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Learn to Adapt to Human Walking: A Model-Based

Reinforcement Learning Approach for a
Robotic Assistant Rollator

Georgia Chalvatzaki ", Xanthi S. Papageorgiou

Abstract—In this letter, we tackle the problem of adapting the
motion of a robotic assistant rollator to patients with different
mobility status. The goal is to achieve a coupled human-robot
motion in a front-following setting as if the patient was pushing the
rollator himself/herself. To this end, we propose a novel approach
using model-based reinforcement learning (MBRL) for adapting
the control policy of the robotic assistant. This approach encap-
sulates our previous work on human tracking and gait analysis
from RGB-D and laser streams into a human-in-the-loop deci-
sion making strategy. We use long short-term memory (LSTM)
networks for designing a human motion intention model and a
coupling parameters forecast model, leveraging on the outcome
of human gait analysis. An initial LSTM-based policy network was
trained via imitation learning from human demonstrations in a
motion capture setup. This policy is then fine-tuned with the MBRL
framework using tracking data from real patients. A thorough
evaluation analysis proves the efficiency of the MBRL approach
as a user-adaptive controller.

Index Terms—Human-centered robotics, learning and adaptive
systems, automation in life sciences: biotechnology, pharmaceutical
and health care.

I. INTRODUCTION

HE development of robotic mobility assistants is a major
T research area with great impact on society. The constant
increase of aged population in recent years has created new
challenges in the healthcare sector, causing great difficulties
for the existing care and nursing staff to keep up with these
evolving needs. The necessity for robotic assistants that will
help with elderly mobility and rehabilitation is clear. It has
been now close to twenty years since the first robotic rollators
emerged [1], [2]. An intelligent robotic mobility assistant should
serve many purposes; postural support, gait analysis, sit-to-stand
transfer, navigation and cognitive assistance. Adaptation to user
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Fig. 1. Robotic agent observes predicted human motion intention and learns
through model-based reinforcement learning to adapt its control actions,
accordingly.

needs is important for seamless human-robot interaction in such
applications.

In this letter, we tackle the problem of adapting the motion
of a robotic rollator that moves along with an elder user while
being in front of him. The applied control should comply with
the user’s needs in case the user wants to walk either supported
or unsupported by the rollator, whenever feeling confident, i.e.
leaving the handles and walking along with the robot in front
of them (Fig. 1). However, the robot should follow and be in a
close distance in front of the user, not only to provide support
whenever needed, but also to prevent possible falls.

Motivated by this need, taking into account the variability in
human walking, and especially in pathological gait (e.g ataxic
and freezing types of gait present different velocities and pat-
terns), we propose a unified method for continuous monitoring
of each user and adaptation of the robotic platform’s motion ac-
cordingly. We propose a MBRL method for adapting the robot’s
motion in front of the user. Fig. 1 encapsulates an overview of
the problem we aim to solve; the robotic assistant should infer
the human’s motion intention and learn a control policy using
MBRL to select control actions that will comply to the human’s
way of walking.

We build upon our previous work, regarding human tracking
and gait analysis fusing 2D laser data capturing the legs motion
[3] and RGB-D streams of the upper body pose estimation using
the Open Pose Library [4], from sensors mounted on a robotic
rollator (Fig. 2). Laser data are used to perform robust gait track-
ing and reliable on-line gait analysis by exploiting the high scan-
ning frequency and precision of the laser sensor, while RGB-D
streams can provide additional information from which we can
infer human gait stability [5]. In this work, we integrate the afore-
mentioned methods into a human-in-the-loop control framework
using MBRL for adapting the robot motion to each user.

In the human-robot coupled navigation context, our main con-
tribution resides on a novel approach considering human motion
intentions within a MBRL framework for the online motion
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Robotic rollator w/

Upper body pose

Fig. 2. Left and middle: Prototype robotic assistant rollator equipped with
a RGB-D sensor for capturing the upper body pose and a 2D laser sensor for
detecting the legs motion. Right: Example of the MoCap markers on an elderly
user and a passive rollator, from which the data for imitation learning derived.
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Fig. 3. Model-based reinforcement learning framework for policy adaptation
using human motion intention predictions.

