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a b s t r a c t

We study Max-Product and Max-Plus Systems with Markovian Jumps and focus on stochastic stability
problems. At first, a Lyapunov function is derived for the asymptotically stable deterministicMax-Product
Systems. This Lyapunov function is then adjusted to derive sufficient conditions for the stochastic stability
of Max-Product systems with Markovian Jumps. Many step Lyapunov functions are then used to derive
necessary and sufficient conditions for stochastic stability. The results for the Max-Product systems are
then applied toMax-Plus systemswith Markovian Jumps, using an isomorphism and almost sure bounds
for the asymptotic behavior of the state are obtained. A numerical example illustrating the application of
the stability results on a production system is also given.

© 2018 Published by Elsevier Ltd.

1. Introduction

Max-Plus systems are dynamical systems which satisfy the
superposition principle in the Max-Plus algebra. The use of Max-
Plus systems was proposed in various applications involving tim-
ing, such as communication and traffic management, queueing
systems, production planning, multi-generation energy systems,
etc. (e.g. Baccelli, Cohen, Olsder, & Quadrat, 1992; Baccelli & Hong,
2000b; Cuninghame-Green, 1979; Goverde, 2007; Heidergott, Ols-
der, & Van Der Woude, 2014). Recently, the use of the closely
related class of Max-Product systems (systems which satisfy the
superposition principle in the Max-Product algebra) was pro-
posed as a tool for the modeling of cognitive processes, such as
detecting audio and visual salient events in multimodal video
streams (Maragos & Koutras, 2015). Max-Plus and Max-Product
algebras have also computational uses involving Optimal Control
problems (McEneaney, 2006) and estimation problems in prob-
abilistic models such as the max-sum algorithm in Probabilistic
Graphical models and the Viterbi algorithm in Hidden Markov
Models (e.g. Bishop, 2006).

In this work, we study stochastic Max-Plus and Max-Product
systems, where the system matrices depend on a finite state
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Markov chain. For the Max-Plus systems we focus on the asymp-
totic growth rate, whereas for the Max-Product systems on
stochastic stability. A motivation to study Max-Plus systems with
Markovian jumps is to model production systems, where the pro-
cessing or holding times are random variables (not necessarily
independent) or there are random failures and repairs, modeled
as a Markov chain. The results on max-product stochastic systems
will be used as an intermediate step. An independent motiva-
tion to study Max-Product systems is the modeling of cognitive
processes interrupted by random events. Similar problems with
Markovian delays for linear systems were studied in Beidas and
Papavassilopoulos (1993), for random failures in Papavassilopou-
los (1994) and for nonlinear time varying systems in Beidas and
Papavassilopoulos (1995), in the context of distributed parallel
optimization and routing applications. In the current work, we try
to exploit the special (Max-Product or Max-Plus) structure of the
system.

At first, deterministic Max-Product systems are considered and
their asymptotic stability is characterized using Lyapunov func-
tions. The Lyapunov function derived can be also used to study
systems which are not linear in the Max-Product algebra. We then
study Max-Product systems with Markovian Jumps and derive
sufficient conditions for their stochastic stability. Further, neces-
sary and sufficient conditions for the stochastic stability of Max-
Product systems with Markovian Jumps are derived using many
step Lyapunov functions. The results for the stochastic stability
of Max-Product systems are then used to derive bounds for the
evolution of the state of Max-Plus systems with Markovian Jumps.

The results of this work relate to the literature for the approxi-
mation of the Lyapunov exponent of Max-Plus stochastic systems.
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The existence of the Lyapunov exponent was proved in Cohen
(1988). Limit theorems for the scaled asymptotic evolution of
stochastic Max-Plus systems were proved in Merlet (2007, 2008).
Most of theworks on the approximation of the Lyapunov exponent
focus on the independent random matrix case. In Baccelli and
Hong (2000a) and Gaubert and Hong (2000) series expansions are
used in order to approximate the Lyapunov exponent andGoverde,
Heidergott, and Merlet (2008, 2011) use approximate stochastic
simulation techniques to estimate the Lyapunov exponent. In Blon-
del, Gaubert, and Tsitsiklis (2000) it is shown that the approxima-
tion of the Lyapunov exponent is an NP-hard problem. Bounds for
the tail distributions of Max-Plus stochastic systems are proposed
in Chang (1996). In Liu, Nain, and Towsley (1995), a model of Max-
Plus system with Markovian input is considered and bounds for
the tail distributions are derived. Amodel where theMarkov chain
(branching process) evolves according to a Max-Plus stochastic
system is analyzed in Altman and Fiems (2012). Bounds on the
length of the transient phase of Max-Plus systems are proved
in Nowak and Charron-Bost (2014).

Another related class of systems is SwitchingMax-Plus systems
with deterministic or stochastic switching introduced in van den
Boom and De Schutter (2006) and studied further in van den Boom
and De Schutter (2012). The basic differencewith the current work
is that the current work focuses on stochastic stability properties
whereas (van den Boom & De Schutter, 2006, 2012) study sta-
bility under arbitrary switching. Several approximation methods
in stochastic Max-plus systems control and identification were
studied in Farahani (2012).

The techniques used in thiswork closely parallel the techniques
used for the stability analysis of Markovian Jump Linear Systems
(MJLS). The study of the stochastic stability of MJLS dates back
at least to the 1960s (Bhaurucha, 1961) and today is a well-
established field (e.g. Beidas & Papavassilopoulos, 1993; Costa,
Fragoso, & Marques, 2006; Fang & Loparo, 2002; Kordonis & Pa-
pavassilopoulos, 2014; Papavassilopoulos, 1994).

