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Abstract

In this paper it is shown that many composite morphological systems, such as morphological edge
detection, peak /valley extraction, skeletonization, and shape -size distributions obey a weak linear super-
position, called threshold- linear superposition: Namely, the output graytone image is the sum of outputs
due to input binary images, which result from thresholding the input graytone image at all levels. Then
these results are generalized to a vector space formulation, e.g., to any linear combination of simple
morphological systems such as erosion, dilation, rank -order filters, and their cascade or max /min com-
binations. Thus many such systems processing graytone images are reduced to corresponding binary
image processing systems, which are easier to analyze and implement.

1 Introduction
Morphological image analysis systems [1] -[15] are useful for feature extraction, shape analysis, and nonlinear
filtering. A major limitation, though, in their theoretical analysis and application has been so far the
nonlinearity of the signal operations involved. Specifically, the morphological image operations do not
obey the well -known additive superposition principle, which is obeyed by all linear systems. However, a
special class of morphological operations, in particular the erosions, dilations, openings, closings that can
process both graytone and binary images without changing this signal characteristic, obey a weak additive
superposition: Namely, if the input graytone image is expressed as the sum of all its binary threshold
versions, then the output image from any of these filters is the sum of the filtered input threshold binary
images. We call this system property threshold -linear superposition. Such ideas have been proven very
useful in analyzing and implementing morphological filters [2,4,10] and median -type filters [11],[16] -[20].

In practice, the useful morphological image analysis systems do not consist of individual erosions,
dilations, openings, and closings, but they include parallel and /or series interconnections of simple mor-
phological operations. For example, 1) the morphological peak /valley extractor involves an (algebraic)
difference between the image and its opening [4]. 2) The morphological edge detection involves the differ-
ence between the image and its erosion [5,12,21,22]. 3) The graytone skeleton is the sum of components,
each of which is the difference between erosions and openings [2,8,9]. 4) The graytone pattern spectrum
involves areas of differences among openings or closings by structuring elements of varying size [13].

In this paper, we show that all the four above composite morphological systems obey the threshold -
linear superposition. That is, given any input graytone image, their outputs are the sum of the individual
system outputs corresponding to input binary images that resulted from exhaustive thresholding of the
input image. The processing of these threshold binary images is much easier to analyze and implement.
Thus our results offer new tools for the theoretical analysis of these nonlinear systems and suggest new
parallel implementations since the processing of the threshold binary images can take place in parallel at
all threshold levels simultaneously. Finally, we generalize the above results by showing that the four above
systems together with any other system that obeys threshold -linear superposition form a vector space.
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2 Preliminaries
Consider a digital graytone image signal represented by a nonnegative 2 -D sequence f (m, n), which assumes
A + 1 possible intensity values: a = 0, 1, 2, ... , A. For example, if we deal with 8 bit /pixel imagery, A =
255. By thresholding f at all possible amplitude levels 0 < a < A we obtain the threshold binary images

1 , f (m, n) > a
0 , f (m, n) < a (1)

If there is a risk of notational confusion, we will also denote the signal fa by ta(f). It is simple to show
that f can be reconstructed exactly from all its binary thresholded versions; i.e. V (m, n)

A

f (m, n) = max{a : fa(m, n) = 1} _ E fa(m, n)
a=1

(2)

In this paper, by a system processing an input image f we mean either an image transformation where
the system output W(f) is an image signal, or an image measurement. In the latter case W(f) is either a real
number (e.g., the area of the image) or a real function of several parameters measuring some characteristics
of the image. We shall say that commutes with thresholding if >It is an image transformation such that

w[ta(f)] = ta[T(f)] (3)

for any input image f and any amplitude level a. Note that a necessary condition for 1V to obey (3) is,
whenever W processes a binary image, to leave this signal characteristic unchanged. Thus if a system 11/
commutes with thresholding, processing by 1Tt the threshold binary image fa gives the same result with
processing first by 1Y the graytone image f and then thresholding W(f) at level a. For example, the basic
morphological transformations of erosion feB of an image f by a 2 -D structuring set (finite window) B,
dilation f eB, opening f oB, and closing f B, which are defined/ below, commute with thresholding [2,3].