adaptation of a robotic assistant in a challenging front-following
scenario (Fig. 1). In this framework, we start by developing
LSTM based prediction models for estimating human motion
intention using a history of motion tracking data. We then train
models which associate the human motion orientation and the
estimated stride length provided by gait analysis to the desired
coupling parameters for the robot’s heading and position, i.e.
the desired separation distance and bearing in the human-robot
frame. Further on, we use this information to train a policy for
suggesting robot control actions according to the human motion
intentions and the expected desired coupling. We developed an
initial policy model trained with IL from human demonstrations
using data from motion markers (VICON system), which were
placed on the human and a passive rollator frame in a series
of data collection experiments (Fig. 2). Although such a model
behaves well for the demonstrated cases and gives insight on how
the user wants the platform to be placed in front of him/her while
walking, this policy does not have experience for recovering
from drift cases or unexpected detection loss of the user. To cope
with such situations, the proposed MBRL framework performs
fine-tuning of the initial control policy (as seen in Fig. 3), while
using random sampling Model Predictive Control (MPC) for
planning [6]—[8]. Detailed experimental results are presented in
the letter showing the efficiency of the proposed MBRL frame-
work for the motion adaptation of a robotic assistant rollator
using data from real patients.

II. RELATED WORK

State-of-the-art research for robotic assistants mostly relies
on admittance control schemes [9], [10]. A control strategy

3775

using as inputs human velocity and orientation was proposed in
[11]. A formation control for a robot-human following scenario
was presented in [12], for safely navigating blind people. In
our previous work [13], we have considered a front-following
problem with a kinematic controller adapting to users according
to their pathological mobility class. A Reinforcement Learning
(RL) shared-control for a walking aid with human intention
prediction from force sensors is presented in [14].

A lot of research focuses on social robot navigation [15],
i.e. robot motion planning among crowds [16], using RL. Most
methods for robot navigation require pedestrians motion pre-
dictions for the robot to learn how to navigate among them in a
compliant way [17]. An interaction-aware motion prediction ap-
proach for pedestrians with an LSTM-based model for learning
human motion behavior was presented in [18]. In [19], deep RL
was used for navigating according to social norms across crowds,
while in [20], RL is used for unfreezing the robot in the crowd by
taking into account the coordination between robots and detected
humans. In such cases the robot does not accompany humans,
but it rather learns how to move through and avoid collisions
with them.

Regarding robotic companions, a method for human-robot
navigation using the social force model and a Bayesian pre-
dictor for human motion is described in [21]. A model based
on social force and human motion prediction is presented in
[22], for making robots capable of approaching people with a
human-like behavior, while they are walking in a side-by-side
formation with a person, avoiding several pedestrians in the
environment. An MPC technique that accounts for safety and
comfort requirements for a robot accompanying a human in a
search and rescue scenario is presented in [23].

The use of deep RL is prevalent in modern research aim-
ing to plan robot motion [24] and control [25] for various
tasks. Robot navigation systems which have integrated such
RL decision-making schemes can be found in [26]-[28]. Ap-
proaches combining IL with RL for learning control policies are
presented in [29], [30]. Although, model-free RL approaches
have many successful applications, they require large amount of
training data, which are often simulated, thus their applicability
is limited. On the other hand, model-based RL firstly learns
a model of the system and then trains a control policy using
feedback [31]. MBRL has been used for robot control both in
simulated and real world experiments [32]-[34]. MBRL relies
on MPC for planning control actions, thus using learned models
along with MPC as a control policy, is a matter in hand for RL and
IL research [8], [35], [36]. We were inspired by recent advances
in adaptive control using MBRL [7], [37]. In this work, we
propose a novel MBRL framework for learning and adapting the
control policy of a robotic assistant rollator to human walking.
To the best of our knowledge, this is the first approach aiming
to solve a front-following problem using MBRL and human
motion prediction models, either for a robotic assistant or a
robotic companion.

III. PRELIMINARIES

In RL the goal is to learn a policy that will propose actions
for an agent, which will maximize the sum of the expected
future rewards [38]. Given the current state x; € X, the agent
executes an action u; € U and receives areward r; = 7 (2, uy),
while transitioning to the next state x;1 = f(z, ut) + w; with
initial state xo ~ p(xo), where f is a nonlinear function for
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the system’s forward dynamics, w; a Gaussian noise process
and p(z() an initial state distribution. In most cases, especially
for model-free RL [39], the reward function is estimated from
samples, which is a data expensive process. Model-based RL
attempts to address the problem of data inefficiency by using
observed data to learn the dynamics of the system. The model is
used for running internal simulations of the agent’s dynamics,
based on which the policy is learned. The goal of MBRL is to

learn an approximation of the true dynamics f. Let fg be the
learned discrete-time function parametrized by 6 that approxi-

mates f. The objective is to find the parametrized policy fy in
a finite horizon that maximizes a long-term reward over a time
horizon 7" by optimizing the parameters 6.

