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Abstract

Voice-enabled interaction systems in domestic environments have attracted significant interest recently, being the
focus of smart home research projects and commercial voice assistant home devices. Within the multi-module
pipelines of such systems, speech activity detection (SAD) constitutes a crucial component, providing input to their
activation and speech recognition subsystems. In typical multi-room domestic environments, SAD may also convey
spatial intelligence to the interaction, in addition to its traditional temporal segmentation output, by assigning speech
activity at the room level. Such room-localized SAD can, for example, disambiguate user command referents, allow
localized system feedback, and enable parallel voice interaction sessions by multiple subjects in different rooms. In
this paper, we investigate a room-localized SAD system for smart homes equipped with multiple microphones
distributed in multiple rooms, significantly extending our earlier work. The system employs a two-stage algorithm,
incorporating a set of hand-crafted features specially designed to discriminate room-inside vs. room-outside speech
at its second stage, refining SAD hypotheses obtained at its first stage by traditional statistical modeling and acoustic
front-end processing. Both algorithmic stages exploit multi-microphone information, combining it at the signal,
feature, or decision level. The proposed approach is extensively evaluated on both simulated and real data recorded
in a multi-room, multi-microphone smart home, significantly outperforming alternative baselines. Further, it remains
robust to reduced microphone setups, while also comparing favorably to deep learning-based alternatives.
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1 Introduction
Smart home technology has been attracting increasing
interest lately, mainly in assistive scenarios for the disabled
or the elderly, but also in “edutainment”, homemonitoring,
and automation applications, among others [1–5]. Given
that interaction with users must be convenient and nat-
ural, and motivated by the fact that speech constitutes
the primary means of human-to-human communication,
voice-enabled interaction systems have been progressively
entering the field. Indeed, multiple smart home projects
have been focusing on voice-based interaction [6–13], and
a number of commercial voice assistant home devices
have recently been introduced in the market [14].
Such systems typically contain a sequence of modules

in their architecture, with speech activity detection (SAD)
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being a crucial one, as it provides input to other pipeline
components, for example, speaker localization, speech
enhancement, keyword spotting, and automatic speech
recognition (ASR) [15–17], as well as contributing to the
timing of the dialog management [18]. Further to voice-
based interaction, SAD has found additional applications,
such as telecommunications [19–21], variable rate speech
coding [22], and voice-based speaker recognition [23, 24],
among others.
In practice, domestic environments contain multiple

rooms, where one or more users may be located wishing
to interact with the smart home voice interface. This sce-
nario can be facilitated if the SAD module provides not
only time boundaries of speech events (“when”), but also
coarse speaker position (“where”) at the room level, i.e.,
assigning room “tags” to the detected speech activity, thus
yielding separate speech/non-speech segmentation out-
puts, one per room of the smart home (see also Fig. 1).
Enriching the traditional “room-independent SAD” to
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Fig. 1 An example of room-independent vs. room-localized SAD in multi-room domestic environments equipped with multiple microphones. Here,
three speakers are active in three rooms. Left: floor plan of the smart home used in the DIRHA project [10] (see also Section 7.1 and Fig. 6), with dots
indicating microphone locations on the apartment walls and ceiling. Right: 1-min-long waveforms, captured by the red-colored microphones (one
per room with an active speaker), shown together with the corresponding ground truth of room-localized SAD. The room-independent
speech/non-speech segmentation is also depicted at the top

such “room-localized SAD” variant can be useful in mul-
tiple ways: It can help disambiguate user commands for
voice control of devices or appliances present in multiple
rooms (e.g., light switches, windows, temperature control
units, television sets); enable room-localized system feed-
back, for example, via a loudspeaker or visual display at
the room where speech activity takes place; and allow par-
allel voice interaction sessions by multiple subjects inside
different rooms, engaging separate system pipelines, one
per room [16]; finally, ASR itself can benefit significantly
from room localization [25].
Designing a robust SAD system in domestic environ-

ments is a hard task due to the challenging acoustic con-
ditions encountered. Such involve speech at low signal-to-
noise ratio (SNR), presence of reverberation, and multiple
background noise sources often overlapping with speech
activity. In the case of room-localized SAD, these difficul-
ties are further exacerbated due to acoustic interference
between rooms. To counter these challenges, smart homes
typically employ multiple microphones to capture the
acoustic scene and “cover” the large multi-room interac-
tion area. This allows exploiting multi-channel processing
techniques, for example, fusion of the microphone infor-
mation at the signal, feature, or decision level, in order to
facilitate the analysis of the acoustic scene of interest.
Several efforts have been reported recently on room-