1.1. Background

The Max-Plus and Max-Product algebras are used. In the Max-
Plus algebra the usual summation is substituted by maximum and
the usual multiplication is substituted by summation. In the Max-
Product algebra the usual summation is substituted by maximum
but the multiplication remains unchanged.

The Max-Plus algebra is defined on the set of extended reals
R̄ = R ∪ {−∞, +∞} with the binary operations ‘‘⊕’’ and ‘‘⊗’’.
The operation ‘‘⊕’’ stands for the maximum i.e., for x, y ∈ R̄, it
holds x ⊕ y = max{x, y}. The operation ‘‘⊗’’ corresponds to the
usual addition i.e., for x, y ∈ R̄ it holds x ⊗ y = x + y, where the
convention −∞ ⊗ ∞ = −∞ is used. For a set (xi)i∈I of extended
reals ‘‘

⨁
’’ stands for the supremum i.e.

⨁
i∈Ixi = supi∈I{xi}. For a

pair of matrices A = [Aij] and B = [Bij], the operation ‘‘⊕’’ is their
element-wise maximum, i.e.:

(A ⊕ B)ij = Aij ⊕ Bij,

and similarly is the element-wise supremum for an arbitrary set of
matrices.

For a pair of matrices A = [Aij] ∈ R̄n×m and B = [Bij] ∈ R̄m×l

theirMax-Plus productA⊗B is an n× lmatrix and its i, jth element
is given by:

(A ⊗ B)ij =

m⨁
p=1

(
Aip + Bpj

)
, (1)

where ‘‘
⨁

’’ denotes the maximum of them elements.
The Max-Product algebra is defined on R̄+ = [0, ∞], with the

binary operations ‘‘⊕’’ and ‘‘⊙’’. The ‘‘⊙’’ operation is the usual

Table 1
The algebraic operations used.

Operation Meaning

⊕ The maximum. Applies for scalars, vectors and matrices
⊗ Max-plus multiplication. Defined in (1)
⊙ Max-plus multiplication. Defined in (2)

scalar multiplication with the convention 0 ⊙ ∞ = 0. The ‘‘⊕’’
operation is defined exactly as in the Max-Plus algebra. The matrix
multiplication in the Max-Product algebra is defined by:

[A ⊙ B]ij =

m⨁
p=1

(
AipBpj

)
.

The power of a square matrix is defined by Ak
= Ak−1

⊙ A and
A0

= I . For a given square matrix A a new matrix A+ is defined as
A+

=
⨁

∞

k=0A
k. The subset R+ = [0, ∞) of R̄+ will be also used.

Max-Product multiplication distributes over ‘‘
⨁

’’, i.e.:⨁
i∈I

A ⊙ Bi = A ⊙

(⨁
i∈i

Bi

)
. (2)

The same property holds also for the Max-Plus multiplication.
In both algebras, the ‘‘⊕’’ operation has lower priority than ‘‘+’’

or ‘‘⊗’’ in the Max-Plus algebra and ‘‘·’’ or ‘‘⊙’’ in the Max-Product
algebra respectively. Let us note that there is an isomorphism
exp(·) between the Max-Plus algebra (R̄, ⊕, ⊗) and the Max-
Product algebra (R̄+, ⊕, ⊙). The notation used in this paper is
summarized in Table 1.

A unifying algebraic framework to study Max-Plus and Max-
Product systems (and also other systems) is the theory ofWeighted
Lattices (Maragos, 2013, 2017).

1.2. Notation

For a pair of vectors x = (x1, . . . , xn)T and y = (y1, . . . , yn)T ,
the inequality notation x ≤ y is used meaning that xi ≤ yi, for
all i. Similarly, the inequality notation x < y stands for xi < yi,
for all i. The infinity norm will be used i.e. ∥x∥ = maxi|xi|. We
denote by 1 the column vector of dimension n consisting of ones.
The underlying probability space is denoted by (Ω,F, P).

A function α : R+ → R+ will be called class K function if
α is increasing and α(0) = 0. A function β : R+ × R+ → R+

will be called class KL function if, for each fixed t , the function
β(·, t) is a class K function and for any fixed s, the function β(s, ·)
is decreasing and β(s, t) → 0 as t → ∞.

1.3. Problem formulation

The first class of systems considered is Max-Product systems
with Markovian jumps. The uncertainty of the system is described
by a Markov chain yk having a finite state space {1, . . . ,M} and
transition probabilities cij. That is, the evolution of yk is described
by cij = P(yk+1 = j|yk = i). A Max-Product systemwithMarkovian
jumps is described by:

xk+1 = A(yk) ⊙ xk, (3)
x0 ∈ Rn

+
.

That is, at each time step the system matrix A takes one of the
M different values A(1), . . . , A(M) according to the value of the
Markov chain.

At first, the class of deterministic Max-Product systems will be
considered. In these systems the matrix A(·) does not depend on
the Markov chain and takes a single value A.
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The other class of systems considered is Max-Plus systemswith
Markovian jumps in the form:

xk+1 = A(yk) ⊗ xk, (4)
x0 ∈ Rn.

In the following definitions, some notions of stability and
stochastic stability are recalled from the literature (e.g. Khalil,
2002; Kozin, 1969 and Maragos, 2017).

Definition 1. Consider the system:

xk+1 = (A ⊙ xk) ⊕ (B ⊙ uk) , (5)
zk = (C ⊙ xk) ⊕ (D ⊙ uk) , (6)

where xk, uk, zk, denote the system state, input and output and
A, B, C,D are matrices of appropriate dimensions.

