding  of  the skeleton in- 
formation  gave  higher  compression (except for  block  and 
runlength coding  of  the subsets) than directly coding  the 
original image.  The best method to encode the location of 
skeleton points was  Elias  coding  combined  with  a tech- 
nique that we developed called masking; this combination 
gave  compression ratios of 8.3 : 1 (0.12  bitdpixel)  for 
regularly shaped  images [test image  of Fig. 7(a)] and 
11.4: 1 (0.09  bitdpixel)  for irregularly shaped  images 
[sign image of Fig. 1 l(b)] containing blobs.  Omitting  a 
few skeleton subsets results in higher  compression.  For 
the above  two  images,  the  compression  achieved by skel- 
eton coding represents a respective 90 and  124 percent 
increase  over  optimum  block  coding  of  the original im- 
ages, which  gave  compression ratios of 4.3 : 1 and 5.1 : 1, 
respectively. Similarly, the above  compression of skele- 
ton coding represents a respective 69  and 37 percent in- 
crease  over  optimum  runlength  coding  of  the  originals, 
which  gave  compression ratios of 4.9 : 1 and 8.3 : 1, re- 
spectively.  Similar results favoring the skeleton coding 
were  obtained  for  images  of cells containing big areas. 
However,  the  superior  compression efficiency of  the skel- 
eton drops for thin images consisting mainly of lines and 
points without  thickness,  and  becomes  comparable to op- 
timal block-Huffman and runlength-Huffman coding. Two 
other  advantages of skeleton coding are  the inherent abil- 
ity of  the skeleton for partial reconstructions and  for  a 
progressive image transmission scheme (see also [7]) that 
is aesthetically pleasing.  Clearly,  block  or runlength cod- 
ing offer only exact reconstruction and  are not at all pro- 
gressive in reconstructing the  image  at  the  receiver.  Cod- 
ing the skeleton subsets is faster  and  better suited for real- 



, time  image  transmission,  whereas  the skeleton function is 
a  more  compact representation for  image  storage.  The  se- 
lection of the best (for  coding  purposes) structuring ele- 
ment  among  a finite menu  was done by choosing the ele- 
ment  giving  the skeleton with the fewest  points,  although 
this criterion is not optimum. 

APPENDIX 
PROOFS OF THE PROPERTIES AND THEOREMS IN SECTION 

Proof of Property 2: Since (0) c B, from (lo), S, + I 

c X 0 (n + l)BS c ( X  0 nBS)B.  Since ( X  0 nB’), n 
S,  = 0, we  have S,  n S , ,  I = 0 for  all n. Q.E.D. 

a) [SK(X,)] = [ S K ( X ) ] ,  because of the translation in- 

b) S, C X 0 nBs C X .  Hence, S K ( X )  E X .  
c) Known is  that (0) E B <=> z E B, for  all z .  Let z 

E & ( X )  with n > 0 (assume N > 0, because  otherwise 
S K ( X )  = X ) .  Then, { z }  0 B = B, C ( X  0 nBS) 0 B = 

1. Also, since z 6 X 0 (n + l ) B s ,  there is a point a E B, 
such that a 6 X 0 nBs. Hence, a 6 S ,  for all m I n. 
Therefore, B, cannot be totally contained in SK(X) for any 
z .  Thus, S K ( X )  0 BS = 0. Hence, because of property 
( 1  b), SK[SK(X)]  = S K ( X )  . Q.E.D. 

Lemma I : If (nB), is maximal  in X ,  then z E & ( X ) .  
Proof: If (nB), is maximal,  then (nB), E X <=> z E 

X 0 nBs. Suppose  that z 6 S, .  Then, z E ( X  0 nBS)), 
<=> there  exists  a point y such  that z E By C X 0 nBS.  
Thus, { z )  0 nB = (nB), C By 0 nB = [(n + 1)B], C 
X 0 nBs 0 nB = X,,, C X .  Hence, (nB), G [(n + 1)B], 
C X .  This  contradicts  the  assumption that (nB), is maxi- 
mal in X .  Hence, z E s,,. Q.E.D. 

Lemma 2: If B is bounded  and  convex, then z E & ( X )  
(skeleton subset obtained  with respect to B) implies that 
(nB), is maximal  in X .  

Proof: Let z E S,, => z 6 ( X  0 nBS)B.  Suppose (nB), 
is not maximal in X .  Then,  there exists a point y and m 
> n such  that (nB), C (mB), C X .  Since B is convex  and 
bounded (see Matheron [19, p. 21]), (mi?), 0 nBS = ( [m  
- n)B]jfBs is equal to [ (m  - n)B],. Hence, z E [(m - 
n)B], C X 0 nBs which implies that z E ( X  0 nBS)( ,  - n)B 

C ( X  0 nBS)B since (m  - n) 2 1 (see Serra [28,  p. 541). 
However, this contradicts  the fact that z does not belong 
to ( X  0 nBS)B. Hence, (nB), is maximal  in X .  Q.E.D. 

Lemma 3: If So = SI = * = S k -  I ( X )  = 0, then 

Proof: Results from (12) and (19). Q.E.D. 
Lemma 4: If B is bounded  and  convex and X is convex, 

then XkB = X implies that & ( X )  = 0 for n = 0, 1 ,  2, 

Proof: Since X and B are  convex, then X 0 nBS and 
(X 0 nBS), are  convex  sets.  Since X = &, then X,,, I ) B  

= X,,, for  all n such that 0 I n < k (see [28,  pp. 53, 
541). Then ( X  8 nBS)  0 nB = ( X  0 ni lS ) ,  0 nB. Hence, 

111-E 

Proof of Property 3: 

variance  of  the  set  operations  involved. 

[x 0 (n - l)Bs]l,.  Thus, B, n S k  = 0 for d l  k 5 - 

XkB = x. 

. . .  , k - 1 .  

211, we  have  that X 0 nBS = ( X  0 nBS)B, and thus, 
& ( X )  = 0 for  all  such n such that 0 5 n < k.  

Q.E.D. 
By combining  lemmas 1, 2, and 3, 4 we  obtain, 

respectively,  the proofs of theorems  1  and  2 of Section 
111-E. 
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