localized SAD in multi-room environments [25–32]
including our own work [33, 34]. As further overviewed in
Section 2, these approaches vary in the kind of features,

classifiers, and number of microphones used per room.
Depending on their design, they typically consist of one
or two algorithmic stages, and may or not allow the detec-
tion of simultaneously active speakers located in different
rooms.
In this paper, we present our research work on room-

localized SAD for smart homes equipped with mul-
tiple microphones distributed in multiple rooms. Our
approach is based on the two-stage algorithmic frame-
work that we originally proposed in [34]. There, room-
independent SAD hypotheses, obtained at the first stage
by traditional statistical modeling and acoustic front-
end processing, are further refined and assigned to the
room level at a second stage, by means of support vector
machine (SVM) classifiers operating on a set of hand-
crafted features that are suitably designed to discrim-
inate room-inside vs. room-outside speech. The afore-
mentioned approach is further extended in this paper in
multiple ways. In particular:

• Concerning the first stage of the algorithm, this
is modified to already provide room-localized SAD
hypotheses, various choices for the set of its statisti-
cal classes are investigated, and a number of multi-
microphone decision fusion techniques are incorporated,
which were originally studied in [35] for the problem of
room-independent SAD only.

• Concerning the second stage of the algorithm, the set
of hand-crafted features of [34] is further enriched by two
additional ones: a novel spectrogram texture smoothness
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descriptor, as well as a source localization feature based
on the smart home floor plan. Further, various feature
fusion schemes across rooms are considered, accompa-
nied by different options for their SVM-based modeling.
Among these, one remains agnostic to the number of
smart home rooms. In addition, application of the sec-
ond algorithmic stage is also considered on medium-sized
windows sliding over the first-stage hypothesized seg-
ments, thus enabling their breakup and assignment to
potentially different rooms.

• Finally, an extensive evaluation of all algorithmic com-
ponents is reported, as well as of suitable alternative
baselines including an extension of the seminal algorithm
of [36] to the room-localized SAD problem. The experi-
ments are conducted on a corpus of both real and sim-
ulated data in a multi-room smart home, set up for the
purposes of the DIRHA project [10]. This way, insights
are gained concerning the strengths, weaknesses, and
design choices of the proposed system. This is demon-
strated to perform well in the challenging problem of
room-localized SAD without the need of a large amount
of training data, being robust to the number of available
microphones, while also comparing favorably to alterna-
tive deep learning approaches.
It should be noted that two of the aforementioned exten-

sions have already been proposed in our earlier work [16],
namely the room-localized operation at the first stage, as
well as the sliding window mode at the second. However,
since our focus there has been on the entire pipeline of
the smart home spoken command recognition system, a
contrastive evaluation of these enhancements for room-
localized SAD has not been investigated. In particular, the
room-localized operation at the first stage was also part of
our system in [33], where however the focus lied on a joint
SAD and speaker localization challenge over a limited area
of a multi-room domestic environment [28].
The remainder of the paper is organized as follows:

related work is summarized in Section 2; the overview
of the proposed system is provided in Section 3, with
its two algorithmic stages further detailed in Sections 4
and 5; alternative baselines are presented in Section 6;
the datasets and experimental framework are discussed
in Section 7; the evaluation is reported in Section 8; and
finally, conclusions are drawn in Section 9.

2 Related work
SAD has been a topic of intense research activity, with
numerous algorithms proposed in the literature overmore
than four decades, as for example overviewed in [37].
Some of the most established methods include algorithms
incorporated into standards [20, 21], the statistical model-
based approach by Sohn et al. [36], and the spectral
divergence proposed by Ramírez et al. [38], among oth-
ers. Typically, SAD methods extract various features from

the waveform that are, for example, related to energy or
zero-crossing rate [20, 21, 39, 40], harmonicity and pitch
[41–43], formant structure [20, 24, 44, 45], degree of
stationarity of speech and noise [46–48], modulation
[49–51], or Mel-frequency cepstral coefficients (MFCCs)
[24]. Feature extraction is subsequently followed by tra-
ditional statistical modeling or, more recently, by deep
learning-based classifiers, for example, deep neural net-
works (DNNs) [52, 53], recurrent ones [54, 55], or con-
volutional neural networks (CNNs) [56–58], often in con-
junction with autoencoders [59]. Further, end-to-end deep
learning approaches applied directly to the raw signal have
also been proposed [60].
Specifically for the smart home domain, several SAD