(i) The free system, i.e. (5) with uk = 0, is exponentially stable,
if there exist constants a > 1 and L > 0 such that ∥xk∥ ≤

L∥x0∥/ak, for any initial conditions and any k.
(ii) The system (5) is Input to State Stable (ISS) if there exist a

class KL function β and a class K function α such that:

∥xk∥ ≤ β(∥x0∥, k) + α

(
k⨁

i=0

∥uk∥

)
,

for any initial condition, any k and any input sequence uk.
(iii) The system (5), (6) is Bounded Input Bounded Output (BIBO)

stable (Maragos, 2017) if
⨁

∞

k=0∥uk∥ < ∞ implies
⨁

∞

k=0∥zk∥
< ∞, for any initial conditions.

Definition 2. The system given by (3) is:

(i) Almost surely stable if for any initial conditions, xk → 0
almost surely.

(ii) Mean norm stable if E[∥xk∥] → 0 as k → ∞.
(iii) Mean norm exponentially stable if there exist constants a >

1 and L > 0 such that E[∥xk∥] ≤ L∥x0∥/ak.

Conditions for the stochastic stability of systems in the form (3)
will be derived. For Max-Plus systems bounds on the growth of xk
will be derived.

2. Deterministic Max-Product systems

In this section the asymptotic stability of deterministic Max-
Product systems in the form:

xk+1 = A ⊙ xk, (7)
x0 ∈ Rn

+
,

is studied.
The following lemma presents a condition equivalent to the

exponential stability of (7) (for a definition of exponential stability
see for example Khalil, 2002).

Lemma 1. It holds:

(i) The function f (x) = A⊙x is homogeneous of order 1, i.e. it holds
f (ρx) = ρf (x) for any ρ ∈ R+.

(ii) The system (7) is exponentially stable iff for some a > 1, the
system xk+1 = aA ⊙ xk is stable.

Proof. The proof is immediate. □

A Lyapunov function will be constructed for the stable systems
in the form (7). Consider the function:

V (x) =

∞⨁
k=0

λT
⊙ Ak

⊙ x, (8)

where λ is a vector with positive entries. Equivalently, V can be
written as

V (x) =

∞⨁
k=0

λT
⊙ xk,

where xk is the state vector of (7) with initial condition x0 = x. It
is not difficult to see that if (7) is stable, then V (x) is finite for any x
and V (0) = 0. Furthermore, the sequence V (xk) is non-increasing:

∞⨁
k=k0+1

λT
⊙ xk ≤

∞⨁
k=k0

λT
⊙ xk.

Thus, V is a Lyapunov function.
The form of V can be computed using the following calcula-

tions:

V (x) =

∞⨁
k=0

λT
⊙ Ak

⊙ x = λT
⊙

[
∞⨁
k=0

Ak

]
⊙ x

= (λT
⊙ A+) ⊙ x. (9)

Thus, V has the form:

V (x) = pT
⊙ x, (10)

where p is an n vector with positive entries.

Proposition 1. The following are equivalent:

(i) The system (7) is exponentially stable.
(ii) There exists a vector p, with positive entries, such that AT

⊙p <

p.

Proof. In order to show the direct part,we use Lemma1, to obtain a
constant a > 1 such that xk+1 = aA⊙xk is stable. Using a Lyapunov
function in the form (8) for that system,we obtain a positive vector
p such that V (x) = pT

⊙ x. Then it holds:

apT
⊙ A ⊙ x ≤ pT

⊙ x,

for any x ∈ Rn
+
. Thus, pT

⊙ A < pT or equivalently AT
⊙ p < p.

The fact that (ii) implies (i) is shown with usual Lyapunov
analysis. □

Remark 1. The condition apT
⊙A ≤ pT can be checked using Linear

Programming.

Remark 2. A Lyapunov function in the form (8) is the direct
analogue of a Lyapunov function for a usual linear system xk+1 =

Axk, x0 = x in the form VL(x) =
∑

∞

k=0x
T
kQxk. Particularly, in

the place of the summation, we have the supremum and in the
place of the Q -norm ∥x∥2

Q = xTQx we have the λ-norm ∥x∥λ =

max{λ1x1, . . . , λnxn}.

Remark 3. The asymptotic behavior of Max-Plus deterministic
systems, depends on theMax-Plus eigenvalue of the systemmatrix
which under connectivity assumptions turns out to be unique
(e.g. Baccelli et al., 1992). This eigenvalue can be computed in terms
of the critical paths i.e. the paths with maximal average weight.
This analysis can be transferred to Max-Product systems using the
exp(·) isomorphism of the Max-Plus and Max-Product algebras.
The Lyapunov approach adopted here could, however, be extended
to stochastic systems and systemswhich are not linear in theMax-
Product algebra.

The following corollary studies the Input to State Stability (ISS)
and the Bounded Input Bounded Output (BIBO) stability.
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Corollary 1. Assume that the system given by (7) is exponentially
stable. Then:

(i) The system given by (5) is input to state stable.
(ii) The system given by (5), (6) is BIBO stable.

Proof. (i) Consider a Lyapunov function V in the form (10). Then V
satisfies Lemma 3.5 of Jiang and Wang (2001). Thus, the system is
ISS.

(ii) Follows immediately from (i). □

The following example illustrates that the same Lyapunov func-
tions can be used to analyze systems which are nonlinear in the
Max-Product algebra.

Example 1. Consider the system:

xk+1 =

[
2/3 2
1/3 3/4

]
⊙ xk. (11)

We consider the Lyapunov function candidate V (x) = [2 5] ⊙ x. It
holds:

[2 5]
[
2/3 2
1/3 3/4

]
= [5/3 4] < [2 5].

Thus, V is a Lyapunov function and the system (11) is exponentially
stable.

Let us then consider the system:

xk+1 =

[
2/3 2
1/3 3/4

]
⊙ xk ⊕

[
2
3

]
⊙ (xTk ⊙ xk), (12)

which is not in the form of (7). The same Lyapunov function V (x)
can be used to show the local asymptotic stability of (12).

Furthermore, the same Lyapunov function V (x) can be used to
show the ISS of the system:

xk+1 =

[
2/3 2
1/3 3/4

]
⊙ xk ⊕

[
5
8

]
⊙ uk.

3. Max-Product systems with Markovian jumps

We then turn to Max-Product systems with Markovian Jumps
in the form (3). Lyapunov functions in the form:

V (x, y) = p(y)T ⊙ x, (13)

generalizing (10) are considered.

Proposition 2. Assume that there exist a constant a > 1 and vectors
with positive entries p(1), . . . , p(M) such that:

a
M∑
j=1

cijp(j)T ⊙ A(i) ⊙ v ≤ p(i)T ⊙ v, (14)

for any vector v with positive entries. Then, (3) is mean norm expo-
nentially stable and almost surely stable.

Proof. Consider the function (13). It holds:

E[V (xk+1, yk+1)|xk = x, yk = i] =

M∑
j=1

cijp(j)T ⊙ A(i) ⊙ x.

Condition (14) implies that V is a positive super-martingale. Fur-
thermore, V = 0 implies x = 0. Thus, the system is almost surely
stable.

Condition (14) further implies that:

E[V (xk+1, yk+1)|V (xk, yk)] ≤ V (xk, yk)/a.

Thus, using this inequality repeatedly and taking expectations in
both sides we have:

E[V (xk, yk)] ≤ V (x0, y0)/ak.

Denoting by pM and pm the maximum and the minimum entry of
p(1), . . . , p(M), we obtain:

E[pm∥xk∥] ≤ pM∥x0∥/ak.

Thus, using L = pM/pm, the inequality in Definition 2 part (iii)
holds and the system (3) is mean norm exponentially stable. □

Condition (14) should hold for any v ∈ Rn
+
and thus, it could be

difficult to check it in general. The following lemma may be used
to simplify condition (14). The lemmawill be used also in Section 4
which considers many step Lyapunov functions. Hence, the lemma
will be stated using a possibly different timing (with t in the
place of k), a possibly different set of system matrices, depending
on an additional random variable wt and a state vector x̄ in the
place of x.

Lemma 2. Consider a system in the form:

x̄t+1 = Ā(yt , wt ) ⊙ x̄t , (15)

where yt takes values in {1, . . . ,M} andwt take values in {1, . . . , M̄}.
Assume also that (yt , wt ) is a Markov chain and that wt is inde-
pendent of (wt−1, yt−1) given yt . Denote by c̃(i, j, i′) the conditional
probability P(yt+1 = i′, wt = j|yt = i). Consider also the function:

V (x̄, y) = p(y)T ⊙ x̄, (16)

with p(1), . . . , p(M) vectors with positive entries. For some δ with
0 < δ < 1, the following are equivalent:

(i) It holds

E[V (x̄t+1, yt+1)|x̄t , yt ] ≤ δV (x̄t , yt ), (17)

for all x̄t , yt .
(ii) It holds:

M̄∑
j=1

M∑
i′=1

c̃(i, j, i′)1T
⊙ Ã(i′, i, j) ⊙ 1 ≤ δ, (18)

for i = 1, . . . ,M, where

Ã(yt+1, yt , wt ) = diag(p(yt+1))Ā(yt , wt )diag(p(yt )−1). (19)

Proof. Consider the vector:

zt = diag(p(yt )) ⊙ x̄t .

Then, it holds:

V (x̄t , yt ) = 1T
⊙ zt = ∥zt∥. (20)

Furthermore, zt evolves according to:

zt+1 = Ã(yt+1, yt , wt ) ⊙ zt .

Let us first show that (i) can be expressed in terms of zt as:

E
[
∥zt+1∥

⏐⏐zt , yt] ≤ δ∥zt∥. (21)

Eq. (20) shows that the both the right and the left hand side of (21)
are equal to the corresponding terms of (17). Hence, it remains to
prove that (ii) is equivalent to (21).

It holds:

E
[
∥zt+1∥

⏐⏐zt , yt = i
]

= F (zt , i) =

=

M̄∑
j=1

M∑
i′=1

c̃(i, j, i′)1T
⊙ Ã(i′, i, j) ⊙ zt .
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The function F (z, i) is 1-homogeneous in z . Thus, (21) is equivalent
to

max
∥z∥≤1

F (z, i) ≤ δ, for i = 1, . . . ,M.

Furthermore, F (z, i) is non-decreasing in z . Thus, (i) is equivalent
to F (1, i) ≤ δ, which is equivalent to (ii). □

Remark 4. Eq. (18) is stated using thematrix Ã, which is computed
in transformed coordinates (Eq. (19)). A similar transformation is
used (in a different context) in van den Boom and De Schutter
(2012), in order to define the ‘maximum autonomous growth rate’.

For the needs of the rest of the current section we shall use k in
the place of t, A(y) in the place of Ā(y, w) and x in the place of x̄.