Since MBRL aims to learn a global dynamics model, general-
ization is an issue, especially for robotics applications that have
to affront stochastic environments and adapt to new tasks. Thus,
we resort to the option of planning through the suggested policy
actions to compensate for model errors. MPC is a suitable finite
horizon optimal control solution which optimizes a cost function
at each time step to produce a sequence of control actions.
Classic MPC relies on optimizing constrained quadratic costs,
requiring first or second order approximations of the dynamics
for convexity, which is sometimes difficult to meet when the
dynamics are approximated by neural networks. Thus, itis useful
to employ a random-sampling shooting method for MPC [6],
to perform rollouts through time and simulate trajectories in
a short time horizon 7'. In MBRL framework, MPC is used
for finding the trajectory with the minimum cumulative cost
over time horizon 7', for which only the first action u; of the
optimal sequence is applied to the system, and then re-plan
at each time-step. Therefore, such an approach compensates
for model inaccuracies by preventing accumulating errors and
drifting from the desired trajectory. In the context of MBRL,
the reward maximization can be viewed as the equivalent cost
minimization problem through MPC.

IV. PROBLEM STATEMENT

Our problem concerns finding the optimal control policy for
adapting the robotic assistant’s motion to the needs of users
with different mobility status. Given an estimated current human
state x77 = [z y™ ol vIT]T, where p/f = [ y7 |7 is the
position and uf’ = [vl" v/ the velocity along the axes, and
the human-related robot coupling parameters, i.e. the desired
separation distance ¢; and relative human robot bearing ¢;, we
must find an optimal control action u/* that will guarantee the
compliance to the human motion intention. In other words,
we aim to find a policy fp(x/*, xT) that will propose robot
control actions uf® = [v; w;]T, where v; and w; are the linear
and angular velocities and x/* = [2® y#]7T the robot position
along the axes, following the objective of joint human-robot
navigation. The problem includes the following optimization
problem aiming to find the optimal control sequence U} =
{u¢,...,us 71}, over a finite time horizon T, by minimizing
the following quadratic cost:

| T .
T _ . R R T R
U5/ = argmin — E (x7) -C-x7+c.' -x;
Uty U+ T-1 =t

stxpt ) = g(x;tup) withu)® ~ fo(xf, x{7)

anduy, <uff <uy, (1)
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where C € R?*? is a diagonal positive definite weight
matrix, ¢; = —(pf + x{) is the goal position with x¢ =
[1; cos(¢t) 1 sin(¢;) ] being the desired coupling between hu-
man and robot position along the axes in the local human-robot
frame. The optimization problem is subject to the robot motion
model g(x?,uf?) w.rt. the unknown policy fo(x!*, x7) and
constrained by some upper u,; and lower u;, bounds over
the linear and angular velocity commands. As transition model

g(x*,uf) we consider the well-known unicycle model.

V. PROPOSED MBRL FRAMEWORK

The proposed method for control policy learning for a robotic
assistant rollator that will adapt its motion to the user’s gait,
while keeping a desired relative coupling formation (distance
and bearing), is depicted in Fig. 3. At each time frame, we
predict the human motion over a time horizon 7" and forecast the
evolution of the desired coupling parameters. This information
is used for sampling velocities from the control policy network
that approximates the dynamics of the human-robot coupled
motion, where the MPC selects the optimal control sequence
according to (1). The observed human and robot states, along
with the selected action, are aggregated in a dataset for adapting
the control policy.