systems have been developed over the last decade, fol-
lowing the collection of appropriate corpora in domestic
environments [61–65]. For example, in [66], linear fre-
quency cepstral coefficients are employed as features in
conjunction with the Gaussian mixture model (GMM)
and hidden Markov model (HMM) classifiers to detect
distressed speech or acoustic events inside a smart apart-
ment for elderly persons. In a similar task under the
Sweet-Home project in [67], sound event detection is first
performed by discrete wavelet transform features and an
adaptive thresholding strategy, followed by speech/event
classification using SVMs with GMM supervectors based
on MFCCs. In [68], a simple energy-based SAD pre-
cedes the HMM-based recognition of sounds and spoken
words. In [69], SAD is performed on headset microphone
audio to track human behavior inside a smart home,
with the proposed system employing an energy detec-
tor and a neural network trained on linear predictive
coding coefficients and band-crossing features. Finally,
in our earlier work within the DIRHA project [35], we
investigated several fusion techniques for multi-channel
SAD based on GMMs and HMMs trained on traditional
MFCCs.
The aforementioned SAD systems aim to detect speech

activity over the entire smart home, without however con-
sidering its typical multi-room layout. Only few recent
approaches in the literature focus on the task of room-
localized SAD in multi-room domestic environments that
constitutes the focus of this paper, yielding a speech/non-
speech segmentation for each individual room of the
smart home.
Themajority of such systems operate in two stages. Typ-

ically, the first stage generates speech segment hypotheses
over the entire home or for each specific room, which
are further examined, refined, and assigned to the proper
room at the second stage. Specifically, in [25], at the
first stage of the proposed algorithm, DNN-based single-
channel SAD is performed in each room. Then, at the
second stage, for each detected speech segment, SNR and
coherence-based features are extracted from all rooms



Giannoulis et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2019) 2019:15 Page 4 of 23

Fig. 2 Block diagram of the proposed room-localized SAD system.
The first-stage algorithmic components are depicted in blue and the
second-stage ones in red

and concatenated to feed a linear discriminant analysis
classifier that yields the segment room allocation. In [26],
at the first stage, statistical-based SAD is performed for
eachmicrophone, and then, majority voting over the room
microphones provides the speech segments of each room.
At the second stage, speaker localization output feeds a
classifier (SVM or neural network) to further examine
speech segments and delete those originating in other
rooms. In [27], at the first stage, multi-layer perceptrons
are employed for each microphone, and speech/non-
speech segmentation is achieved via majority voting for
each room. Then, in case of segments assigned to multiple
rooms, a speech envelope distortion measure is employed
to decide the correct room. In [28], three different features
are investigated for room-localized SAD, namely SNR,
periodicity, and the global coherence field. Speech bound-
aries for each room are computed by simple thresholding
of these feature values and by using a heuristic rule over
consecutive active frames.
In addition to the above, single-stage approaches have

also been pursued for room-localized SAD. Specifi-
cally, in [29], a DNN is employed taking as input
176-dimensional vectors composed of a variety of fea-
tures, such as MFCCs, RASTA-PLPs, envelope variance,
and pitch. Similar features (but 187-dimensional) and
DNNs are again considered in [30], as well as alter-
native classifiers, including a 2D-CNN. The latter is
extended to a multi-channel 3D-CNN system in [31],
where log-Mel filterbank energies (40-dimensional) are
employed as features, temporal context is exploited by
concatenating adjacent time frames, and the resulting
2D single-microphone feature matrices are stacked across

channels. Finally, in [32], the aforementioned 3D-CNN
is combined with the GCC-PHAT [70] based CNN
of [71] to yield a joint SAD and speaker localization
network.
As already mentioned in the introduction, we have also

investigated room-localized SAD in our earlier work, fol-
lowing the two-stage algorithmic paradigm. Specifically,
in [33], at the first stage of the developed approach,
speech/non-speech segmentation was performed for each
room, bymeans of multi-microphone decision fusion over
GMMs trained on a traditional MFCC-based acoustic
front-end. At the second stage, in case of speech seg-
ments simultaneously active in multiple rooms, room
selection was enabled by comparing an average GMM-
based log-likelihood ratio for the given segment across
the different rooms. In subsequent work [34], the first
stage was replaced by a multi-channel room-independent
SAD module, whereas the second stage adopted the use
of specific features to discriminate room-inside vs. room-
outside speech by means of SVM-based classifiers. The
approach was further refined in later work [16], as part
of a modular pipeline of a smart home spoken command
recognition system.
In the current paper, we maintain the two-stage algo-

rithmic approach for room-localized SAD, combining the
design of the first stage in [33] with that of the second
stage in [34]. In the process, we introduce a number of
extensions in fusion techniques, hand-crafted room dis-
criminant features, statistical modeling, and system eval-
uation, as discussed earlier in Section 1. The resulting
algorithm is presented in detail next.

3 Notation and system overview
Let us denote by R the number of rooms inside a given
smart home that is equipped with a set of microphones
M all . This is partitioned into subsets M r , for r =
1 , 2 , . . . ,R , each containing the microphones located
inside room r . Let us also denote by om,t the short-time
acoustic feature vectors (e.g., MFCCs) extracted from the
signal of microphone m , and by oM,t their concatena-
tion over microphone set M ⊆ M all , with t indicating
time indexing at the frame level (typically at a 10-ms
resolution).
We are interested in room-localized SAD, seeking

speech/non-speech segmentations for each room r ,
detecting speech events occurring inside it but ignor-
ing speech originating in other rooms or any other
non-speech events. As also shown in Fig. 1, this differs
from room-independent SAD, where a single speech/non-
speech segmentation is produced, including speech
events occurring inside any of the R rooms of the smart
home.
As already discussed in the previous sections and also

depicted in the block diagram of Fig. 2, our proposed
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system for room-localized SAD operates in two stages.
The first stage, detailed in Section 4, is based on single-
channel GMM classifiers, each trained on an individual
room microphone, employing MFCC features and oper-
ating at the frame level. An appropriate decision fusion
scheme follows, combining GMM likelihood scores across
all room microphones and, by means of Viterbi decod-
ing, providing a crude speech/non-speech segmentation
for the given room. Then, at the second stage, presented
in detail in Section 5, for the speech segments detected
for each room, an SVM classifier is employed on a num-
ber of hand-crafted room localization features, specially
designed to discriminate room-inside vs. room-outside
speech. Various feature fusion schemes across rooms are
considered for this purpose, accompanied by different
options for their SVM-based modeling.

4 First stage: speech segment generation
We now proceed with a detailed description of the first
stage of the developed room-localized SAD system. This
stage generates individual speech/non-speech segmen-
tations for every room using the specific room micro-
phones only, thus providing initial room-localized SAD
hypotheses to be refined later. To accomplish this, it
employs traditional acoustic front-end processing and sta-
tistical modeling at the microphone level as discussed
in Section 4.1, followed by decision fusion across micro-
phones as detailed in Section 4.2 and appropriate decod-
ing schemes that are presented in Section 4.3. Variations
on the choices of microphones and classes considered are
discussed in Section 4.4.

4.1 Single-microphone system core
At the core of the system lies the single-microphone
speech/non-speech modeling. Specifically, for each
microphone of the smart home, a traditional 39-
dimensional MFCC-plus-derivatives acoustic front-end
is employed, with features extracted over 25-ms
Hamming-windowed signal frames with a 10-ms
shift. Subsequently, two-class microphone-specific
GMMs are trained on these features (32 Gaussian
mixtures with diagonal covariance matrices are used
in our implementation), with the set of classes being
J = {sp r , sil all } , where sp r denotes speech originat-
ing in room r where the given microphone is located
and sil all indicates the lack of speech in all rooms.
Alternative class choices for set J are discussed in
Section 4.4.

4.2 Multi-microphone decision fusion
The developed system performs multi-microphone fusion
at the decision level, where the GMM log-likelihood
scores of different channels are combined at the

frame level for each class of interest, potentially also
incorporating channel decision confidence. In particular,
the following approaches for decision fusion over micro-
phone setM ⊆ M all are considered, which were investi-
gated in our earlier work [35], but for room-independent
SAD only:

• Log-likelihood summation, where the fused log-
likelihoods (log class-conditionals) at frame t become

cM,j(oM,t) =
∑

m∈M
wm,t bm,j(om,t) , (1)

where bm,j(om,t) denotes the log-likelihoods of the GMMs
for microphone m given its acoustic features om,t at time
frame t and class j ∈ J . The individual microphone
scores in (1) can be uniformly weighted by setting wm,t =
1 / |M| (where |•| denotes set cardinality), in which case
the scheme will be referred to as unweighted log-likelihood
summation (“u-sum”), or adaptively weighted at any given
time frame t , according to channel decision confidence
that is estimated as

wm,t = | bm, spr(om,t) − bm, sil all(om,t) |
∑

m′∈M
| bm′, spr(om′,t) − bm′, sil all(om′,t) | , (2)

in which case, the method will be termed weighted log-
likelihood summation (“w-sum”). Weighting by (2) was
investigated among other schemes for room-independent
SAD in [35], motivated by intuition that large log-
likelihood differences between the classes imply higher
classification confidence.

• Log-likelihood selection, where, at each time frame t ,
a microphone m̂t ∈ M is selected to provide all fused
class log-likelihoods, i.e.,

cM,j(oM,t) = bm̂t ,j(om̂t ,t) , for all j ∈ J . (3)

Such microphone can be chosen as the one achieving the
highest frame log-likelihood over all channels and over all
classes, i.e.,

m̂t = arg max
m∈M

{
max
j∈J bm,j(om,t)

}
,

in which case the scheme will be referred to as log-
likelihoodmaximum selection (“u-max”), or as the channel
with the highest confidence (2), i.e.,

m̂t = arg max
m∈M

wm,t ,

in which case the method will be termed log-likelihood
confidence selection (“w-max”).

• Majority voting, where, at each time frame t , single-
channel decisions, ĵm,t = argmax j∈J bm,j(om,t), are accu-
mulated over microphone set M , and the class with the
highest decision incidence is chosen. Such accumulation
can be computed uniformly over the channels, in which
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case the scheme will be termed unweighted majority vot-
ing (“u-vote”), or scaled by means of (2), resulting in
weighted majority voting (“w-vote”).
Among the above approaches, based on the experimen-

tal results of Section 8, the developed room-localized
SAD system employs the “w-sum” scheme computed over
the set of microphones inside one room at a time, i.e.,
M = M r . Alternative choices for set M are discussed
in Section 4.4.

4.3 Speech/non-speech segmentation
Following GMM training and multi-channel fusion, two
speech detection implementations are developed: The
first operates on mid-sized sliding windows, thus result-
ing in low latency, whereas the second performs Viterbi
decoding over longer sequences, providing superior accu-
racy (as demonstrated in Section 8), but being more
suitable for off-line processing.

• GMM-based scoring over sliding window: This
scheme performs sequential classification over sliding
windows of fixed duration and overlap (400 ms and
200 ms, respectively, are used). Specifically, for a given
time window T = [ ts , te ] and microphone m , the log-
likelihoods for each class j ∈ J are first computed by
adding all frame scores within the window. This results in
scores bm,j(om,T )=∑ te

t= tsbm,j(om,t) , where om,T denotes
all feature vectors within window T . Microphone fusion
is then carried out as in Section 4.2, but employing the
window log-likelihoods instead.

• HMM-based Viterbi decoding over sequence: In this
scheme, HMMs are built with a set of fully connected
states J , state transition probabilities { ajj′ , for j , j′ ∈
J }, and class-conditional observation probabilities pro-
vided by the class GMMs of Section 4.1. Then, Viterbi
decoding is performed over an entire sequence of obser-
vations (in our data, such are of 1-min length, as dis-
cussed in Section 7.1), in order to provide the desired
speech/non-speech segmentation. Specifically, for the
single-microphone case, the well-known recursion [72]

δm,j(t) = max
j′

{δm,j′(t− 1) + log(aj′j)} + bm,j(om,t) ,

is used, where δm,j(t) denotes the score of the best decod-
ing path ending at state j and accounting for the first t
frame observations of microphone m . This can be read-
ily extended to the fusion schemes of (1) and (3) over
microphone setM as:

δM,j(t) = max
j′

{δM,j′(t−1) + log(aj′j)} + cM,j(oM,t) ,

whereas majority voting fusion schemes “u-vote” and “w-
vote” are modified to be applied over best-path scores
δm,j(t) instead of log-likelihoods bm,j(om,t) .
Between the two aforementioned decoding schemes,

the proposed system follows the HMM-based approach

due to its superior performance, with a number of fine-
tuned parameters incorporated in it. Specifically, these are
the state transition penalty that tunes the flexibility of the
decoder to change states, as well as the speech class prior
that favors or not the selection of the speech state.

4.4 Variations in sets of classes andmicrophones
As already discussed, to obtain the first stage of the
speech/non-speech segmentation hypothesis for room r ,
only the particular room microphones are considered
(M = M r ). A number of variations however are possi-
ble for the set of classes J , which are investigated in the
experiments of Section 8.2:

• J = { sp r , sil all } , where sp r denotes speech inside
room r and sil all indicates the absence of speech in all
rooms of the smart home. This set is used in the proposed
room-localized SAD algorithm.

• J = { sp r , sil r } , where sil r indicates the absence of
speech in room r . This set is used in our work in [33].