Corollary 2. Assume that:
M∑
j=1

cijp(j)T ⊙ A(i) ⊙ (p−1(i)) ≤ δ,

for i = 1, . . . ,M, δ < 1 and p−1(i) is a vector having as entries the
inverses of the entries of p(i). Then the system given by (3) is mean
norm exponentially stable and almost surely stable.

Proof. Using k in the place of t , A(y) in the place of Ā(y, w) and
x in the place of x̄ in Lemma 2 we get that the conditions of
Proposition 2 hold true. Thus, the systemgiven by (3) ismean norm
exponentially stable and almost surely stable. □

We then consider Max-Product stochastic systems with inputs
and outputs and the notion of BIBO stability in probability is
introduced.

Definition 3. Consider the system:

xk+1 = A(yk) ⊙ xk ⊕ B(yk) ⊙ uk, (22)
zk = C (yk) ⊙ xk. (23)

The system is Bounded Input Bounded in probability Output
(BIBipO) stable if for any ε > 0, Mu > 0 and any initial condition,
there exist a boundMz > 0 such that:

P(∥zk∥ ≤ Mz) > 1 − ε. (24)

The following proposition shows that the exponential mean
norm stability of the free system implies the BIBipO stability.

Proposition 3. If the free system given by (3) is mean norm exponen-
tially stable then the system (22)–(23) is BIBipO stable.

Proof. Consider a pair of constants ε > 0, Mu > 0 and an initial
condition x0 ∈ Rn

+
. Following Maragos (2017) the state vector can

be written as:

xk = Φ(k, 0) ⊙ x0 ⊕

(
k⨁

t=1

Φ(k, t) ⊙ B(yt−1) ⊙ ut−1

)
,

where Φ is the transition matrix given by:

Φ(k2, k1) =

{
A(yk2−1) ⊙ . . . ⊙ A(yk1 ) if k2 > k1
I if k2 = k1.

For any given constantMx > 0 it holds:

P[∥xk∥ > Mx] ≤ P[∥Φ(k, 0) ⊙ x0∥ > Mx]+

+

k∑
t=1

P[∥Φ(k, t) ⊙ B(yt−1) ⊙ ut−1∥ > MX ]

≤ P[∥Φ(k, 0) ⊙ x0∥ > Mx]

+

k∑
t=1

P[∥Φ(k, t) ⊙ Ū∥ > Mx], (25)

where:

Ū = max {∥B(i) ⊙ u∥ : ∥u∥ ≤ Mu, i = 1, . . . ,M} 1.

The following claim will be used:

Claim. There exists a value Mx > 0 such that the right hand side of
the last inequality in (25) is less than ε for any positive integer k.

To prove the claim we first use the Markov inequality:

E[∥xk∥ > Mx] ≤

≤
1
Mx

[
E[∥Φ(k, 0) ⊙ x0∥] +

k∑
t=1

E[∥Φ(k, t) ⊙ Ū∥]

]
. (26)

The term E[∥Φ(k, 0) ⊙ x0∥] is bounded, due to the mean norm
exponential stability of the free system. Then, observe that it holds
E[∥Φ(k, t) ⊙ Ū∥] = E[∥x̃k−t∥] where x̃l satisfies:

x̃l+1 = A(yk−t+l)x̃l, (27)

x̃0 = Ū .

The system (27) is mean norm exponentially stable. Thus:
k∑

t=1

E[∥Φ(k, t) ⊙ Ū∥] ≤

∞∑
t=1

E[∥Φ(k, t) ⊙ Ū∥] ≤
aL

a − 1
∥Ū∥, (28)

where a and L the constants satisfying the mean norm exponential
stability definition. Hence, the right hand side of (26) tends to zero
as Mx increases, which completes the proof of the claim.

Hence, a constant Mz satisfying (24) is given by: Mz = max
{∥C (i) ⊙ x∥ : ∥x∥ ≤ Mx, i = 1, . . . ,M}. □

4. k-step Lyapunov functions

In the last section, Lyapunov functions were used for the sta-
bility analysis of Max-Product systems with Markovian jumps. In
this section we consider k-step Lyapunov functions and derive
necessary and sufficient conditions for the mean-norm exponen-
tial stability. It turns out that many step Lyapunov functions offer
greater flexibility.

We shall consider Lyapunov functions V : Rn
+

× {1, . . . ,M} →

R+ with the following properties:

P1. V (x, y) is 1-homogeneous in x.
P2. V (x, y) is continuous in x.
P3. It holds V (x, y) = 0 iff x = 0.

The following proposition gives necessary and sufficient con-
ditions for the mean-norm exponential stability in terms of many
step Lyapunov functions.

Proposition 4. Consider a function V (x, y) satisfying (P1)–(P3). Then,
the following are equivalent:

(i) The system given by (3) is mean-norm exponentially stable.
(ii) For each δ ∈ (0, 1), there exists a positive integer k0 such that:

E[V (xk, yk)] ≤ δV (x0, y0), (29)

for any x0 ∈ Rn
+
, y0 ∈ {1, . . . ,M} and any k ≥ k0.

(iii) There exists a δ ∈ (0, 1) and a positive integer k0 such that:

E[V (xk0 , yk0 )] ≤ δV (x0, y0), (30)

for any x0 ∈ Rn
+
, y0 ∈ {1, . . . ,M}.
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Proof. (i) ⇒ (ii). The following claim is first proved:

Claim. There exist positive constants bmin and bmax such that:

bmin∥x∥ ≤ V (x, y) ≤ bmax∥x∥. (31)

From (P2) and (P3) the values of the constants bmin and bmax defined
by:

bmin = min{V (x, y) : x ∈ Rn
+
, ∥x∥ = 1},

bmax = max{V (x, y) : x ∈ Rn
+
, ∥x∥ = 1},

are finite and positive. Then, (P1) completes the proof of the claim.