(feB)(m, n)
( f eB) (m, n)

foB
feB

= min{ f (m + i, n + j) : (i, j) E B}
= max{ f (m - i, n - j) : (i, j) E B}
= (f eB)®B
= ( feB)eB

(4)

(5)

(6)

(7)

Thus, ta(f ea) = faeB, where the notation x = y for two signals means x(m, n) = y(m, n) V (m, n).
We shall say that a system tilt obeys the threshold- linear superposition provided that

A

(f) _ E W(fa) (8)
a =1

for any input image f. (Although fa is binary, note that W(fa), if it is an image signal, could be binary
or multilevel.) Such a system W can be realized by decomposing f into all its threshold binary images fa,
processing them by 9, and create the output W(f) by adding the processed fa. A fundamental motivation
for such a realization of W is that, due to their binary range, the processing of the fa's by 9 is easier to
analyze and implement than the processing of f .

'In the recent literature on morphology, there are mainly two slightly different sete of definitions for morphological opera-
tions: one of [1,2] and another of [7,14], which become identical If B is symmetric. Maragos and Schafer used in [9] -[13] the
definitions from Matheron & Serra. In this paper we use Sternberg's definitions and the notation of Haralick et al. because
they are simpler.
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The morphological image transformations (4) -(7) of erosion, dilation, opening, and closing obey a
threshold max -superposition [2]:

[4,(f)](m, n) = max {a : [iI(fa)1(m, n) = 1} (9)

This max -superposition is also obeyed by median and rank -order filters [16,11]. However, these simple
morphological and median -type systems obey both the threshold sum -superposition (8) and the max -
superposition (9) because they commute with thresholding. Thus a sufficient (but not necessary) condition
for threshold superposition is commuting with thresholding. From one viewpoint, the threshold max -
superposition is more general than the sum -superposition since the latter applies only to nonnegative
input signals, while the former applies to any real -valued input signals. From a different viewpoint, the
max -superposition restricts the class of systems since it requires that W(fa) are signals and binary, an
assumption not needed by the sum- superposition. In addition, the threshold sum -superposition ties well
with linear systems, because it is just a weak form of linear superposition. This last viewpoint will be
instrumental for our analysis throughout the rest of this paper. Therefore, we focus henceforth on systems
obeying (8).

3 Special Cases
3.1 Morphological Edge Detection
Given a graytone image f (m, n) and a small 2 -D symmetric structuring set K containing the origin, the
simple system [5,12]

ED(f) = f - (feK) (10)

produces a graytone image ED(f) with enhanced edges, where - denotes pointwise subtraction. A binary
edge map can be obtained by thresholding ED(f), which is nonnegative everywhere because K contains
the origin. This simple but effective morphological edge detection system has been made more robust in
[21,22] by incorporating some smoothing filters.

Now, because the erosion feK satisfies (8), using the threshold decomposition (1) of f yields

A

ED(f) = ED fa)
a=1

ÇA A>fa[fa)eK]
=1 a=1

A A A

fa - faeK = [fa - (faeK)]
a=1 a=1 a=1

ED(fa) (11)
a=1

Thus the morphological edge detection system (10) obeys the threshold -linear superposition. An exam-
ple is given in Fig. 1. Note that, since faeK and fa- (faeK) are binary images for all a, the binary edge
detections ED(fa) can be implemented very simply by using only pixel counting. Namely, if I denotes
set cardinality (i.e., number of pixels), then

(ED(fa)'(m,n) =
1 , if fa(m,n) = 1 and I {(i, j) : fa(i,j) = 1, (_ - m,j - n) E K }l < lKl
0 , otherwise

Another edge detection system similar to (10) is ED(f) = (f ®K) - (feK), which also obeys (8).
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Figure 1. The top row (from left to right) shows an original graytone image f of 110 x 128 pixels with 8 bit /pixel,
the graytone edge image f - (f eK), and the graytone skeleton SK(f) with respect to K, where K is a 3 x 3 -pixel
structuring set. The other images show (from middle to bottom row ): (a) threshold binary images fa for a = 180
and 210. (b) their binary edge images fa- (faeK). (c) their binary skeletons SK(fa). (In the top row the edge and
skeleton image amplitude has been magnified; in the middle and bottom rows, the black (white) areas correspond to
image foreground (background).)
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3.2 Peak Extraction
Meyer [4] introduced a very useful morphological peak extractor, also called top -hat transformation:

PE(f) = f - (f 0B), (12)

where B is any 2 -D structuring set (the "base of the hat "). During this peak extraction, only those peaks
whose base contains B remain; the rest get eliminated. For any B, f > f oB everywhere; hence, PE(f) is
a nonnegative image signal. Since the opening foB obeys (8),

A A

PE(f ) = E fa - fa oB
a=1 a=1

A
A A= Lr, fa - L.. faoB - [fa-- (faOB)]

a=1 a=1 a=1
A

= >PE(fa)
a=1

As an example, consider the 1 -D image f (m)

(13)

f = ...021234044123210...
where ... denotes infinite sequence of trailing zero values. If we want to extract from f all peaks with a
width less than 3 pixels, we select B = {0,1, 2). Then the graytone opening is

foB =...011222011122210...
and the graytone peak extraction gives the peak image

PE(f)= ...010012033001000...
Now the threshold binary images of f are fa, 1 < a < 4:

f4 = ...000001011000000...
13 = ...000011011001000...
f2 = ...010111011011100...
fi = ...011111011111110...

and fo(m) = 1 for all m. The binary openings faoB are

f40B = ...000000000000000...
f30B = ...000000000000000...
f2oB = ...000111000011100...
faoB = ...011111011111110...

The binary peak extractions PE(fa) = fa- (faoB) are

PE(f4) = ...000001011000000...
PE(f3) = ...00001 10 1 1001 000...
PE(f2) = -010000011000000...
PE(fi) = ...000000000000000...
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Thus summing the signals PE(fa) for all a gives us the original signal PE(f ). Clearly, the binary peak
extractors are trivial to implement. PE(fa) simply consists of eliminating from the binary image fa
all connected components that contain any shifted version of B. The implementation involves binary
erosion /dilation and binary subtractions; hence, only pixel counting.

If we also consider the valley extractor system V E(f) = (f B) - f, by working as above, it can be
shown that VE(f) = EaVE(fa).

3.3 Skeletonization
A morphological skeleton for a graytone image f can be defined [2,8,9] as follows. If B is a 2 -D structuring
set, let nB = BeBe ®B denote the n -fold dilation of B with itself, which creates a set of size n =
0,1, 2, ... times larger than B. The nth skeleton component of f is

SKn(f) = (f enB) - [(f enB)oB] , 0 _<_n_<, N (14)

where N = max {n : f enB 0 0 }. (We assume here images f with a finite support.) These components
SKn(f) indexed by the discrete size parameter n, are nonnegative everywhere. Thus they are graytone
images, usually very sparse, and their ensemble can exactly reconstruct f. A skeleton, i.e., a thinned
caricature, of f can be defined as the graytone image

N
SK(f) = E SKn(f)

n=0
(15)

Since erosions and openings of the binary images fa by sets B of dimensionality < 2 yields binary outputs
and since faenB > (faenB)oB, the skeleton component, SKn(fa), of fa is also a binary image. The
skeleton, SK(fa), of fa is defined [2,9] as the union of all the binary skeleton components SKn(fa),
represented by 2 -D sets. But this union- definition of SK(fa) is equivalent to a sum- definition as in (15)
because the binary images SKn(fa) are disjoint [9]. Putting all these ideas together yields

SKn(f) = [(fa) enB - (t fa)enB oB
a- \1 a 1

=
a

_
a

(faenB) -

A` [(faenB) - (faenB)OB]
=1
A

> SKn(fa)
=1

(faenB)oB]
a 1

(16)

Thus, the nth skeleton component system obeys the threshold superposition. Now,

SK(f) = SKn > fa) = SKn(fa) = : > SKn(fa)
n =o a =1 n =0a =1 a =1n =0
A

_ E SK(fa)
a=1

(17)

Hence, the morphological skeleton system also obeys threshold superposition. An example is given in
Fig. 1.
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3.4 Pattern Spectrum
The pattern spectrum of a graytone image f (i, j) is defined in [13] as the nonnegative function

[PS(f)]( +n, B) = Ei E1[f onB - fo(n + 1)B](i, j) , n > o
(PS(f)]( -n,B) = EiE1[fnB- f(n - 1)B](i,j) , n >0

where the integer n is a discrete size parameter and B is any 2 -D structuring set whose shape can vary. Thus
the pattern spectrum measures the size (n) and shape (B) distribution of f , giving us useful information
about critical scales and the general shape -size content of f . Hence, for n > 0,

(18)

[PS( f)] (n, B) _ EE(fonB)(i,.7) - EE[fo(n + 1)B](:,.7)

A A

= E>: ( fa onB (i, j) - EE fa 0(.. -}- 1)B
i j a=1 i j a-1

- EEE[faonB](i,J) - EEE(fao(n+ 1)B](0)

=

i

a

j a i j a

aonB - fao(n + 1)B](t,.7)

A

_ E [PS (fa)](n, B)
a-1

(19)

An identical result to (19) is easily obtained for n < 0 by replacing openings f onB with closings f nB.
Thus the pattern spectrum obeys the threshold -linear superposition. To illustrate this, consider the exam-
ple of the 1 -D image f in Section 3.2. Fixing B = {0,1} yields

n -2 -1 0 1 2 3 4 5 6
[PS( f)](n) 2 6 3 8 6 0 5 0 7

[PS( f4)](n) 0 1 1 2 0 0 0 0 0

[PS( f3)](n) 2 1 1 4 0 0 0 0 0
[PS( f2)](n) 0 3 1 2 6 0 0 0 0
[PS(fi)1(n) 0 1 0 0 0 0 5 0 7

Computing the pattern spectra of the binary images fa is much easier than for f . For example, for 1 -D
images f and B = {O,1 }, the value of PS(fa) at (n - 1) is equal to n times the number of runs of n
consecutive l's if n > 1; likewise for runs of 0's and negative n.

Observe that, the pattern spectrum system performs an image measurement, because the system out-
put PS(f) is a two -parameter (n, B) function that measures the shape -size distribution of f . By contrast,
all three previous morphological systems examined in Sections 3.1, 3.2, and 3.3 perform an image trans-
formation because their output is another image signal.

4 General Result
The four morphological systems of Section 3, which we showed that obeyed the threshold -linear super-
position, consisted of pointwise additions /subtractions of simple morphological operations. Next we show
that these four examples are special cases of a more general result. Let F be the class of all real -valued
nonnegative signals f (x) (not necessarily images) with a d- dimensional (d = 1,2,...) argument x, contin-
uous (i.e, real) or discrete (i.e., integer). Let S be the class of all systems W : F -> G that obey the
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threshold -linear superposition, with the restriction that either all W E S are signal transformations or
all are signal measurements but not both. G is the class of system outputs, which are either real -valued
signals like the signals in F (but not necessarily nonnegative) or real -valued measurements (constants or
functions of several parameters). Let us view each system 'system 11, in S as a vector point. Then let us define a
binary operation W1 + W2 called system (vector) addition between any WI, W2 E S and a unary operation
r W called scalar multiplication of a system W by any real number r E R as follows:

[W1 + 4/2](f)

[r TV)

def

def
W1(f) + W2(f) , df E F (20)

rT(f) , `df E F (21)

There is a different interpretation of the symbols + and between the left and right parts of these definitions.
In the right part of (20) " +" denotes pointwise addition of signals if S is a class of signal transformations
or addition of real numbers if S is a class of signal measurements. In the right part of (21) "" denotes
multiplication of the signal or measurement W(f) by the scalar r. Thus W1+W2 is a parallel interconnection
of the systems Wi and W2, whereas r Ili just scales 41 by r.

THEOREM 1 . The class S of systems 41 that obey the threshold- linear superposition forms a vector
space over the field of real numbers under the vector addition (20) and scalar multiplication. (21).

Proof From [23], we must prove that, for all W,41. E S and r,q E R,

V1. (S,+) is an Abelian group.
V2. rWYES.
V3. r(W +(1.)= rW+r10.

(V1): S is closed under system + because

V4. (r+g)xli=rW+gtY.
V5. r (g _ (rg) W.

V6.1W=.

= W(f) + c(f ) = w(fa) + 4.(fa) _ E[P +
a a a

(22)

Further, the system + is associative, commutative, and has a zero element (the system W0, where 'o(f)
is the all -zero signal for all f or just zero in case of signal measurements). Finally each W has its inverse
system -41, defined as [ -W ] (f) = -W(f). Hence, (S,+) is an Abelian group.

(V2) is true because

[r `y](f) = r ili(f) = r > T(fa) _ E r W(fa) _ E[r 'l'](fa) (23)
a a a

The proof of the rest of the axioms (V3) -(V6) is easy and hence omitted; it simply uses the results (22)
and (23) together with elementary properties of the addition /multiplication on real numbers. Q.E.D.

The above result establishes that the principle of threshold -linear superposition is obeyed by any com-
posite system formed as a linear combination of systems that obey it. As a special case consider systems Wk
among the following: erosion, dilation, rank -order filters, and cascade (e.g., openings, closings) or parallel
(using pointwise max /min) combination of these. All such Wk obey (8) as shown in [2,16,10,11]; hence,
Theorem 1 implies that any linear combination system 'Y(f) = Ek Wk(f) will also obey (8). Therefore,
the results for the four morphological systems of Section 3 follow now as simple corollaries of Theorem 1.
Note also that the class of systems obeying threshold - linear superposition contains the class of all linear
systems, because threshold -linear superposition is a weak form of linear superposition.
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5 Concluding Remarks
An important factor on which our results in Section 3 depend is that the erosions, dilations, openings
and closings used by the four analyzed morphological systems involve fiat (binary) structuring elements.
That is, for a 2 -D image signal, only 2 -D or 1 -D sets can be used as structuring elements; likewise, for a
1 -D signal, the structuring element must be a 1 -D set. For the more general erosions (min of differences),
dilations (max of sums), and their combinations, which use a non -binary structuring element [7,2,10,14],
our results in this paper do not apply.

Although our analysis in Sections 2 and 3 refers to image signals, all the concepts and results are also
valid for nonnegative input signals of any dimensionality. Likewise, the validity of the general theorem in
Section 4 depends neither on the dimensionality of input signals nor on whether they have continuous or
discrete argument. It only requires that the input signals (but not necessarily the outputs) be nonnegative.
Hence it especially applies to image analysis systems.

The key idea of our results is that a large class of morphological and other system for graytone image
analysis reduces to corresponding systems for binary signals. But the latter are much easier to analyze.
Hence our results provide a theoretical tool that facilitates the analysis of many morphological and related
nonlinear systems. In addition, they suggest new implementations based on threshold superposition. Of
course, eoftware implementations of these ideas on current serial computer architectures are discouraging
because of the large number of thresholded binary images required. However, VLSI hardware implemen-
tations exploiting the threshold superposition of composite graytone morphological systems (as already
has been done for simple rank -order and morphological filters [18] -[20]) is very promising because binary
morphological operations can be done using only pixel counting. Further, the binary operations on each
threshold binary image can be done in parallel for all threshold levels.
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