Specifically, the proposed framework addresses two core sub-
problems. The first sub-problem is understanding the human
motion intention. This encapsulates not only the prediction of
the human future trajectory in a finite time horizon given some
past knowledge, but also a model for forecasting the evolution
of the desired separation distance and bearing for the same
time-horizon. Our second sub-problem concerns learning an
optimal control policy. This policy is dependent on the human
motion observation by the robot, since we have to deal with a
constant interactive human-robot coupling problem. The robot
should always be in front of the human, keeping a desired sep-
aration distance and orientation and adapting its control actions
according to the human’s current and predicted walking states.
Incorporating a human motion forecast model, helps to better
decide over the best long term cost of the control actions through
MPC. We rely on IL for training an initial global approximator
of the control policy network from human demonstrations and
use this trained model in the MBRL framework for online
adaptation. In the following, we will describe the human motion
intention prediction models and the proposed control policy
network and their implementation within the proposed MBRL
framework.

A. Human Motion Intention Prediction Models

Human motion intention prediction includes two main goals,
as shown in Fig. 4. The first one concerns the human motion pre-
diction in a finite-time horizon given the past human states. The
second one refers to the estimation of the coupling parameters
of the robot w.r.t. human. Before diving into details about the
predictive models, we will briefly describe what the human state
includes and how it is extracted. In our previous works, we have
extensively studied human motion detection and tracking from
2D laser data along with real time gait analysis [3]. Recently,
in [5] we have also used the upper body pose detection from
an RGB-D sensor to perform a human Center-of-Mass (CoM)
tracking by jointly using information from the pose and the legs
motion (i.e. the gait velocity) to estimate the CoM motion. In
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Fig. 4. Recurrent networks used for predicting future human states (HuMIM
network) and the desired coupling parameters.

this work, we use this notion of human state xf ,1.e. the position
and velocity of human’s CoM along the axes. We exploit Motion
Capture (MoCap) data to extract ground truth states and initially
train our models with those smooth data and then fine-tune them
with data from our tracking system.

Human Motion Intention Model (HuMIM): The HuMIM is
a deep-learning network based on LSTM units [40]. LSTM
constitutes a special kind of recurrent neural networks that can
effectively learn long-term dependencies that exist in sequential
data like in motion trajectories. This is accomplished by incor-
porating memory cells that allow the network to learn when to
forget previous hidden states and when to update hidden states
given new information. Our network architecture for HuMIM
is depicted in Fig. 4. The input feature vector x/ is the current
human state.! The network comprises a Fully Connected (FC)
(Fig. 4 - blue boxes) layer, followed by a Rectified Linear
Unit (ReLU) activation [41] and two LSTM (Fig. 4 - yellow
boxes) layers and a FC layer that decodes the output, which is
a prediction of the future human states over a time horizon 7":
X{4 1T

Coupling Parameters Forecast Model: Another problem we
need to solve, is to figure out the desired coupling parameters in
the human-robot frame, i.e. the relative distance and bearing that
will ensure the coupled human-robot motion. This is especially
important for following mode cases when the robot has to follow
a human from front but keeping a close distance in case assis-
tance is needed. Those parameters are crucial for robot-control
as we have already seen in Section IV. For computing them,
we employed information from demonstrations of real patients
walking with a passive rollator, while wearing motion markers
(Fig. 4). We have found that the human-rollator distance, while
walking, is correlated to the human stride length. Since we can
apply real-time gait analysis from [3], we can compute stride
lengths and use them in a prediction network that will forecast
their evolution over a time window. For relative bearing we
predict the human self orientation evolution in the local human
frame. Therefore, given as input the current parameters ¢, ¢,
a simple network with two LSTM layers along with a FC layer
(Fig. 4), can provide the next time step predictions.

B. Control Policy Training via Imitation Learning

We train an initial control policy for the robotic rollator
following the concept of IL [42]. We benefit from the demon-
strations of real patients for imitating the way they interact with

'We have set the initial human position to be the global reference frame.
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Fig. 5. Network architecture of the proposed control policy.

the rollator while walking. The goal is to learn control actions
for the robot as if the human was pushing the rollator in front
of him. To this end, we have implemented the control policy
network of Fig. 5. Following the narrative of Section IV, this

network will serve as the approximator fg of the true dynamics
fo, that will propose velocity commands for the robot given the
information about the human motion intention.