• J ={ sp r , sp r̄ , sil all } , where sp r̄ indicates the speech
inside any of the other rooms, excluding room r .
In addition, in our earlier work [34], the first stage

of the algorithm provides room-independent SAD out-
put. That system uses the “w-sum” decision fusion
scheme with all smart home microphones contribut-
ing to (1), i.e., M = M all . Further, the set of
classes employed is J = { sp all , sil all } , where sp all
denotes the speech occurring in any of the smart home
rooms.

5 Second stage: room assignment
Following the generation of initial room-localized SAD
hypotheses, the second stage of the developed algorithm
performs the final selection of active segments for each
room. For this purpose, five hand-crafted features are pro-
posed as detailed in Section 5.1, extracted at the segment
level for each room, and capable of segment discrim-
ination as originating from inside vs. outside a given
room. These features are then fused within and across
rooms as presented in Section 5.2 and are fed to SVM
classifiers that perform room assignment as detailed in
Section 5.3, temporally operating on the given segment as
discussed in Section 5.4. Various options for the above are
presented.

5.1 Room discriminant features
As mentioned above, for any first-stage speech segment
T = [ ts , te ] starting at time-frame ts and ending at frame
te , segment-level features are extracted for each room.
The design of these hand-crafted features is motivated by
intuition concerning (a) the energy, (b) the reverberation,
and (c) the arrival direction of the microphone signals.
For example, microphones located inside the room where
a speech segment originates are expected to yield signals
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with higher energy and lower reverberation than micro-
phones located outside it. Likewise, the room door region
typically appears as the speech source for room-outside
segments.
In particular, five scalar features are considered in this

paper, extending our earlier work [33] with two addi-
tional novel features presented in Sections 5.1.4 and 5.1.5.
The features are specially designed to provide room-inside
vs. room-outside segment source discrimination, as also
depicted in the histograms of Fig. 3.
It should be noted that in contrast to the acoustic

front-end of the first stage of the algorithm that extracts
microphone-dependent features, the features of the sec-
ond stage are instead room-dependent. Indeed, their esti-
mation typically involves all microphones located in a
room (or in the entire smart home, as in Sections 5.1.1
and 5.1.3), performing in a sense fusion of their infor-
mation at the signal level. Such derivation requires of
course knowledge of the microphone room membership,
but in the case of Section 5.1.2 also of additional informa-
tion concerning which microphones lie adjacent to each
other, and in the case of Section 5.1.5 further knowledge
of the microphone topology and room layout. Details are
provided next.

5.1.1 Energy-based feature
Originally proposed in [33], this feature is motivated
by intuition that microphones inside the room where
speech activity occurs will exhibit, on average, higher
SNRs compared to ones outside it. For its computation,
given detected speech segment T = [ ts , te ] , the energy

ratio (ER) of speech over non-speech is first computed for
all smart home microphones. For this purpose, the initial
part of the speech segment, as well as the trailing part of
non-speech preceding it, both of length � τ , is utilized to
yield

ERm,T =
⎛

⎝
Lts+�τ−1∑

τ = Lts

xm(τ ) 2

⎞

⎠
/⎛

⎝
Lts−1∑

τ = Lts−�τ

xm(τ ) 2

⎞

⎠ , (4)

for all microphones m ∈ M all . In (4), xm(τ ) denotes
the signal captured by microphone m , with τ indicating
indexing at the sample level. The latter is related to frame-
level indexing by τ = L t , where L is the number of signal
samples over the short-time window shift. Following com-
putations (4), the ERs are sorted across all smart home
microphones, and the microphone set with the K largest
values is derived, denoted by M(K). Finally, the desired
energy-based feature for room r is extracted as the differ-
ence between the sum of the ERs of the microphones in
setM(K) that are located inside room r and the ER sum of
the ones inM(K) but located in other rooms, namely

f (en)
r,T =

∑

m∈M(K)∩Mr

ERm,T −
∑

m∈M(K)\Mr

ERm,T ,

for all rooms r = 1 , 2 , . . . ,R . In our implementation,
K = 5 and, in (4), � τ corresponds to a 0.5-s interval.

5.1.2 Coherence feature
Originally proposed in [25] and re-used in [33], this fea-
ture is motivated by intuition that signals captured by

Fig. 3 Histograms of the five hand-crafted scalar features of Section 5.1, demonstrating their ability to discriminate room-inside vs. room-outside
speech. Histograms are computed over the development set of the simulated dataset of Section 7.1, for the case of the smart home bedroom (see
also Fig. 1). Upper row, left-to-right: energy-based feature (Section 5.1.1), coherence feature (Section 5.1.2), and envelope variance one
(Section 5.1.3). Lower row, left-to-right: spectrogram texture smoothness feature (Section 5.1.4) and SRP-based one (Section 5.1.5)
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pairs of adjacent microphones located outside a speech-
active room will exhibit higher reverberation and thus
lower cross-correlation than pairs inside it. To compute
the coherence feature for room r , the set of adjacent
pairs of microphones inside the room is first determined,
denoted by {Mr × Mr}adj . Such pairs typically con-
sist of neighboring microphones in larger arrays (see also
Section 7.1). Then, for every time frame t within detected
speech segment T , the maximum cross-correlation of
the signal frames of adjacent microphone pair (m,m′)
is computed, denoted by Cm,m′(t) . This is repeated for
all pairs (m,m′) ∈ {Mr × Mr}adj and the maximum
retained. Finally, the result is averaged over the entire
segment T , yielding the coherence feature for room r ,
as:

f (coh)
r,T = avg

t ∈T

⎧
⎪⎨

⎪⎩
max
(m,m′)
∈ {Mr×Mr}adj

Cm,m′(t)

⎫
⎪⎬

⎪⎭
.

Note that this feature employs the un-normalized cross-
correlation function in order to also “capture” signal atten-
uation. In our implementation, signal cross-correlation is
computed over fixed size sliding windows of 100 ms in
length and a 25-ms shift.

5.1.3 Envelope variance feature
Originally proposed in [73] for ASR channel selection and
used in [27, 29, 33] for room-localized SAD, this feature is
motivated by intuition that higher reverberation (indica-
tive of room-outside speech) results in smoother short-
time speech energy, also observed as reduced dynamic
range of the corresponding envelope. To compute the
envelope variance feature, we follow the derivations in
[73]. Briefly, for each microphone m , the short-time fil-
terbank energy, denoted by Xm(n , t) , is obtained for time
frames t ∈ T , where, as above, T is the detected speech
segment and n denotes the sub-band (20 linear filters are
used here). Then, the nth sub-band envelope of micro-
phonem is computed as:

X̂m(n , t)=exp
{
log [Xm(n , t)]−avg

t ∈T ′

{
log [Xm(n , t)]

}
}
,

where T ′ denotes medium-sized windows sliding over
segment T , the time progression of which will be indexed
by t ′ (600-ms-long windows with a 50-ms shift are used).
Then, the variance of each sub-band envelope is computed
(following cube root compression) as:

Vm(n , t ′) = var
t ∈T ′

{
X̂m(n , t)1/3

}
,

subsequently normalized over all smart home micro-
phones, and its average over all sub-bands obtained:

EVm( t ′) = avg
n

⎧
⎨

⎩
Vm(n , t ′)

max
m′∈Mall

Vm′(n , t ′)

⎫
⎬

⎭ . (5)

In this work, we define the envelope variance feature of
segment T for room r as the average over all mid-sized
shifting windows within T of the maximum value of (5)
over the set of all room microphonesM r , i.e.,

f (ev)
r,T = avg

t′∈T

{
max
m∈M r

EVm( t ′)
}

. (6)

5.1.4 Spectrogram texture smoothness feature
For measuring the degree of reverberation, an addi-
tional feature is proposed in this paper, based on the
“smearing” effect that reverberant conditions cause to the
speech signal spectrogram. An example is shown in Fig. 4:
There, for a speech occurrence inside the bedroom of
the smart home of Fig. 1, the spectrograms of two sig-
nals captured by a microphone located in the bedroom
and one in the kitchen are depicted, showing that the
latter (located outside the speech-active room) is much
smoother (smeared).
To measure this effect, the proposed feature considers

the signal spectrogram as a 2D image, and attempts to
quantify its texture smoothness by applying to it the 2D
discrete Teager energy operator of [74], yielding

�m(n , t) = 2 (Sm(n , t))2− Sm(n , t−1) Sm(n , t+1)

− Sm(n − 1 , t) Sm(n + 1 , t) ,
where Sm(n , t) denotes the signal spectrogram of micro-
phone m at short-time frame t ∈ T , and n is the
frequency index (40-ms-long Hamming windows with a
20-ms shift and 960 frequency bins are used here). Then,
as in Section 5.1.3, medium-sized windows T ′ sliding over
segment T are considered, the time progression of which
is indexed by t ′ (600-ms-long windows with a 50-ms shift
are used). The values of �m(n , t) are then averaged over
a part of the resulting 960× 30-sized spectrogram image
as:

�m( t ′) = avg
n=1,...,200

avg
t ∈T ′

{�m(n , t) } ,

where the frequency domain averaging is carried out over
the 200 lower frequency bins that correspond to the 0–
5 kHz frequency range of the 48-kHz sampled signal,
focusing on speech content. Finally, the spectrogram tex-
ture smoothness feature for room r and segment T
is obtained by maximizing over all room microphones
and averaging the result over all medium-sized windows,
namely

f (ts)
r,T = avg

t′∈T

{
max
m∈M r

�m( t ′)
}

. (7)
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Fig. 4Motivation for the spectrogram texture smoothness feature of Section 5.1.4. Left: spectrogram from a microphone located inside the active
speaker room (bedroom in the apartment of Fig. 1). Right: spectrogram from a microphone outside it (kitchen)

5.1.5 SRP-based feature
The final feature considered for room assignment of
detected speech segments is based on the steered
response power (SRP-PHAT) approach of [75], and it
is proposed for the first time in this paper for room-
localized SAD. Employing SRP allows the creation of
an acoustic map, by computing the signal power when
steering microphone arrays in the direction of a spe-
cific location. The position of the sound source cor-
responds to that with the maximum SRP value over
all possible locations. In the case of multi-room smart
homes, one expects that speech originating from out-
side a given room will likely exhibit high SRP values
at the door region that connects that room to the rest
of the apartment. In contrast, for room-inside speech,
the actual source location should yield the highest SRP
instead. An example for this motivation is depicted in
Fig. 5.
To compute the SRP-based feature for room r , a 3D

region is first defined, denoted byA r that corresponds to
cylindrically shaped volume(s) covering the room door(s).
Specifically, on the floor plane, this lies inside room r ,
delineated by a 0.7-m radius semicircle around the door
center, while also containing all points above it. Using a
10-cm spatial resolution for each dimension, and depend-
ing on the number of doors of the room, this scheme
yields approximately between 2k and 4.3k points, denoted
as �y ∈ A r , expressed in the 3D room coordinate system
(see also Fig. 5).
Then, for all points �y ∈ A r , the corresponding SRP-

PHAT values for time frame t ∈ T are computed
(200-ms-long frames with a 100-ms shift are used), by
summing the generalized cross-correlations over all pairs

of adjacent microphones in room r , as:

Pr(t , �y ) =
∑

(m,m′)
∈ {Mr×Mr}adj

∫ 2π

0

Xm(ω, t) X ∗
m′(ω, t)∣∣Xm(ω, t) X ∗
m′(ω, t)

∣∣ e jωτmm′ (�y )dω ,

where Xm(ω, t) denotes the DTFT of the mth micro-
phone signal frame and τmm′(�y ) is the time difference of
arrival at point �y between the signals of adjacent micro-
phones m and m′. Finally, the SRP-based feature is com-
puted by summing all above values and averaging them
over all windows t ∈ T , i.e.,

f (srp)
r,T = avg

t ∈T

⎧
⎨

⎩
∑

�y∈Ar

Pr(t , �y )

⎫
⎬

⎭ . (8)

Clearly, the computation of this feature requires knowl-
edge of the microphone topology and room layout.

5.2 Intra- and inter-room feature fusion
Using the above framework in the proposed system,
for each candidate speech segment T , five features are
extracted for each room r . The features are then com-
bined by intra-room feature fusion (plain concatenation),
resulting in five-dimensional feature vectors

f (all)
r,T =

[
f (en)
r,T , f (coh)

r,T , f (ev)
r,T , f (ts)

r,T , f (srp)
r,T

]
, (9)

for each room r = 1 , 2 , . . . ,R .
In addition, inter-room feature fusion can be beneficial

to room-inside vs. room-outside speech discrimination.
Two schemes are considered for this purpose:
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Fig. 5Motivation for the SRP-based feature (the acoustic maps are
shown in 2D, obtained after summing SRP-PHAT values over the
z-axis). Top: acoustic map example for speech inside the living room
of the apartment of Fig. 1. Middle: acoustic map example for speech
outside the living room. Bottom: living room door area (two doors)
employed in the SRP-based feature computation (8) for this room

• Inter-room feature concatenation, where vectors from
all R rooms are concatenated, resulting in a single 5R-
dimensional feature vector for segment T ,

f (all)
home ,T =

[
f (all)
1 ,T , f (all)

2 ,T , . . . , f (all)
R ,T

]
. (10)

• