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ABSTRACT - This paper reviews some recent advances
in the theory and applications of morphological image anal-
ysis. In applications, we show how the morphological filters
can be used to provide simple and systematic algorithms for
image processing and analysis tasks as diverse as nonlinear
image filtering; noise suppression; edge detection; region fill-
ing; skeletonization; coding; shape representation, smooth-
ing, and recognition. In theory, we summarize the represen-
tation of a large class of translation- invariant nonlinear fil-
ters (including morphological, median, order -statistics, and
shape recognition filters) as a minimal combination of mor-
phological erosions or dilations; these results provide new
realizations of these filters and lead to a unified image alge-
bra.

1 Introduction
Digital image processing and analysis in the U.S.A. was de-
veloped from the 1960's motivated mainly by problems in
remote sensing and scene analysis; its main mathematical
tools included classical linear filters, Fourier analysis, and
statistical or syntactic pattern recognition. Parallel to and
independently from these ideas, mathematical morphol-
ogy evolved in Europe from the 1960's as a set -theoretic
method for image analysis motivated mainly by problems in
quantitative microscopy; its mathematical tools are related
to integral geometry and stereology. The theoretical foun-
dations of mathematical morphology, its main image opera-
tions (which stem from Minkowski set operations [1,2]) and
their properties, and a wide range of its applications were in-
troduced systematically by Matheron [3] and Serra [4]. The
image operations of mathematical morphology, which we call
morphological filters, are more suitable for shape analysis
than linear filters. Many of the well -established applica-
tions of morphological filters are in broad areas including
biomedical image processing, metallography, geology, geog-
raphy, remote sensing, astronomy, and automated industrial
inspection [4,5,6,7,8].

Recently [9,10,11,12,13] mathematical morphology was
applied to standard areas of macroscopic image processing
and analysis such as nonlinear image filtering; edge detec-
tion; noise suppression; shape representation, smoothing,
and recognition; skeletonization; coding; and the develop-
ment of a theory for a unified image algebra. In this paper
we shall briefly review these recent advances. Although,
there are many different techniques for solving these prob-
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lems (e.g., see [14,15,16] for reviews), our only aim is to
show that a variety of tasks in image processing /analysis
can be approached or solved using morphological concepts,
and that many algorithms can be expressed compactly and
systematically in terms of morphological filters.

2 General Concepts
In the Appendix we give the definitions of the basic morpho-
logical filters for discrete (i.e., sampled) images. These are
nonlinear translation -invariant image or signal transforma-
tions that locally modify the geometric features of signals
such as their peaks and valleys; they involve the interaction,
through set operations, of the graph (and its interior) of sig-
nals and some compact sets of rather simple shape and size,
called the structuring elements. To better understand the
similarities and differences between morphological filtering
of binary and graytone images, we use the following formal-
ism.

Binary discrete images are represented by 2 -D sets in
the discrete plane Z2, where Z is the set of integers and R
is the set of real numbers. Graytone discrete images are
represented by 2 -D functions whose domains are subsets of
Z' and ranges are subsets of R. Thus, henceforth, set will
imply a binary image, whereas function will refer to a gray -
tone image. Since morphological filters are defined through
set operations, the main concept here is sets. Hence, a 2 -D
graytone image function f (x), z E Z2, is also represented by
a family of 2 -D sets (binary images). That is, by threshold -
ing f at all possible amplitudes t E R we generate a family
of 2 -D sets

Xt(f) _ {x E Z2 : f (x) > t } , t ER, (1)

which are called the cross -sections of f . The sets Xt(f) are
decreasing as t increases; i.e., t2 >_ ti Xt2(f)ÇXt1(f).
Further, we can reconstruct exactly f if we know all its
cross- sections [4,11]. Set union and intersection of the cross -
sections of two functions f and g correspond, respectively, to
the nonlinear function operations of pointwise maximum
and minimum; i.e., Xt(f) U Xt (g) = Xt(f V g) and Xt(f) f1
Xt(g) = Xt(f A g), where (f V g)(z) = max[f(x),g(z)]
and (f A g) (z) = min[ f (z), g(z)]. Set inclusion of cross -
sections corresponds to an ordering of functions; i.e.,
Xt (f )Ç Xt (g) Vt E R . . f < g, where "f < g" denotes
f(z) g(x) `dx E Z2.

An image processing system whose input and output are
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binary images is called a 2 -D set -processing (SP) filter.
Likewise, a system that transforms an input graytone to an
output graytone image is called a 2 -D function -processing
(FP) filter. A subclass of FP filters can produce an output
binary image when the input is also binary; these are called
2 -D function- and set -processing (FSP) filters. We also
use the same definitions for filters processing binary or mul-
tilevel signals of any dimensionality. Tables 1,2,3 in the Ap-
pendix give the definitions of various nonlinear SP, FP, or
FSP filters.

The simplest SP morphological filters are the erosion, di-
lation, opening, and closing of a set by a finite structuring set
(see Table 1). Figure 1 shows that erosion of a 2 -D set X (bi-
nary image of an island) in R2 by a compact set B (a struc-
turing disk) shrinks X, whereas dilation expands it. Erosion
and dilation are dual filters; i.e., X ®B = (XceB)c. The
opening and closing smooth the contours of X from the in-
side and outside, respectively, so that always XBC XÇ XB.
Moreover, the opening suppresses the sharp capes and cuts
the narrow isthmuses of the image object X, whereas the
closing fills up its thin gulfs and small holes. Opening and
closing are dual filters, because XB = [(XC)B]c.

Parallel to the evolution of all these morphological fil-
ters in [3,4], since the 1960's there have been many other
researchers who have been using similar operations of the
shrink /expand type (or cascades of shrink /expand's) for dig-
ital (binary) image processing and for cellular array comput-
ers designed for image analysis. (See [17,15] for surveys of
these approaches.)

The morphological filters have been extended to func-
tions too [4,5,6,11,18,19,20]. Table 2 contains the most gen-
eral morphological FP filters; these involve the morphologi-
cal convolution (max of sums and /or min of differences) of
a function f with a structuring function g that has a finite
region of support. However, the simplest morphological fil-
ters for graytone images, which have also received the most
attention so far, are the FSP filters of Table 3. These FSP
filters are the erosion (local min), dilation (local max), open-
ing (local min /max), and closing (local max /min) of a 2 -D
function f by a 2 -D finite structuring set A; they result as
simple cases of the general FP filters of Table 2 by using
a binary structuring function g whose region of support is
equal to A. Figure 2 shows that the erosion of a function
f (x), x E Z, by a finite set BC Z broadens the minima of
f, whereas dilation broadens the maxima. The opening of
f by B cuts down the peaks of f, whereas the closing fills
up its valleys, so that always fB < f < 113. Thus the FSP
erosion and dilation of a function by a small set can detect
the minima and maxima of the function; the FSP opening
and closing can detect the peaks and valleys of the func-
tion, or suppress impulsive noise from signals in cases where
the noise manifests itself as random patterns of positive and
negative noise spikes.

All the FSP filters of Table 3 enjoy an important prop-
erty: they commute with thresholding. That is, let 4
denote such a FSP filter and let denote its respective SP
filter. Then, we say that commutes with thresholding iff

(1.[Xt(f)1 = Xt[0(f)] , Vt E R, (2)

for all functions f . That is, if 4) is applied to all the cross -
sections of f, then its outputs are identical to the cross -
sections of the output of 0, where 0 operates on the input
f. In this way, the filtering of a multilevel signal reduces
to a stack of filters for binary signals, which are easier to
analyze and implement. For example, if ç(f) = f ®A is the
FSP Minkowski function addition with A, its respective SP
system is 4)(X) = X ®A, i.e., the Minkowski set addition
with A, and we have that [Xt(f)] ®A= Xt(f ®A) 'It E R.

Finally, examples and interpretations of morphological
filtering of a function f by a multilevel structuring function
g (i.e., the FP filters of Table 2, which do not commute with
thresholding), as well as detailed properties of the basic SP
and FP morphological filters can be found in [4,6,11,13,20].

3 Unified Image Algebra
In [10,11] we introduced a general theory to unify many
concepts encountered in signal processing and image analysis
and to represent a broad class of nonlinear and linear SP
and FP filters as a minimal combination of morphological
erosions or dilations. This theory applies to filters processing
signals of any dimensionality and of both continuous and
discrete argument or amplitude. However, in this paper we
summarize (in a simplified way) the main results of this
theory only for discrete images.

Consider any 2 -D SP filter W that is defined on the class
P(Z2) of all subsets of Z2. The filter is called translation -
invariant (TI) iff W(Xp) _ [W(X)]p, VXÇ Z2, tip E Z2.
IF is called increasing iff AC B P(A)C W(B), for any
A, BC Z2. An increasing SP filter is upper semicontin-
uous (u.s.c.) iff, for any decreasing sequence (Xn,) of in-
put sets (i.e., Xn + 1Ç Xn), nn W(Xn) _ W (fn Xn). The
dual (with respect to set complementation) filter of W is
defined as W *(X) = [AY(Xc)]c, XC_ Z2. Any TI filter 'Y is
uniquely characterized by its kernel that is defined in [3] as
the (infinite) subclass K(OP) = {XC Z2 : 0 E W(X)} of input
sets. The pair (K(W), Ç ) is a partially ordered set (poset)
with respect to set inclusion C . A minimal element of
(K (W), Ç) is any set G E KR) that is not preceded (with
respect to C_ ) by any other kernel set. In [10,11] we defined
the basis BR) of the TI filter W as the set of all its minimal
kernel elements, and we showed that the basis exists (i.e., is
nonempty) if W is increasing and u.s.c. The importance of
the basis is revealed by the following theorem.

THEOREM 1. [10,11] (SP Filters). Let W : P(Z2) -4
P(Z2) be a 2 -D discrete SP filter that is TI, increasing, and
u.s.c. Then can be represented exactly as the union of
erosions by its basis sets. Further, if its dual filter le* is
u.s.c., Ili can be also represented exactly as the intersection
of dilations by the basis sets of l*. That is, VXC Z2,

W(X) = U X-G8 = n X ®H8 (3)
G E B (W) H E B0111

We extended in [10,11] the kernel and basis representa-
tion to FP filters in the following way. Let tb be a 2-D FP
filter defined on the class Y of all real -valued functions whose
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invariant (TI) iff tfpfp) = [*(X)]p, VXCZ2 , Vp 6 Z2 . 
^ is called increasing iff AC B =» #(A)C V(B), for any 
A,BC. Z2 . An increasing SP filter ^ is upper semicontin- 
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the basis is revealed by the following theorem.

THEOREM 1. [10,11] (SP Filters). Let # : P(Z2 ) -> 
P(Z 2 ) be a 2-D discrete SP filter that is TI, increasing, and 
u.s.c. Then V can be represented exactly as the union of 
erosions by its basis sets. Further, if its dual filter #* is 
u.s.c., *& can be also represented exactly as the intersection 
of dilations by the basis sets of V*. That is, VXC Z2 ,

= U p| X<&Ha (3)

We extended in [10,11] the kernel and basis representa­ 
tion to FP filters in the following way. Let ^ be a 2-D FP 
filter defined on the class / of all real-valued functions whose
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domains are subsets of Z2. Then t, is called translation -
invariant (TI) iff t,b[f(x - y) + e] = [W(f)](x - y) + c,
Vf(x) E F, Vy E Z2, Vc E R. That is, z(' is TI iff it com-
mutes with a shift of both the argument and the amplitude
of its input functions. Such a TI filter is uniquely character-
ized by its kernel that we defined as the (infinite) subclass
K (0) = { f E F : [W (f MO) >_ 0} of input functions. The
pair (K(0), <) is a poset with respect to the function or-
dering <. A minimal function -element in (K(0),<) is a
function g E K(0) that is not preceded (with respect to
function <) by any other kernel function. We defined the
basis B (W) of 0 as the set of its minimal kernel functions.
A FP filter t/' is increasing iff f < g 'W(f). < W(g),
for any f,g E F. An increasing FP filter t& is u.s.c. iff,

for each decreasing sequence (fn) of input functions (i.e.,
In +1 <_ fn) with f (x) = infn{ fn(x)} Vx, we have that
[0(f)](x) = infn {[tk(fn)](x) }. The basis of any TI, increas-
ing, u.s.c. FP filter exists and can exactly represent it, as
explained below.

THEOREM 2. [10,11] (a) -(Any FP filter). Let t,b :

F -4 3 be a 2 -D discrete FP filter that is TI, increas-
ing, and u.s.c. Then W can be represented exactly as the
pointwise supremum of erosions by its basis functions; i.e.,
Vf E F, dx E Z2,

[ &(f)](x) = sup {(fegs)(x)} (4)
g E B (W)

(b) -(FSP filters). Let 0 : F -* I be a FSP 2 -D discrete
TI filter and let 11) be its respective SP filter. If 0 commutes
with thresholding and the dual SP filter 0* is u.s.c., then 0
can be represented exactly as the supremum of erosions by
the basis sets of 4i and also as the infimum of dilations by
the basis sets of (I)*; i.e.,

0(f)(x) =
G E

sup
{f

eG5(x)} =
Ei8(

{f ®H8(x)}

(5)
Note that in Theorem 2b we omitted the assumptions

about 0 and ' being increasing and u.s.c. The reason is that
the assumption about 0 being a TI FSP filter commuting
with thresholding is sufficient to show that is TI and that
both , and 4i are increasing and u.s.c.; hence (1)* is also TI
and increasing.

In the next section we will apply the general Theorems 1,2
to some special cases of nonlinear filters for discrete images.

4 Morphological, Median, and OS
Filters

Median and, their generalization, order -statistics (OS) fil-
ters are nonlinear TI filters that have recently become pop-
ular for smoothing and enhancement of image and speech
signals. (See [14,211 for reviews.) Let WC Z2 be a finite set
with n points; i.e., I W n. As defined in Table 3, for
k = 1, 2, ... , n, the output of the FSP k -th OS filter by W
at any location x E Z2 is obtained by sorting at descending
order the n values of the input function f inside the shifted
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window Wx and picking the k -th number from the sorted
list. If n is odd and k = (n + 1)/2 we have the special case
of the median filter med (f ; W) of f by W. The respec-
tive OS and median SP filters are defined in Table 1; their
definition involves only counting of points and no sorting.

The theoretical analysis of these useful filters becomes
intractable beyond a small number of quantitative results,
because all the well -known tools from the theory of linear
filters do not apply here since these filters are nonlinear
and have a nonzero memory. However, by using math-
ematical morphology and the theory of minimal elements
(section 3), we developed in [10,11] a framework that facili-
tates the theoretical analysis of these filters, related them
to morphological filters, and provided some new realiza-
tions for them. Specifically, from their definitions it is clear
that the FSP or SP first (k = 1) OS filter by W is iden-
tical to the FSP or SP dilation by W; likewise, the last
(k = n) OS filter is identical to the erosion by W. Fur-
ther, OS and median filters commute with thresholding; e.g.,
Xt[med(f;W)] = med[Xt(f);W], Vt E R. The FSP mor-
phological filters of Table 3 commute also with thresholding.
This property allows us to study all the FSP filters of Ta-
ble 3 for graytone images by focusing on their respective SP
filters of Table 1 for binary images; further, the SP filters
are easier to analyze and implement. From these general
concepts we showed in [10,11] that

(A) All FSP filters of Table 3 and their respective SP fil-
ters of Table 1 are TI, increasing, and u.s.c. Hence their ba-
sis exists and exactly represents them through Theorems 1,2.

(B) Let AC Z2 be finite with I A I= m. The basis of
the SP erosion by A has one element, the set A. The basis
of the SP dilation by A has m elements, the one -point sets
{a} with a E A. The basis of the SP opening by A has m
elements, the sets A_a with a E A. The basis of the SP
closing by A is the set of all minimal subsets M of AGMs
such that 0 E MA.

(C) The basis of the SP k -th OS filter by WC Z2 (I W I=
n) is the set of all subsets G of W with I GI= k. If n is odd,
the basis of the SP median by W is the set of all subsets M
of W with I M I= (n + 1)/2. The dual filter of the SP k -th
OS by W is the (n -k + 1) -th OS filter by W. Thus, from
Theorem 2b, OS k (f ; W) is equal to the maximum of the
local minima of f inside all GC W with I G I= k and also
equal to the minimum of the local maxima of f inside all
HC W with I H I= n -k +1. For the median med(f;W) we
obtain the same representation with the only difference that
the subsets G and H are identical because k = (n + 1)/2.

(D) Let AC Z be convex with I A I= n + 1, n > 1,
and let WC Z be convex and symmetric (W = W8) with
W I= 2n + 1. Then, for any 1 -D function f (x), x E Z,

(i) Openings and closings by A are lower and upper bounds
of medians by W; i.e., fA < med(f;W) < fA.

(ii) A finite extent signal f is a fixed point (root) of the
median by W iff it is a root of the opening and closing
by A; i.e., f = IA= fA f = med(f;W).

(iii) Let medl°°l (f ; W) denote the median root obtained

domains are subsets of Z 2 . Then ^ is called translation- 
invariant (TI) iff 0[/(x - y) + c] = ty>(/)](x - y) + c, 
V/(x) G J, Vy G Z 2 , Vc G R. That is, V> is TI iff it com­ 
mutes with a shift of both the argument and the amplitude 
of its input functions. Such a TI filter is uniquely character­ 
ized by its kernel that we defined as the (infinite) subclass 
K($) = {f G 7 : [V>(/)](0) > °> of inPut functions. The 
pair (K(0)><) is a poset with respect to the function or­ 
dering <. A minimal function-element in (K(^>),<) is a 
function g G K(V? ) that is not preceded (with respect to 
function <) by any other kernel function. We defined the 
basis B (ip) of ^ as the set of its minimal kernel functions. 
A FP filter ^ is increasing iff / < g => ^(/) < $(g), 
for any f,g G 7. An increasing FP filter if> is u.s.c. iff, 
for each decreasing sequence (fn) of input functions (i.e., 
/n .f 1 < fn) with f(x) = mfn{fn(x)} Vx, we have that 
[^(/)](x) = infn{[^(/n)](z)}. The basis of any TI, increas­ 
ing, u.s.c. FP filter exists and can exactly represent it, as 
explained below.

THEOREM 2. [10,11] (a)-(Any FP filter). Let $ : 
? -* 7 be a 2-D discrete FP filter that is TI, increas- 
ing, and u.s.c. Then ^ can be represented exactly as the 
pointwise supremum of erosions by its basis functions; i.e., 
V/ G 7, Vx G Z2 ,

= sup {(/0/)(x)} (4)

(b)-(FSP filters). Let </> : 7 -> 7 be a FSP 2-D discrete 
T I filter and let $ be its respective SP filter. If <t> commutes 
with thresholding and the dual SP filter $* is u.s.c., then <f> 
can be represented exactly as the supremum of erosions by 
the basis sets of $ and also as the infimum of dilations by 
the basis sets of $*; i.e.,

*(/)(*)= sup {feGs (x)}= inf {f®Hs (x)}
GeS($) He8($*)

(5)
Note that in Theorem 2b we omitted the assumptions 

about (j> and $ being increasing and u.s.c. The reason is that 
the assumption about </> being a TI FSP filter commuting 
with thresholding is sufficient to show that $ is TI and that 
both </> and $ are increasing and u.s.c.; hence $* is also TI 
and increasing.

In the next section we will apply the general Theorems 1,2 
to some special cases of nonlinear filters for discrete images.

4 Morphological, Median, and OS 
Filters

Median and, their generalization, order-statistics (OS) fil­ 
ters are nonlinear TI filters that have recently become pop­ 
ular for smoothing and enhancement of image and speech 
signals. (See [14,21] for reviews.) Let WC Z2 be a finite set 
with n points; i.e., | W |= n. As defined in Table 3, for 
k = 1,2, ... ,n, the output of the FSP fc-th OS filter by W 
at any location x G Z2 is obtained by sorting at descending 
order the n values of the input function / inside the shifted

window Wx and picking the fc-th number from the sorted 
list. If n is odd and k = (n + l)/2 we have the special case 
of the median filter med(f\W) of f by W. The respec­ 
tive OS and median SP filters are defined in Table 1; their 
definition involves only counting of points and no sorting.

The theoretical analysis of these useful filters becomes 
intractable beyond a small number of quantitative results, 
because all the well-known tools from the theory of linear 
filters do not apply here since these filters are nonlinear 
and have a nonzero memory. However, by using math­ 
ematical morphology and the theory of minimal elements 
(section 3), we developed in [10,11] a framework that facili­ 
tates the theoretical analysis of these filters, related them 
to morphological filters, and provided some new realiza­ 
tions for them. Specifically, from their definitions it is clear 
that the FSP or SP first (k = 1) OS filter by W is iden­ 
tical to the FSP or SP dilation by W] likewise, the last 
(k = n) OS filter is identical to the erosion by W. Fur­ 
ther, OS and median filters commute with thresholding; e.g., 
Xt [med(f]W)] = mcd[Xt (f)',W], Vt G R. The FSP mor­ 
phological filters of Table 3 commute also with thresholding. 
This property allows us to study all the FSP filters of Ta­ 
ble 3 for graytone images by focusing on their respective SP 
filters of Table 1 for binary images; further, the SP filters 
are easier to analyze and implement. From these general 
concepts we showed in [10,11] that

(A) All FSP filters of Table 3 and their respective SP fil­ 
ters of Table 1 are TI, increasing, and u.s.c. Hence their ba­ 
sis exists and exactly represents them through Theorems 1,2.

(B) Let AC, Z2 be finite with | A \= m. The basis of 
the SP erosion by A has one element, the set A. The basis 
of the SP dilation by A has m elements, the one-point sets 
{a} with a G A. The basis of the SP opening by A has m 
elements, the sets A a with a G A. The basis of the SP 
closing by A is the set of all minimal subsets M of A®AS 
such that 0 G MA .

(C) The basis of the SP Ar-th OS filter by WC Z2 (| W |= 
n) is the set of all subsets G of W with | G \= k. If n is odd, 
the basis of the SP median by W is the set of all subsets M 
of W with | M |= (n + l)/2. The dual filter of the SP Jk-th 
OS by W is the (n - k + l)-th OS filter by W. Thus, from 
Theorem 2b, OS'c (f]W) is equal to the maximum of the 
local minima of / inside all GC W with | G \= k and also 
equal to the minimum of the local maxima of / inside all 
HC W with \H\=n-k + I. For the median med(f\ W) we 
obtain the same representation with the only difference that 
the subsets G and H are identical because k = (n + l)/2.

(D) Let AC Z be convex with | A |= n + 1, n > 1, 
and let WCZ be convex and symmetric (W = Ws) with 
| W \= 2n + 1. Then, for any 1-D function /(x), x G Z,

(i) Openings and closings by A are lower and upper bounds 
of medians by W] i.e., fA < med(f; W) < fA .

(ii) A finite extent signal / is a fixed point (root) of the 
median by W iff it is a root of the opening and closing 
by A; i.e., f = fA = f

(iii) Let med^(fjW) denote the median root obtained

66 / SPIE Vol. 707 Visual Communications and Image Processing (1986)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/21/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



by iterating (a finite number of times) the median
filter by W on a finite extent 1 -D signal f . Then
the open -closing (opening followed by closing by the
same set) (fA)A and the clos- opening (closing fol-
lowed by opening) (fA)A are median roots with re-
spect to W and they bound med(°°) (f ; W) since

IA < (fA)A < med(°°)(f;W) < (fA)A < fA

(iv) Similar results as in (i,ii) were obtained for 2 -D open -
ing /closing and median filters.

Next we illustrate some of the results in (A),(B),(C),(D)
through the following simple example. Let A = {0, 11 and
W = {- 1,0,1 }. Consider the SP opening 4?(X) = XA,
XC_ Z; its dual SP filter is the closing (1,* (X) = XA. Then
the basis of 4i has two minimal elements, the sets {0,1}
and { -1,0 }. The basis of 4?* has two elements, the sets
{0} and {-1, 1}. Thus, from Theorem 2b, the FSP opening
(f) = fA is a maximum of erosions by the basis sets of <1.
and a minimum of dilations by the basis sets of 40*; i.e.,

fA(x) = max {min[ f (x - 1), f (x)] , min[ f (x), f (x + 1)]}
= min{ f (x) , max[ f (x - 1), f (x + 1)]} (6)

for any function 1(x), x E Z. Since opening and closing
are dual filters, if we interchange max and min everywhere
in (6) we obtain a formula for the closing fA. The basis of
the SP median by W has three elements, the sets { -1,0 },
{ -1,1} and {0,1 }. Thus, from Theorem 2b,

min[f (x - 1), f(x)1
med[ f (x- 1),1(x), f (x +1)] = max min[ f (x - 1), f (x + 1)]

min[ f (x), f (x + 1)]
(7)

Because the SP median is equal to its dual filter, we can
interchange min and max in (7). From (6) and (7) it follows
that fA < med(f;W) < fA, in agreement with result (D -i).

Figure 3 compares the nonlinear smoothing results of 1-
D open -closings, clos- openings, and iterated medians. Fig-
ure 3a shows an original 1 -D function (an image intensity
profile) containing many narrow peaks and valleys; Figs. 3b,c
show the open -closing and clos- opening of f by a 3- points
set L; Fig. 3d shows the median root g obtained by iterat-
ing four times a median filter by a 5- points window B. The
open -closing (and clos- opening) by L is a median root with
respect to B, smooths the signal very similarly to the me-
dian root g, lies close to g, and is computationally much less
complex [11] than iterating the median by B.

5 Edge Detection [4,5,11,12]
Let B be one of the unit -size structuring elements of Fig. 4.
Then

nB = B ®B ®... eB (n times)
denotes an element of size n, where n is any nonnegative
integer. If B is convex, then nB has the same shape as B;
if n = 0, then nB is just the one -point set {0 }. If B is 2 -D

symmetric, then the set difference X - (XenB) gives the
boundary of a binary image X, and the algebraic difference
f - (f enB) enhances the edges of a graytone image f, as
Fig. 5 shows. The size n of nB controls the thickness of
the edge -markers. Edges in different orientations can be ob-
tained by using a 1 -D structuring set B properly oriented.
A more symmetric treatment between the image and its
background would be the edge- estimator (f enB)-(f enB),
which approximates the gradient of f [4].

6 Noise Suppression
Figure 6a shows a graytone image f corrupted by salt -and-
pepper noise. Figure 6b shows the opening fB (B =borne
of Fig. 4), which cuts down the positive noise spikes. The
negative noise spikes are cleaned (filled up) by the open -
closing (fB)B, as shown in Fig. 6c. The cleaning effects of
the open -closing are comparable to the median filtering (see
Fig. 6d) of f by the window W= square of Fig. 4. However,
the open -closing by B is computationally less complex than
the median by W and can decompose the noise suppression
into two separate tasks: cleaning of the positive or negative
spikes (see also Fig. 2). Related approaches to image clean-
ing from impulsive noise can be found in [4,5,6,15,17,18,19].

7 Region Filling
We present here a compact algorithm [11,12] for region fill-
ing that requires only set dilations, complementation, and
intersections. Figure 7a shows the boundaries of two dis-
joint regions, whose union represents a binary image X. The
problem is to fill in (paint) the interior of the left region (call
it set F) if we know a point p inside it. Figure 7b shows the
complement of X. Let B D {0} be a symmetric structuring
element whose half diameter does not exceed the width of
the boundary. If Y0 = {p} and

Yi =(Yi -1 B)nXc, i= 1,2,3,...,
then the filled interior is given in general by F = Y°°. Thus,
the dilation tends to fill the whole area, whereas the inter-
section with Xc limits the result inside the left region. Of
course, practically we need only a finite number of iterations
to find F, since the condition Yi + 1 = Yi signals that the
region F has been fully painted. Figure 7d shows the fully
painted left region after only eighteen iterations of the above
algorithm. (Fig. 7c shows the intermediate result after the
8 -th iteration.)

8 Skeletonization, Shape Smooth-
ing, Coding

The skeleton (or medial axis) of a finite discrete binary im-
age X has been extensively studied and used for image anal-
ysis. (See [22,15,16] for reviews.) In [4,23,11,13] and indi-
rectly in [24] it was shown that the skeleton can be obtained
by erosions and openings. Specifically, if B is any discrete
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by iterating (a finite number of times) the median 
filter by W on a finite extent 1-D signal /. Then 
the open-closing (opening followed by closing by the 
same set) (/A) and the clos-opening (closing fol­ 

lowed by opening) (/ )^ are median roots with re­ 
spect to W and they bound med^(f\ W) since

/A < < (fA ) A < f

(iv) Similar results as in (i,ii) were obtained for 2-D open­ 
ing/closing and median filters.

Next we illustrate some of the results in (A),(B),(C),(D) 
through the following simple example. Let A = {0, 1} and 
W = {-1,0,1}. Consider the SP opening $(X) = XA , 
XC Z; its dual SP filter is the closing $*(X) = XA . Then 
the basis of $ has two minimal elements, the sets {0, 1} 
and { 1,0}. The basis of $* has two elements, the sets 
{0} and {-1, 1}. Thus, from Theorem 2b, the FSP opening 
(f>(f) = /^ is a maximum of erosions by the* basis sets of $ 
and a minimum of dilations by the basis sets of $*; i.e.,

fA (x) = max{min[/(x - 1), /(«) 

= min{/(x) , max[/(x -

(x), f(x + 1)]} 

1)]} (6)

for any function /(z), x £ Z. Since opening and closing 
are dual filters, if we interchange max and min everywhere 
in (6) we obtain a formula for the closing / . The basis of 
the SP median by W has three elements, the sets { 1,0}, 
{-1, 1} and {0, 1}. Thus, from Theorem 2b,

fmin[/(* -!),/(*)] ] 
med[f(x-l), /(x), /(*+!)] = max { min[/(x - 1), f(x + 1)]

I min[/(*), /(* + !)] J 
(7)

Because the SP median is equal to its dual filter, we can 
interchange min and max in (7). From (6) and (7) it follows 
that /A < med(f\W) < / , in agreement with result (D-i). 

Figure 3 compares the nonlinear smoothing results of 1- 
D open-closings, clos-openings, and iterated medians. Fig­ 
ure 3a shows an original 1-D function (an image intensity 
profile) containing many narrow peaks and valleys; Figs. 3b,c 
show the open-closing and clos-opening of / by a 3-points 
set L\ Fig. 3d shows the median root g obtained by iterat­ 
ing four times a median filter by a 5-points window B. The 
open-closing (and clos-opening) by L is a median root with 
respect to B, smooths the signal very similarly to the me­ 
dian root g, lies close to g, and is computationally much less 
complex [11] than iterating the median by B.

5 Edge Detection [4,5,11,12]

Let B be one of the unit-size structuring elements of Fig. 4. 
Then

nB = B@B@ . . . ® B (n times)

denotes an element of size n, where n is any nonnegative 
integer. If B is convex, then nB has the same shape as B\ 
if n = 0, then nB is just the one-point set {0}. If B is 2-D

symmetric, then the set difference X — (XQnB) gives the 
boundary of a binary image X, and the algebraic difference 
/ ~ (fQnB) enhances the edges of a graytone image /, as 
Fig. 5 shows. The size n of nB controls the thickness of 
the edge-markers. Edges in different orientations can be ob­ 
tained by using a 1-D structuring set B properly oriented. 
A more symmetric treatment between the image and its 
background would be the edge-estimator (f®nB) — (fQnB), 
which approximates the gradient of / [4].

6 Noise Suppression

Figure 6a shows a graytone image / corrupted by salt-and- 
pepper noise. Figure 6b shows the opening fp (B—boxne 
of Fig. 4), which cuts down the positive noise spikes. The 
negative noise spikes are cleaned (filled up) by the open- 
closing (/#) , as shown in Fig. 6c. The cleaning effects of 
the open-closing are comparable to the median filtering (see 
Fig. 6d) of / by the window W= square of Fig. 4. However, 
the open-closing by B is computationally less complex than 
the median by W and can decompose the noise suppression 
into two separate tasks: cleaning of the positive or negative 
spikes (see also Fig. 2). Related approaches to image clean­ 
ing from impulsive noise can be found in [4,5,6,15,17,18,19],

7 Region Filling

We present here a compact algorithm [11,12] for region fill­ 
ing that requires only set dilations, complementation, and 
intersections. Figure 7a shows the boundaries of two dis­ 
joint regions, whose union represents a binary image X. The 
problem is to fill in (paint) the interior of the left region (call 
it set F) if we know a point p inside it. Figure 7b shows the 
complement of X. Let IO{0} be a symmetric structuring 
element whose half diameter does not exceed the width of 
the boundary. If Y° = {p} and

V*  I — * — 1 9t   1, Z,

then the filled interior is given in general by F — Y°°. Thus, 
the dilation tends to fill the whole area, whereas the inter­ 
section with Xc limits the result inside the left region. Of 
course, practically we need only a finite number of iterations 
to find F, since the condition y* + * = y* signals that the 
region F has been fully painted. Figure 7d shows the fully 
painted left region after only eighteen iterations of the above 
algorithm. (Fig. 7c shows the intermediate result after the 
8-th iteration.)

8 Skeletonization, Shape Smooth­ 
ing, Coding

The skeleton (or medial axis) of a finite discrete binary im­ 
age X has been extensively studied and used for image anal­ 
ysis. (See [22,15,16] for reviews.) In [4,23,11,13] and indi­ 
rectly in [24] it was shown that the skeleton can be obtained 
by erosions and openings. Specifically, if B is any discrete
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structuring element with 0 E B, then the morhological
skeleton, SK(X), of X (with respect to B) is the finite
union of disjoint skeleton subsets Sn(X); i.e.,

SK(X) =. U Sn(X) (8)
0 < n < N

where
Sn(X) = (XenBs) - (XenBs)B (9)

and n = 0,1, 2, ... , N = max {k : XekBs 0 }. The im-
age X can be reconstructed as the union of all the skeleton
subsets dilated by an element of proper size; i.e.,

X = U [Sn(X)enB] . (10)
0 < n < N

If the first k lower- indexed skeleton subsets are omitted in
(10), then we reconstruct the opening of X by kB; i.e.,

XkB = (XekBs)ekB = U [Sn(X)enB] . (11)
k<n<N

If B is convex, these openings XkB represent smoothed ver-
sions of X, where the degree of smoothness depends only
on the size k of kB; i.e., the larger the size k, the smoother
the opening XkB. Because X can be reconstructed either
exactly from all Sn(X) using (10) or partially (smoothed
versions) using (11), we can view the skeleton subsets as
"shape components ". That is, skeleton subsets of small in-
dices n are associated with the lack of smoothness of the
boundary of X, whereas skeleton subsets of large indices n
are related to the bulky interior parts of X that are shaped
similarly to nB. Thus (10) and (11) imply that an arbi-
trary shape X is smooth to a degree k with respect to a
fixed shape B (i.e., X = XkB) if the first k shape compo-
nents of X (i.e., first k Sn(X)) are empty. The converse,
i. e., X= XkB =Sn(X)= Ofor0<n<k- listrueif
both X and B are convex [13].

Symmetric (disk -like) structuring elements produce a skele-
ton that looks like a "symmetry axis ". At the expense of
loosing this property, we can use the above morphological
skeletal decomposition and reconstruction algorithms with
an asymmetric, or even a 1 -D, element. Figure 8 illustrates
the variety of skeletons that result from varying the struc-
turing element. It also shows the ability of morphological
filters to extract different structural information by using
different structuring elements. One application for asym-
metric or 1 -D structuring elements for skeletonization was
described in [11,13], where we searched for the element giv-
ing the skeleton with fewest points, and hence lowest infor-
mation rate required to encode the image.

All the skeletons of Fig. 8 can reconstruct X and retain
some of the axial character of a skeleton. However, they may
be redundant. Thus, at the expense of producing a skeleton
that may not look like a skeletal axis, we defined the min-
imal skeleton to be a proper subset of the original skele-
ton whose points are sufficient for exact reconstruction, but
removal of just one point would result in partial reconstruc-
tion. In [11,13] we provided a fast algorithm that finds such
a minimal skeleton, if it exists. Figure 9 shows two original
binary images of different spatial resolution together with
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their original and minimal skeletons.
In [11,13] we showed that encoding of the minimal skele-

ton information using Elias codes results in higher com-
pression than either optimum block -Huffman or optimum
runlength- Huffman coding of the original image. Figure 10
shows an application of simultaneous skeleton coding and
morphological smoothing of a binary image X. By elimi-
nating the first skeleton subset S0(X) and encoding the rest
skeleton subsets (thus reconstructing the opening XB) the
original information of 65.5Kbits in X and XB was com-
pressed down to 5.7Kbits; i.e., a compression ratio of 11.4:1.
Further decimation of X by keeping one out of every 4 x 4
pixels and skeleton- encoding of the decimated image com-
presses the information down to 1.2Kbits; i.e., a compression
ratio of 53:1. In addition, morphological post- filtering can
smooth the jagged contours of the interpolated image.

Finally, the morphological skeletonization has been ex-
tended to multilevel signals (e.g., graytone images) in [25]
and in [11].

9 Shape Recognition
Minimal Skeletons. The minimal skeleton was also used
for minimal shape representation and recognition of blob -
shaped images in [11]. That is, consider the problem: "Given
a fixed convex shape B, find a minimum number of maxi-
mal scaled and shifted versions, (nB)z, of B (i.e., find their
locations z and sizes n) that fit inside an image object X
and whose union exactly represents X." Since the morpho-
logical skeletonization of X by B gives all the locations and
sizes of maximal elements (nB)z whose union reconstructs
X, the minimal skeleton gives, by definition, an exact so-
lution to the above problem. Figure lla shows a discrete
binary image X that was formed as the union of three ele-
ments nB (B= circle of Fig. 4), two of size n = 1 and one of
size n = 2; its original skeleton with respect to B has eight
points. Its minimal skeleton (in Fig. 11b) contains only the
three centers, recognizing thus the existence, location, and
size of the three overlapping blobs. Thus both skeletons can
reconstruct X exactly, but the the minimal skeleton displays
clearly that the composite shape X consists of three simpler
blobs.

Hit -or -miss transforms. Let X be an image object
and A a fixed structuring element; e.g., Fig. 12 shows an
object X consisting of three disks of different radii, and A is
the medium size disk. Suppose now that W is a small win-
dow surrounding A. The local background of A with respect
to W is the set difference (W - A). The set of locations at
which A exactly fits inside X, denoted by SRW (X; A), is the
intersection of the erosion of X by A and the erosion of Xc
by W -A (see Fig. 12). This set transform uses erosion as
a matched filter for shape recognition; it was introduced in
[26] and was shown to be the prototype of a class of TI image
transforms for pattern recognition. However, this transform
is a special case of the general morphological hit -or -miss
transform defined in Table 1; i.e., SRw(X; A) = X®(A, B)
with B = W -A. Based on this latter observation we showed
in [11] that such increasing pattern recognition transforms

structuring element with 0 6 .0, then the morhological 
skeleton, SK(X), of X (with respect to B) is the finite 
union of disjoint skeleton subsets Sn (X)\ i.e.,

SK(X) = |J (8)
0<n< N

where
Sn (X) = (XQnBs ) - (XQnBs ) B (9)

and n = 0,1,2,...,TV = max{fc : XekBs ^ 0}. The im­ 
age X can be reconstructed as the union of all the skeleton 
subsets dilated by an element of proper size; i.e.,

X= |J [Sn (X)®nB]. 
0< n< N

(10)

If the first k lower-indexed skeleton subsets are omitted in 
(10), then we reconstruct the opening of X by kB\ i.e.,

XkB = (XekBs)®kB = |J [Sn (X)®nB] . (11) 
k<n<N

If B is convex, these openings X^g represent smoothed ver­ 
sions of X, where the degree of smoothness depends only 
on the size k of kB\ i.e., the larger the size fc, the smoother 
the opening Xfcg. Because X can be reconstructed either 
exactly from all Sn (X) using (10) or partially (smoothed 
versions) using (11), we can view the skeleton subsets as 
"shape components" . That is, skeleton subsets of small in­ 
dices n are associated with the lack of smoothness of the 
boundary of X, whereas skeleton subsets of large indices n 
are related to the bulky interior parts of X that are shaped 
similarly to nB. Thus (10) and (11) imply that an arbi­ 
trary shape X is smooth to a degree k with respect to a 
fixed shape B (i.e., X = X^p) if the first k shape compo­ 
nents of X (i.e., first k Sn (X)) are empty. The converse, 
i.e., X = XkB =>> Sn (X) = 0 for 0 < n < k - I is true if 
both X and B are convex [13].

Symmetric (disk-like) structuring elements produce a skele­ 
ton that looks like a "symmetry axis". At the expense of 
loosing this property, we can use the above morphological 
skeletal decomposition and reconstruction algorithms with 
an asymmetric, or even a 1-D, element. Figure 8 illustrates 
the variety of skeletons that result from varying the struc­ 
turing element. It also shows the ability of morphological 
filters to extract different structural information by using 
different structuring elements. One application for asym­ 
metric or 1-D structuring elements for skeletonization was 
described in [11,13], where we searched for the element giv­ 
ing the skeleton with fewest points, and hence lowest infor­ 
mation rate required to encode the image.

All the skeletons of Fig. 8 can reconstruct X and retain 
some of the axial character of a skeleton. However, they may 
be redundant. Thus, at the expense of producing a skeleton 
that may not look like a skeletal axis, we defined the min­ 
imal skeleton to be a proper subset of the original skele­ 
ton whose points are sufficient for exact reconstruction, but 
removal of just one point would result in partial reconstruc­ 
tion. In [11,13] we provided a fast algorithm that finds such 
a minimal skeleton, if it exists. Figure 9 shows two original 
binary images of different spatial resolution together with

their original and minimal skeletons.
In [11,13] we showed that encoding of the minimal skele­ 

ton information using Elias codes results in higher com­ 
pression than either optimum block-Huffman or optimum 
runlength-Huffman coding of the original image. Figure 10 
shows an application of simultaneous skeleton coding and 
morphological smoothing of a binary image X. By elimi­ 
nating the first skeleton subset SQ(X) and encoding the rest 
skeleton subsets (thus reconstructing the opening Xg) the 
original information of 65.5Kbits in X and XB was com­ 
pressed down to 5.7Kbits; i.e., a compression ratio of 11.4:1. 
Further decimation of X by keeping one out of every 4x4 
pixels and skeleton-encoding of the decimated image com­ 
presses the information down to 1.2Kbits; i.e., a compression 
ratio of 53:1. In addition, morphological post-filtering can 
smooth the jagged contours of the interpolated image.

Finally, the morphological skeletonization has been ex­ 
tended to multilevel signals (e.g., gray tone images) in [25] 
and in [11].

9 Shape Recognition

Minimal Skeletons. The minimal skeleton was also used 
for minimal shape representation and recognition of blob- 
shaped images in [11]. That is, consider the problem: "Given 
a fixed convex shape B, find a minimum number of maxi­ 
mal scaled and shifted versionst (nB) z , of B (i.e. } find their 
locations z and sizes n) that fit inside an image object X 
and whose union exactly represents X." Since the morpho­ 
logical skeletonization of X by B gives all the locations and 
sizes of maximal elements (nB)z whose union reconstructs 
X, the minimal skeleton gives, by definition, an exact so­ 
lution to the above problem. Figure lla shows a discrete 
binary image X that was formed as the union of three ele­ 
ments nB (B=circle of Fig. 4), two of size n = 1 and one of 
size n = 2; its original skeleton with respect to B has eight 
points. Its minimal skeleton (in Fig. lib) contains only the 
three centers, recognizing thus the existence, location, and 
size of the three overlapping blobs. Thus both skeletons can 
reconstruct X exactly, but the the minimal skeleton displays 
clearly that the composite shape X consists of three simpler 
blobs.

Hit-or-miss transforms. Let X be an image object 
and A a fixed structuring element; e.g., Fig. 12 shows an 
object X consisting of three disks of different radii, and A is 
the medium size disk. Suppose now that W is a small win­ 
dow surrounding A. The local background of A with respect 
to W is the set difference (W — A) . The set of locations at 
which A exactly fits inside X, denoted by SRyy (X; A), is the 
intersection of the erosion of X by A and the erosion of Xc 
by W — A (see Fig. 12). This set transform uses erosion as 
a matched filter for shape recognition; it was introduced in 
[26] and was shown to be the prototype of a class of TI image 
transforms for pattern recognition. However, this transform 
is a special case of the general morphological hit-or-miss 
transform defined in Table 1; i.e., SRW (X\ A) = X®(A,B) 
with B = W—A. Based on this latter observation we showed 
in [11] that such increasing pattern recognition transforms
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can be realized more efficiently (computationally) via ero-
sions by their minimal elements.

10 Discussion
We have only mentioned a few among the numerous applica-
tions of morphological filters to image processing /analysis.
A much broader spectrum of applications and algorithms
in image processing /analysis expressed using morphological
concepts and filters can be found in [4] and in the references
of [11,12,13,20]. These illustrations demonstrate the utility
of such image operations and thus the potential value of the
unified image algebra that we developed in [10,11] to en-
compass a broad class of such systems. That is, we have
theoretically founded all these evidences by showing that
morphological erosions and dilations are the prototypes of a
large class of nonlinear filters processing binary or graytone
images and signals. We call this unified image algebra the
theory of minimal elements, because filters are realized as
a minimal combination of morphological convolutions with
some characteristic input signals, i.e., the minimal elements.
Among the filters that this theory unifies we examined here
some morphological, median, and OS filters; in [11] we also
applied the theory to classical linear filters and shape recog-
nition transforms. In short, this unifying theory is attractive
because:

1) It is developed for the large class of TI, increasing,
u.s.c. filters, whose importance is profound in image pro-
cessing and analysis. Moreover, some TI systems that are
not increasing, e.g., the skeleton, or the hit -or -miss trans-
form, can be expressed as the difference of two TI increasing
systems.

2) It provides new realizations of many nonlinear and
linear filters. For example, 1 -D openings and closings were
implemented faster by using the minimal elements of their
dual filters; median and OS filters were expressed through
a closed formula involving min /max on prespecified sets
of numbers and no sorting. Some of these new realiza-
tions could have been derived by using combinatorial proofs,
which we provided in [11]. However, there was a total lack
of similarity in these proofs and a need for inventing new
"tricks" in each case. This contrasts unfavourably with the
generality of the theory of minimal elements, from which the
special cases result as simple corollaries.

5) The prototype filters of this theory are simple and
attractive for parallel implementation. That is, erosions or
dilations by sets can be simply implemented as a parallel
logical AND or OR of shifted versions of the input signal
[27,11,13]. There are also many commercialized computer
architectures that implement morphological filters; refer-
ences can be found in [4,6,11,20].

.¢) Erosions, dilations, and the rest of morphological fil-
ters (which are combinations of erosions or dilations) are
defined by logical operations on sets representing signals.
This makes them well- suited for shape analysis or extrac-
tion of geometrical and topological features from signals or
image objects. It also helps to obtain the solution of a class

of problems directly from their statement as a morphological
operation. Moreover, morphological filters are based on the
principles of mathematical morphology which is an area rich
in concepts and mathematical formalism. All these factors
create an interesting circle of ideas and problems to which
the theory of minimal elements applies.

5) The theory can lead to synthesis and design of new
systems.

6) From this unified image algebra autonomous machine
vision modules could be designed, which could perform a
large variety of complex image processing /analysis tasks based
on a small set of simple and parallel image operations.

Concluding, for future work there are still many issues
yet to be investigated. For example, systematic general al-
gorithms are needed for obtaining the basis of an arbitrary
filter and for determining in advance whether it contains a
finite or infinite number of minimal elements. The synthe-
sis of systems based on their minimal elements remains an
open area. Finally, there is a total lack of analytic criteria
to design the generalized morphological filters for graytone
images of Table 2 and thus solve more complex image pro-
cessing tasks.

11 Appendix
Here we define the morphological filters only for discrete
images defined on Z2. (The notation {x : P} is used every-
where to denote the set of points x satisfying a property P.)
To obtain the respective definitions for non -sampled images
defined on the continuous plane R2, the reader must replace
in Tables 2,3 the maximum with supremum and the mini-
mum with infimum, and assume that the structuring set A
is compact and the structuring function g has a compact
region of support.
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ters (which are combinations of erosions or dilations) are 
defined by logical operations on sets representing signals. 
This makes them well-suited for shape analysis or extrac­ 
tion of geometrical and topological features from signals or 
image objects. It also helps to obtain the solution of a class

of problems directly from their statement as a morphological 
operation. Moreover, morphological filters are based on the 
principles of mathematical morphology which is an area rich 
in concepts and mathematical formalism. All these factors 
create an interesting circle of ideas and problems to which 
the theory of minimal elements applies.

5) The theory can lead to synthesis and design of new 
systems.

6) From this unified image algebra autonomous machine 
vision modules could be designed, which could perform a 
large variety of complex image processing/analysis tasks based 
on a small set of simple and parallel image operations.

Concluding, for future work there are still many issues 
yet to be investigated. For example, systematic general al­ 
gorithms are needed for obtaining the basis of an arbitrary 
filter and for determining in advance whether it contains a 
finite or infinite number of minimal elements. The synthe­ 
sis of systems based on their minimal elements remains an 
open area. Finally, there is a total lack of analytic criteria 
to design the generalized morphological filters for graytone 
images of Table 2 and thus solve more complex image pro­ 
cessing tasks.

11 Appendix

Here we define the morphological filters only for discrete 
images defined on Z2 . (The notation {x : P} is used every­ 
where to denote the set of points x satisfying a property P.) 
To obtain the respective definitions for non-sampled images 
defined on the continuous plane R2 , the reader must replace 
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Table 1: SP Filters for Binary Discrete Images

Name Definition*
set translation of A by p Ap = {p + a : a E A}
set symmetric of A A8 = {-a : a E Al
set difference of B from A A -B = {a : a E A, a V B}
set complement of A Ac = {a E Z2 : a V A} = Z2 -A
Minkowski set addition of A and B A ® B = {a + b : a E A, b E B} = Ub F B Ab
Minkowski set subtraction of B from A A e B = (Ac®B)c = (Ìb F B Ab
dilation of X by A X®As = {p E Z2 : Ap n X # fS}
erosion of X by A XeAs = {p E Z2 : ApÇ X}
closing of X by A X``i = (X®As)eA
opening of X by A XA = (XeAs)®A
hit-or-miss transform of X by (A, B) XO(A, B) = (XeAs) n (XceBs)
k-th order-statistic of X by W OSk(X;W) _ {p E Z2 :1 X n Wp I> k}

median of X by W (1W 1= n =odd) med(X;W) = OS(n+ 1)/2(X;W)

* X, A, B,WÇ Z2; p E Z2 * I W 1=cardinality of W

Table 2: FP Filters for Graytone Discrete Images

Name Definition (x, y E Z2)
function symmetric of g(x) gs(x) = g( -x)
Minkowski function addition of f and g (f ®g) (x) = max{ f (y) + g(x - y) : y E Z2}
Minkowski function subtraction of g from f (f eg) (x) = min{ f (y) - g(x - y) : y E Z2}
dilation of f by g (f egs) (x) = max{ f (y) + g(y - x) : y E Z2}
erosion off by g (f egs) (x) = min{ f (y) - g(y - x) : y E Z2}
closing of f by g fg(x) = (fegs)(x)]eg(x)
opening of f by g fg(x) _ (fegs)(x)jeg(x)

Table 3: FSP Filters for Graytone and Binary Discrete Images

Minkowski addition of f and A (f ®A) (x) = max{ f (y) : y E (A8)x}
Minkowski subtraction of A from f (feA)(x) = min{ f (y) : y E (A8)x}
dilation of f by A (f 9,48)(x) = max{ f (y) : y E Ax}

(feA8)(x) = min {f(y) : y E Ax}erosion of f by A
closing of f by A 1A = (f®As)eA
opening of f by A 1A= (1e448)®A
k -th OS of f by W [OSk(f;W)](x) = k -th largest of f (y), y E Wx
median of f by W med(f;W)= 05(n +1) /2(f ;W)
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Table 1: SP Filters for Binary Discrete Images

Name
set translation of A by p
set symmetric of A
set difference of B from A
set complement of A
Minkowski set addition of A and B
Minkowski set subtraction of B from A
dilation of X by A
erosion of X by A
closing of X by A
opening of X by A
hit-or-miss transform of X by (A, B)
k-th order-statistic of X by W
median ofXbyW (\W\=n =odd)

* X,A,B,WCZ2 ]p€Z*

Definition*
Ap = {p + a : a 6 A}
As = {-a : a 6 A}
A-B = {a:a€A, a & B}
Ac = {a G Z 2 : a g A} = Z2 - A
A@B = {a + b:aeA, b € B} = \Jb ^ B Ab
AeB = (Ac ®B) c = nh ^BAh
X®AS = {p 6 Z 2 : Ap 0 X ^ 0}
XQAS = {p e z2 : ApC x}
x^ = (xeA5 )eA
XA --= (XeAs )@A
XQ(A,B) = (xe^i5 ) n (xceJ5s )
05*(X;W) = {p e Z 2 :| XnP^p |> k}
med(X;W) = O5(n+ ^^(XjW)

* VF |=cardinality of W

Table 2: FP Filters for Graytone Discrete Images

Name
function symmetric
Minkowski function
Minkowski function

ofg(x)
addition of f and g
subtraction of g from f

dilation of f by g
erosion of f by g
closing of f by g
opening of f by g

Definition (z, y G Z 2 )
</5 (z) = <7(-z)
(f®ff)(x) = max{/(y) 4- g(x - y) : y G Z2 }
(/60)(z) = mm{/(y)   g(x - y
(f®9S)(x) = niax{/(y) + ^(y -
(/e^)(z)=min{/(y)-^(y-

) -y
x):
z):

GZ2 }

yez2 }
[/ Z2 }

fg (x) = [(f@gs)(x)]Sg(x)
fg(*) = [(f^9s)(x)]eg(x)

Table 3: FSP Filters for Graytone and Binary Discrete Images

Minkowski addition of f and A = max{/(y) : y
Minkowski subtraction of A from f
dilation of f by A
erosion of f by A
closing of f by A fA = (f®As)eA
opening of f by A fA = (f&As)®A_____________ 

[OSk (f; W)](x) = fc-th largest of /(yj7k-th OS of f by W
median of f by W med(f; W) =
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DILATION: X O B

CLOSING: X3

Figure 1. Erosion, dilation, opening, and closing of X by
B. (The shaded areas correspond to the interior of the sets,
the dark solid curve to the boundary of the transformed
sets, and the dashed curve to the original boundary of X.)
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Figure 4. Discrete structuring elements in Z2. (+ marks
the origin (0, 0) of Z2.)
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Figure 2. Erosion, dilation, opening, and closing of a 1 -D
sampled function by a 1 -D set B. (B = {-2,-1,O,1,2};
the dashed curve refers to the original function.)
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Figure 3. Median filtering via opening -closing: (a) Orig-
inal function f. (b) Open -closing (f4L. (c) Clos- opening
(f L)L. (d) Median root of f by B. (L = { -1, 0,1} and
B={-2, -1, 0,1, 2 })
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Figure 2. Erosion, dilation, opening, and closing of a 1-D
Figure 1. Erosion, dilation, opening, and closing of X by sampled function by a 1-D set B. ( B = {-2,-1,0,1,2}; 
B. (The shaded areas correspond to the interior of the sets, the dashed curve refers to the original function.) 
the dark solid curve to the boundary of the transformed 
sets, and the dashed curve to the original boundary of X.)
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Figure 3. Median filtering via opening-closing: (a) Orig­ 
inal function /. (b) Open-closing (/L)L > (c) Clos-opening 
(fL ) L . (d) Median root of / by B. (L = {-1,0,1} and 
B = {-2,-1,0,1,2})
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(a) (b)

(c) (d)

Figure 5. (a) A binary image X. (b) X - (XeB). (c) A
graytone image f. (d) f - (feB). (B= circle of Fig. 4.)
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Figure 7. Region filling by dilation and intersections. (All
images have 256 x 256 pixels.)
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(a) (b)

(c) (d)

Figure 6. (a) An image f with salt- and -pepper noise
(probability of occurrence of noisy samples is 0.1). (b) Open-
ing A. (c) Open -closing (fB)B. (d) Median of f by the
window W. (B =boxne and W= square of Fig. 4.)
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Figure 8. (a) A 64 x 64- pixels binary image. (b) Its
morphological skeletons with respect to all the structuring
elements of Fig. 4 (keeping the same order).
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Figure 5. (a) A binary image X. (b) X - (X&B). (c) A 
graytone image /. (d) / - (fQB). (B=circle of Fig. 4.)

Figure 6. (a) An image / with scdt-and-pepper noise 
(probability of occurrence of noisy samples is 0.1). (b) Open­ 
ing /B. (c) Open-closing (/B) B - (d) Median of / by the 
window W. (B=boxne and W=square of Fig. 4.)
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Figure 7. Region filling by dilation and intersections. (All 
images have 256 x 256 pixels.) Figure 8. (a) A 64 x 64-pixels binary image, (b) Its 

morphological skeletons with respect to all the structuring 
elements of Fig. 4 (keeping the same order).
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Figure 9. Minimal skeletonization (by the square of Fig. 4).
(The (enlarged) images on the left have 64 x 64 pixels; im-
ages on the right have 256 x 256 pixels.)
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Figure 11. Minimal shape representation and blob recog-
nition. (o, = image points; = skeleton points.)
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shape
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XQAs

W

image background Xc

W-A
local background
of A with respect
to window W

Xc0 (W-A)s

location of shape A

Figure 12. A shape recognition transform (adapted from
Crimmins & Brown [261).

Figure 10. (a) Original binary image X (256 x 256 pix-
els resolution). (b) Opening XB by B= square of Fig. 4.
(Image data =65536 bits; after skeleton coding, 5734 bits.)
(c) Image Y obtained by 4 x 4- decimating X and then 4 x 4-
interpolating it back. (Image data =4096 bits; after skele-
ton coding, 1246 bits.) (d) Clos- opening (Y2A)2A, where
A= rhombus of Fig. 4.
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Figure 11. Minimal shape representation and blob recog­ 
nition, (o, • = image points; • = skeleton points.)
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Figure 9. Minimal skeletonization (by the square of Fig. 4) 
(The (enlarged) images on the left have 64 x 64 pixels; im­ 
ages on the right have 256 x 256 pixels.)

location of shape A

Figure 12. A shape recognition transform (adapted from 
Crimmins & Brown [26]).

Figure 10. (a) Original binary image X (256 x 256 pix­ 
els resolution), (b) Opening XB by B—square of Fig. 4. 
(Image data=65536 bits; after skeleton coding, 5734 bits.) 
(c) Image Y obtained by 4 x 4-decimating X and then 4x4- 
interpolating it back. (Image data=4096 bits; after skele­ 
ton coding, 1246 bits.) (d) Clos-opening (Y2A) 2A , where 
A=rhombus of Fig. 4.
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