The proposed policy network is an LSTM-based sequence-
to-sequence model using as input features the predicted human
states x/7, , . for a time-window 7" transformed w.r.t. the current

robot state x (Fig. 5). We use two FC layers with a ReLU and
a Dropout layer [43] (with probability p = 0.4) between them.
The scope of the FC layers is to encode the initial features using
static transformations independently of the time dependencies
modelled by the LSTM units. The main encoding-decoding is
implemented by the two LSTM layers. The output is decoded
by the final FC layer, that gives the control action for time ¢, i.e.
the robot velocity vector: uf® = [v;  w;]T

C. Control Policy Adaptation via Model-Based
Reinforcement Learning

Although IL can provide good results on predicting the control
actions w.r.t. the ground truth ones, its capacity is limited to
the demonstrated data. Therefore, we use the learned policy via
IL as as initial approximation which will be adapted to unseen
human motion patterns through RL. Fig. 3 and Algorithm 1
show an overview of the proposed MBRL scheme for policy
adaptation. In this setting, we resort to the HuMIM network and
the coupling parameters forecast model described in Section V-A
to predict in a time horizon T the human states x//, , - and the
desired coupling parameters l;.;y7, ¢s.crr deriving from the
current estimated stride length and human self orientation. Those
parameters will be used to form the desired coupling state x
for the MPC controller in (1) as described in Section IV. At
each time step we use the predicted human states provided by
HuMIM, transformed in the respective robot frame, to sample
N, new velocities from the policy. We use the dropout layer to
apply Monte Carlo Markov Chain sampling on the network’s
outputs to take advantage of the network’s uncertainty [43].
We also apply extra random exploration noise on the sampled
velocities in order to widen the sample distribution.

Moreover, we apply random white noise on the estimated
robot state x£* to simulate possible errors in real case scenarios
like localization errors, drifting, etc. Our aim is to learn policies
for recovering the robot from false states by applying the best
possible control action. The Ny velocity samples are used for
the MPC rollouts by simulating trajectories over a finite time
horizon 7' for each sample. The simulated trajectory with the
minimum cost computed by (1) (i.e. highest reward in the RL
narrative) is selected, while only the first action from the selected
control sequence is applied to the robot. Through re-planning
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Algorithm 1: Model-Based RL for Coupled HR Motion.

Require: Training data and empty dataset D for
aggregation

Require: Aggregation frequency K € Z, MPC horizon
TeZ .

Require: Pre-trained control policy fy

1: fori=1,..do

2: if i mod K = 0 then
3: fort:1,..,T do
4: get future human states x;7;., ;. via HUIMIM
net
5: get desired coupling parameters
lt:t-i—Ta ¢t:t+T
6: sample NN velocities from policy
ul' ~ fo(xft, xM, ) and add exploration
noise
7: perform MPC rollouts to find the optimal
control sequence U using (1)
8: ex;cute first action u!* from selected sequence
Ui
9: add (x{*,x/7;, 1, uf) in dataset D
10: else
11: perform fine-tuning on policy of Fig. 5 using the
aggregated data D

at each time step, we compensate for possible model errors.
The robot state along with the applied control action and the
current human state x;*, x/7., ., uf* (Fig. 3, Algorithm 1) are
aggregated in a new, initially empty, dataset D intending to be
used for policy adaptation by fine-tuning the network every K €
7 time steps. The on-policy data aggregation and retraining of
the model adapts the policy to new state-action tuples possibly
previously unseen to the network by augmenting the respective
distributions and improving the controller’s performance.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup & Data

The data used in this work were collected in Agaplesion
Bethanien Hospital - Geriatric Center in Heidelberg with the
participation of fourteen patients. The participants presented
moderate to mild mobility impairment, according to clinical
evaluation. The subjects had to perform several everyday life
scenarios using a passive robotic rollator, used for the purpose
of data collection, while wearing motion markers from a MoCap
setup (Fig. 2). The subjects had to perform several experimental
scenarios in a special hospital room, walking supported (i.e.
holding on the rollator) or unsupported (i.e. the rollator was
“following” the human from a close distance without physical
interaction). The data were collected by a Kinect v.1 sensor and a
Hokuyo UBG-04LX-F01 laser sensor that were mounted on the
rollator (Fig. 2). For the purpose of this work, we have employed
20.000 frames of MoCap data (synchronized to the laser frame
rate, i.e. 0.028 sec/scan), and a dataset of approximately 5.000
frames of human CoM tracking data from four patients from
the supported mode scenarios used for fine-tuning/testing our
models and for training MBRL. An extra dataset of 2.000
tracking data were kept for the experimental testing of the
MBRL framework. In the following, we provide detailed results
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Fig. 6. (a) Example of a predicted human path with the HuMIM network.
(b) Example of predicted robot’s linear velocity from the IL policy network.

that demonstrate the efficiency of the proposed models and the
performance of the proposed MBRL method.