Assume that the system given by (3) is mean-norm exponen-
tially stable and a and L satisfy Definition 2 part (iii). Fix a δ ∈ (0, 1).
It holds:

E[V (xk, yk)] ≤ E[bmax∥xk∥]

≤ bmaxL∥x0∥/ak ≤
bmax

bmin
La−kV (x0, y0).

Choosing k0 such that bmax
bmin

La−k0 < δ, inequality (29) is satisfied.
(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i). Using the same arguments as in the first part of the

proof it is easy to see that there exists a positive integer N0 such
that:

E[∥xN0k0∥] ≤ δ∥x0∥.

Consider the Euclidean division of k by N0k0, i.e. k = (N0k0)q + r .
Using repeatedly the following inequality:

E[∥xk∥] = E
[
E
[
∥xk∥

⏐⏐xk−N0k0 , yk−N0k0

]]
≤ δE[∥xk−N0k0∥],

we obtain:

E[∥xk∥] ≤ δqE[∥xr∥]. (32)

Furthermore, r as a remainder satisfies 0 ≤ r < N0k0 and q as a
quotient satisfies q ≥

k
N0k0

−1. A bound for E[∥xr∥] is then derived
using repeatedly the following inequality:

∥A(y) ⊙ x∥ ≤

[
max
i,j,y

Aij(y)
]

∥x∥.

Inequality (32) implies that:

E[∥xk∥] ≤ δ
k

N0k0

[
max
i,j,y

Aij(y)
]N0k0−1

/δ.

Thus, using for a and L the values a = δ1/(N0k0) and L =[
maxi,j,yAij(y)

]N0k0−1
/δ, the inequality in Definition 2 part (iii)

holds true and the system is mean norm exponentially stable. □

The following corollary uses Lyapunov functions in the form
V (x, y) = p(y)T ⊙ x and Lemma 2. Particularly, a system in the
form (15) is considered with x̄t = xk0t .

Corollary 3. Fix a positive integer k0. Assume that there exists a set
of vectors p(1), . . . , p(M) such that:∑
(j1,...,jk0−1),i′

c̃(i, (j1, . . . , jk0−1), i′)1T
⊙

⊙ Ã(i′, i, (j1, . . . , jk0−1), i′) ⊙ 1 ≤ δ, (33)

where δ < 1, the matrix Ã is given by (19), the matrix Ā by:

Ā(yt , (j1, . . . , jk0−1), i′) = A(jk0−1) ⊙ . . . ⊙ A(j1),

and the constants c̃ by:

c̃(i, (j1, . . . , jk0−1), i′) = cij1cj1j2 · · · · · cjk0−1i′ .

Then (3) is mean norm exponentially stable. Furthermore, if (3) is
mean norm exponentially stable then there exists a positive integer
k0 and a set of vectors p(1), . . . , p(M) satisfying (33). □

5. Max-Plus systems with Markovian jumps

5.1. Almost sure bounds for the free system

We then turn toMax-Plus systemswithMarkovian Jumps in the
form (4). An almost sure bound on the evolution of the state of (4)
will be derived using the results of the previous sections.

For a given system in the form (4) and a positive constant
γ , we construct an equivalent Max-Product system. Particularly,
consider the vector x′

k = exp(xk)/γ k, where the exponentiation is
considered component-wise. Then, x′

k evolves according to:

x′

k+1 = A′(yk) ⊙ x′

k, (34)
x′

0 ∈ Rn
+
,

and A′
= exp(A)/γ where the exponentiation is again considered

component-wise.

Remark 5. A transformation of a Max-Plus system to a sub-linear
system is used in Chang (1996). In contrast to the transformation
to a sub-linear system the transformation to amax-product system
is exact (invertible). Let us note that the proof of the following
proposition uses similar techniques with the proof of Corollary 2.3
of Chang (1996).

The mean norm exponential stability of (34) can be used to
derive some almost sure bounds for the evolution of (4).

Proposition 5. Assume that (34) is Mean-norm exponentially stable.
Then almost all the sample paths of (4) satisfy:

xk < (k ln γ )1, (35)

for large k.

Proof. Consider the sets:

Bk = {ω ∈ Ω : xk ≮ (k ln γ )1}. (36)

It holds E[∥x′

k∥] ≤ M/ak for some a > 1. Thus, using Markov
inequality P[∥x′

k∥ > 1] ≤ M/ak. Furthermore, ∥x′

k∥ > 1 iff
xk ≮ (k ln γ )1. Hence, P(Bk) ≤ M/ak and

∑
∞

k=1P(Bk) < ∞.
Thus, 1st Borel–Cantelli lemma (e.g. Billingsley, 2008) applies.

Hence:

P(lim sup Bk) = 0, (37)

which concludes the proof. □

The results of Proposition 5 can be used to bound the Lya-
punov Exponent of a Max-Plus systems with Markovian jumps.
Conditions for the existence of the Lyapunov exponent are given
in Cohen (1988).

Corollary 4. Assume that the system described by (4) has a Lyapunov
exponent ℓ. Furthermore, assume that (34) is mean norm exponen-
tially stable. Then, ℓ < ln γ .

Proof. It holds xk/k < γ 1 for large k, almost surely. □
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5.2. Systems with inputs

In this section systems of the form:

xk+1 = (A(yk) ⊗ xk) ⊕ (B(yk) ⊗ uk) ,

zk = C (yk) ⊗ xk, (38)

are considered in the context of the multi machine production
system example studied in the following section. Using the results
of Theorem 1 of van den Boom and De Schutter (2012), we assume
that the input signal uk is scalar and that it grows in an approxi-
mately linear fashion:

uk = kT + δk, (39)

with δk bounded and T a positive constant. In van den Boom
and De Schutter (2012) it is proved that, under certain additional
conditions, inputs in the form (39) stabilize the corresponding
switching Max-Plus linear system.

The following proposition shows that the difference of the
state vector entries from kT are bounded in probability. Let us
note that the boundedness of these differences have been used
in the literature to define a notion of stability for discrete-event
systems (Passino & Burgess, 1998; van den Boom & De Schutter,
2012).

Proposition 6. If the system (34) with γ = eT , where e is the basis
of the natural logarithm, is mean norm exponentially stable then for
any ε > 0 there exists a bound Mx such that:

P[xik − kT ≤ Mx] > 1 − ε, (40)

for any k, where xik is the ith component of the vector xk.

Proof. Consider the vector x′

k = exp(xk)/γ k
= exp(xk)/exp kT .

This vector evolves according to:

x′

k+1 =
(
A′(yk) ⊙ x′

k

)
⊕
(
B′(yk) ⊙ dk,

)
(41)

where dk = eδk , A′
= exp(A)/γ and B′

= exp(B)/γ where all the
matrix exponentiations are considered component-wise. Then, the
application of Proposition 3 to (41) competes the proof. □

6. Numerical examples

6.1. Deterministic Max-Product systems

In this section we use the Lyapunov analysis of deterministic
max-product systems to analyze slightly ‘nonlinear’ max-plus sys-
tems. Such systems may arise in the modeling of discrete event
systems for which the transport, processing, holding or idle times
depend on system operation. For example, the necessary cooling
time for a machine in a production system may depend on the
length of the previous cycle. Another example is the loading or
boarding times in a rail transportation system which depend on
the quantity of products or the number of passengers waiting to be
served, which in turn may depend on the length of the last cycle.
In this section we analyze a simple model of such a discrete event
system.

Consider the two dimensional model:

x1k+1 = max
(
x1k + ā11, x2k + ā12

)
+ f1(x1k+1 − x1k),

x2k+1 = max
(
x1k + ā21, x2k + ā22

)
+ f2(x2k+1 − x2k), (42)

where xik represents the instant of time at which an event takes
place for the kth time (e.g. the train departs from station i) and f1,
f2 terms represent the dependence on the length of the last cycle.

For simplicity assume that f1 and f2 are linear: f1(z) = z2(z) = δ̄z,
with |δ̄| < 1/2.

Then (1) can be written as:

x1k+1 = max(x1k + a11, x2k + a12 − δ(x1k − x2k)),

x2k+1 = max(x1k + a21 − δ(x2k − x1k), x
2
k + a22), (43)

where aij = aij/(1 − δ) and δ = δ̄/(1 − δ). This system is clearly
not of the max-plus form. In order to analyze (43), consider the
corresponding exponentiated system:

x′1
k+1 = max

(
a′

11x
′1
k , a′

12x
′2
k (x

′1
k /x′2

k )
−δ
)
,

x′2
k+1 = max

(
a′

21x
′1
k (x

′2
k /x′1

k )
−δ, a′

22x
′2
k

)
, (44)

where x′i
k = exp(xik)/γ

k, a′

ij = exp(aij)/γ . The dynamics (44) can be
written as:

x′

k+1 = A′(x′1
k /x′2

k ) ⊙ x′

k (45)

where

A′(x′1
k /x′2

k ) =

[
a11 a′

12(x
′1
k /x′2

k )
−δ

a′

21(x
′2
k /x′1

k )
−δ a′

22

]
.

Then, the stability of the dynamics (44) can be studied using the
Lyapunov function of the max-product ‘linearized’ system:

x′

k+1 = A′(1) ⊙ x′

k. (46)

Example 2. Assume that a11 = a22 = 1.5686, a12 = 1.7918,
a21 = 1.3350, d = −0.15 and γ = 5. Then, the exponentiated
system is:

x′1
k+1 = max

(
0.96x′1

k , 1.2(x′1
k /x′2

k )
0.15x′2

k

)
,

x′2
k+1 = max

(
0.76x′1

k (x
′2
k /x′1

k )
0.15, 0.96x′2

k

)
, (47)

and the ‘max-product linearized’ matrix is:

A′(1) =

[
0.96 1.2
0.76 0.96

]
.

Using (9), (10) we obtain a Lyapunov function for the max-plus
linearized system:

V (x) = [1 1.25] ⊙ x.

We then use V as a Lyapunov function candidate for (47). The
function f (x) = A′(x1/x2) ⊙ x is 1-homogeneous. Therefore, we
need only to show that if V (x′

k) ≤ 1 implies V (x′

k+1) ≤ 1.
Equivalently we need to show that x′1

k+1 ≤ 1 and x′2
k+1 ≤ 0.8, if

x′1
k ≤ 1 and x′2

k ≤ 0.8. Indeed for such x′

k it holds:

x′1
k+1 = max

(
0.96x′1

k , 1.2(x′1
k )

0.15(x′2
k )

0.85)
≤ 1,

x′2
k+1 = max

(
0.76(x′1

k )
0.85(x′2

k )
0.15, 0.96x2k

)
≤ 0.8.

Thus, the system (47) is stable. □

Let us note it is not possible to analyze (43) using directly max-
plus techniques and the transformation to a max-product system
is essential.

6.2. Max-Product systems with Markovian jumps

In this section, we present a very simple numerical example of
a Max-Product system with Markovian jumps. The Markov chain
has two possible states yk ∈ {1, 2} and the values of matrix A are
given by:

A(1) =

[
1.05 1.5
0.4 0.3

]
,A(2) =

[
0.5 0.4
0.7 0.3

]
, (48)
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Fig. 1. Several sample paths of the system described by (48). (Best viewed in color.)
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. The production system.

and the Markov chain has transition probability matrix:

c =

[
0.3 0.7
0.4 0.6

]
.

Using simple search techniques a Lyapunov function satisfying
the conditions of Corollary 2 can be obtained. One of those Lya-
punov functions is:

p(y) =

{
[4 6]T if y = 1
[3 2]T if y = 2.

Hence, the system is mean norm exponentially stable. Several
sample paths of the system are given in Fig. 1.

6.3. Application to multi-machine production systems

In this section we study a very simple example of a production
system consisting of three machines analyzed in van den Boom
and De Schutter (2012). The production system may produce two
distinct outputs A and B. The order in which the machines process
the raw material is different for the two products. Particularly,
when the product A is produced, the machines are used with order
M1 → M2 → M3 while when the product B is produced the order
is M2 → M1 → M3. The production system is depicted in Fig. 2.
An important question is that of maximum throughput. Maximum
throughput is the maximum rate at which the system can process
the raw material and it is defined as the inverse of the minimum
cycle time (Baccelli et al., 1992).

A max-plus stochastic system describing the timing of the pro-
duction system will be described. Each machine starts working as
soon as possible, that is when the input material is available and

also it has finished all the previous work. Let us denote by uk the
time instant atwhich the rawmaterial for the kth product becomes
available and by xik the time instant at which the machine i starts
working for the production of the kth product. We assume that the
processing time for the machines are s1 = 1, s2 = 2 and s3 = 1.
Furthermore, zk denotes the time instant at which the product k
becomes available.

The evolution of xk and zk is given by:

xk+1 = (A(yk) ⊗ xk) ⊕ (B(yk) ⊗ uk+1) ,

zk = C ⊗ xk, (49)

where yk = 1 when the product A is produced and yk = 2 when
product B is produced. ThematricesA(1),A(2),B(1),B(2) and C are
given by:

A(1) =

[ s1 −∞ −∞

2s1 s2 −∞

2s1 + s2 2s2 s3

]
, B(1) =

[ 0
s2

s1 + s2

]
,

A(2) =

[ s1 2s2 −∞

−∞ s2 −∞

2s1 s1 + 2s2 s3

]
, B(2) =

[ s2
0

s1 + s2

]
,

and C = [−∞ −∞ s3]. The details can be found in van den Boom
and De Schutter (2012).

We assume that which product is produced at each time step
depends on exogenous orders which behave randomly. Particu-
larly we assume that yk is a Markov chain with transition proba-
bility matrix:

c =

[
0.8 0.2
0.2 0.8

]
.

We further assume that the raw material arrives at a constant
rate. Thus, the input signal has the form uk = kT . Proposition 6
will be used to show that the raw material that has arrived to the
production system but not yet fully processed remains bounded in
probability. Thus the system is capable of processing the rawmate-
rial at the given rate. The condition that all the buffer levels remain
bounded has been used in the literature to define the stability of
Discrete Event Systems (e.g. van den Boom & De Schutter, 2012).

Example 3. Assume that the raw material arrival has a period
T = 2.5. The matrices A′(yk) are:

A′(1) =

[0.2231 0 0
0.6065 0.6065 0
4.4817 4.4817 0.2231

]
,

A′(2) =

[0.2231 4.4817 0
0 0.6065 0

0.6065 12.1825 0.2231

]
.

The vectors p1 = [12 12 1], p2 = [3 32 1] satisfy the conditions
of Corollary 2. Hence, Proposition 6 applies and xik − kT remains
bounded in probability. Fig. 3 illustrates the evolution of stock
times.

Remark 6. A stability condition is also derived in van den Boom
and De Schutter (2012). This stability condition resembles the
stability under arbitrary switching property. It turns out that,
in contrast to usual linear systems, the stability under arbitrary
switching property is easier to check than the stochastic stability
in the Max-Plus systems (Blondel et al., 2000).

The minimum value for T satisfying the stability conditions
of van den Boom and De Schutter (2012) can be computed using
Linear Programming and for the current example has a value T = 3.

Thus, the stochastic stability conditions (40) are less restrictive
and allow the system to operate at a higher rate, compared with
the stability under arbitrary switching.
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Fig. 3. The differences xik − kT in a sample path of the system (49). (Should be
viewed in color.) (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

7. Conclusion

Max-Plus and Max-Product systems with Markovian jumps
were considered. A Lyapunov function is constructed for asymp-
totically stable deterministic Max-Product systems. This Lyapunov
function is found to have a simple form and the stability condi-
tions derived can be checked using Linear Programming. Slightly
modified Lyapunov functions are then used to derive sufficient
conditions for themeannormexponential stability ofMax-Product
systems with Markovian Jumps. A simpler form of these condi-
tions can be derived based on the monotonicity of the Lyapunov
functions. Necessary and sufficient conditions for the mean norm
exponential stability are then derived using many step Lyapunov
functions.

Bounds for the evolution of the state of Max-Plus systems with
Markovian jumps are then derived, based on the results for the
Max-Product systems. Finally a numerical example illustrates the
application of the methods described on a production system.
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