B. Evaluation of Human Motion Intention Prediction Models

Implementation of HuMIM network: We have trained HuMIM
using the MoCap and tracking data with a 80%—20% partition for
training and testing respectively, for 500 epochs with learning
rate 10~ and weight decay 10~*. For training we have used
Stochastic Gradient Descent optimizer with the Mean Squared
Error (MSE) loss (L2-loss) computed between the predicted xH
and the ground truth, £ of the output features.

Evaluation: To evaluate the HuMIM network we compute the
MSE loss for the training and testing datasets, which gives an
indication of the overall prediction performance of our models.
More specifically, the MSE training loss was 4 - 104 while
the testing loss for a 7' = 10 prediction horizon was 2 - 1073,
meaning that our model provides a very good fit on the data
and accurate future predictions for the human motion intention.
Fig. 6a depicts an example of a predicted path w.r.t. to the ground
truth human path, where the dashed line shows an example of
the forecast path for ten time steps.

Implementation of the Coupling Parameters forecast models:
From our analysis we have found that the stride length and
actual human-robot distance data are correlated, with correla-
tion coefficient p = 0.972 and a mean difference between them
¢ = 0.15 m. In following cases, d¢ is used as a constant bias
added to the predictions of the desired separation as a safety
distance. For implementation we have used the same training
parameters and loss function as for HuMIM.

Evaluation: For the desired coupling parameters, we acquired
equally good model fittings and MSE losses. For the relative
bearing parameter ¢, the training loss was 2.2 - 103 rad and test-
ing loss 2.8 - 1073 rad, while for the relative separation (trained
both on demonstrated data and the extracted stride lengths from
our tracking framework), the train loss was 6 - 1073 m and test
loss 1072 m. Those results show that our trained models can
effectively predict human motion intentions in a robot-human
joint walking framework.

C. Evaluation of IL Control Policy

Implementation: For training the control policy network of
Fig. 5 with IL, we have used the MoCap data, from which
we have computed the human states and the robot’s ground
truth velocities. For the IL training of the network we have not
used HUMIM for human predictions, but we rather packed the
training data into time-overlapping feature vectors x!7, o The
network was trained using mini-batches of 512 clips, with initial
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of epochs used for fine-tuning the policy. (¢) Aggregation frequency K. (d) Prediction horizon 7"

TABLE I
EVALUATION RESULTS FOR VARIOUS ARCHITECTURE DESIGNS FOR THE
CONTROL POLICY NETWORK OF FIG. 5 IN THE IL SETTING

Arch. ILSTM 2FC IFC + 2LSTM 2FC+ILSTM 2FC+2LSTM
hidden states 512 [1024, 512]  [2048,1024,512]  [2048,1024,512]  [2048,1024,1024,512]
Train Loss 0.186 0.184 0.045 0.052 0.029
Test Loss 0.158 0.156 0.057 0.065 0.043

learning rate 102, momentum 0.9 and weight decay 10~#. The
learning rate is divided by 10 after half the epochs. We used
Adam optimizer and for imitation loss we have employed the
L1-loss, i.e. the mean absolute error between the predicted 0/
and the actual u® robot velocities.

Evaluation: Table I provides the training and testing L1 losses
for the predicted control velocities w.r.t. the ground truth ones for
the IL setup. It is evident that the LSTM layers are a requisite for
decoding the sequences of human motion. Moreover, the com-
bination of FC and LSTM layers seems to provide the necessary
encoding-decoding scheme for translating a predicted human
trajectory (considering that humans move in an holonomic way)
into linear and angular velocities for the robotic assistant. We
choose the architecture with the 2 FC and 2 LSTM layers since
it is the one having the smallest prediction error. An example of
the performance of the proposed policy network is depicted in
Fig. 6b, where we compare the predicted linear velocity w.r.t.
ground truth from the testing dataset of the IL policy.

D. Evaluation of the MBRL Approach

Implementation: For the fine-tuning process of the control
policy network of Fig. 5 according to the MBRL framework
(Fig. 3), we use the Adam optimizer and the Huber loss, which
is less sensitive to outliers in data:

R _uf H for [aff —uff| <e

L.= 2

ut —uy | - 78 , otherwise

where ¢ > (s a small value. Below we evaluate different design
decisions regarding the MBRL setup. For the MBRL training we
have employed 5000 frames of tracking data from four patients,
while for testing the controller’s performance we have kept 2000
data from one patient unseen to the training set.

Evaluation results for human-following: For the task of hu-
man front-following, we evaluate the MBRL approach with
tracking data from a new patient, i.e. unseen to all the training
procedures described above. We aim to investigate how the

control policy can adapt to a new patient with medium mobility
impairment, as if the robot was following the user from front,
in a way like the user was pushing the robotic rollator. Fig. 8
presents graphs comparing paths, linear velocities and separa-
tion distances from the MBRL approach w.r.t. the actual data
provided by the MoCap analysis.

Evaluation of MBRL training: For the MBRL training proce-
dure we have explored different design parameters for acquiring
the best possible solution to our problem. Fig. 7 presents the
learning curves, which represent the cumulative costs for the task
of human-robot coupled motion, for different design parameters.
Since we are considering costs, the lower the cumulative cost,
the better the performance by the corresponding MBRL setting.
The best outcome from this evaluation will be considered for
testing with a new patient.

Specifically, in Fig. 7a the impact of different number of
samples N used for the MPC rollouts is presented, for a range
of 5-100 samples. The outcome seems reasonable, since for
less samples (i.e. 5-20) the limited exploration by the controller
leads to accumulating larger errors and thus costs. Interestingly,
the learning curve of 50 samples behaves the same as the curve
for 100 samples, while both parameter settings converge very
quickly at a steady performance. The slopes of the curves for
50 and 100 samples show that after 250 aggregation steps we
have a stabilized performance. We choose to use 50 samples as
a computationally cheaper solution.

For selecting the number of epochs used at each aggregation
step for adapting our policy we have experimented with 20, 50
and 100 epochs. Fig. 7b shows the cumulative costs for 200
aggregation steps and 50 samples for the MPC. It is obvious that
100 epochs of training has the best performance, however the
50 epochs setting follows closely, thus we will select those for
computational reasons.

In Fig. 7c we present the evaluation results for different ag-
gregation frequencies K (Algorithm 1). From experimentation,
we have found that aggregating and adapting the control policy
every 10 time steps yields better performance to the proposed
algorithm. It is important to note that those timings have been
chosen to resemble timings in human gait. Specifically, we know
from previous work [3], that approximately every 10 time frames
a human performs a leg swing for stepping through and about
every 50 time frames a gait cycle is completed. Therefore, we
notice that adaptation for each stepping yields lower cumulative
costs.

In the same way, we have explored different time-horizon
settings for our MPC (we have changed the settings of our
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Testing results of the MBRL policy adaptation for a new patient. (a) Human, robot and ground truth (GT) paths (RMSE 0.18 m MBRL vs. rollator in

data-collection). (b) Comparison of human, robot and GT rollator linear velocities (RMSE 0.15 m/sec MBRL vs. GT). (c) Comparison of the MBRL separation

distance w.r.t. the GT human-rollator one (RMSE 0.22 m).

prediction and policy networks accordingly for this experiment).
Longer time-horizons than 7" = 10 accumulate greater errors.
Longer horizons mean larger prediction errors from the human
motion intention models, hence leading to greater errors for the
policy estimation. Evidently, adaptation in a frequency relative
to the gait’s swing phase is more appropriate.

According to the above evaluation, we have decided to em-
ploy the implementation of MBRL using N, = 50 samples for
the MPC rollout, 50 epochs for policy fine-tuning, K = 10
time-steps aggregation frequency and 7" = 10 prediction hori-
zon. This implementation had an average Root MSE (RMSE)
0.068 cm regarding the coupling error w.r.t. the actual one and
average Huber loss for fine-tuning was 0.031.

In Fig. 8a, we are comparing the paths performed by the
tracked human for 500 time frames, the one derived by the
MBRL process for the robot and the ground truth (GT) one
derived by the MoCap data, when the patient pushed the rollator
during the data collection experiments. It is evident that the
MBRL method provides a trajectory very close to the GT one.
This can also be demonstrated by the results in Fig. 8b, where we
compare the linear velocities for the patient, the ones proposed
by MBRL and the actual rollator. The MBRL velocity decisions
follow closely the human velocity patterns. It is interesting to
mention that in contrast to Fig. 6b presenting the IL results where
the policy followed the actual rollator velocities, now we can see
that the policy has adapted to the actual motion pattern of the
patient. There is however a small lag, of approximately 20 time
frames in detecting turning points, which might also be inherited
by the HuMIM performance. Finally, we compare the separation
distance in the human-robot coupling. Again, the MBRL policy
follows the actual pattern, meaning also that using the stride
length as inference for the desired separation distance is a valid
assumption. Concluding this analysis we provide results over
all 2000 tracking frames for the task of patient following. The
average RMSE between the MBRL proposed robot path and the
GT rollator’s is 0.18 m, the RMSEs for velocities are 0.15 m/sec
for linear and 0.24 rad/sec for angular velocity. The average
RMSE for human-robot separation distance w.r.t. the GT (i.e.
human-rollator) one is 0.22 m.

For further evaluation of the proposed MBRL framework
we present a comparative analysis for the above example w.r.t.
baseline methods. Those baseline methods are: (i) pure IL as
described in Section V-B, (ii) the MPC for the constrained
optimization problem of Eq. (1), and (iii) a kinematic controller
proposed in [13]. It should be noted that we have experimented
also with a baseline model-free method used for continuous

TABLE II
COMPARATIVE EVALUATION OF THE MBRL PERFORMANCE w.r.t. THREE
BASELINE METHODS
RMSE posi- linear angular separation

method tion (m) | vel. (m/sec) | vel. (rad/sec) | distance (m)
1L 0.96 0.59 0.38 0.78
MPC 0.27 0.23 0.31 0.38
kinematic 1.33 0,61 0,49 0.89
MBRL 0.18 0.15 0.24 0.22

control [25], however the algorithm did not converge, given the
limited amount of data. Notably, this is a significant remark as
the MBRL method overcomes the sample inefficiency problem,
being able to converge with little amount of real data from a real
problem setting.

Table II presents the results for the comparison of the MBRL
with the above described baseline methods showing the RMSE
for the position of the robot w.r.t. the actual rollator in the data
collection experiments, the applied linear and angular velocities
and the separation distance between human and robot. When
using IL the policy fails to track the user closely as it easily drifts
away from the desired trajectory causing high RMSEs. The IL
network only proposes velocities without taking into account
the desired coupling in the human-robot formation. Moreover,
since the IL network is limited by the training examples, it
cannot generalize well to data that diverge from the training
distribution. Thus, it is evident that adaptation of the model
is important especially when tracking people with pathological
gait that present different mobility problems, an advantage that
the MBRL method presents. The MPC presents slightly higher
errors than MBRL (in average approximately 50% RMSE in-
crease). MPC relies on linearization of the system’s dynamics
which infers errors, therefore user-adaptation is not achieved.
The proposed MBRL method that incorporates the advantages
of velocity adaptation along with the model-based controller
provides a better control policy. The kinematic controller could
perform quite well for straight paths but was unable to compen-
sate to orientation changes therefore not keeping the desired
coupling, resulting in high errors. Despite the advantages of
MBRL resulting from our previous analysis, a limitation of
this method stems from the difficulty of learning a dynamics
model sufficient enough to represent real dynamics. Thus, for
optimizing our framework we plan to combine MBRL with
meta-learning, which can go beyond the dependency for an
accurate dynamics model to achieve adaptation.
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VII. CONCLUSION & FUTURE WORK

We proposed a novel approach using MBRL for adapting the
motion of a robotic assistant rollator to the walking patterns of
elderly and patients with various mobility inabilities. The aim is
to develop a control policy that will propose optimal control ac-
tions for coupling the robot’s motion with each user, as if the user
was pushing the rollator. In this setting, we consider the problem
to be a front-following human-robot coupled motion. To this end,
we have designed LSTM-based networks for predicting future
human motion intentions and forecasting the desired coupling
parameters in the robot-human setting. An initial control policy
that suggests control velocities given the human kinematic state
evolution in a short time-horizon was trained through IL. In
the MBRL framework we adapt this policy employing a MPC
planner and using tracking data from patients. Through extensive
experimentation with real data, we provide evidence that prove
MBRL to be efficient as a decision making approach for a
user-adaptive controller in a robotic assistant rollator. In our
future work, we plan to test different planning methods in the
MBRL framework and a combination with model-free methods.
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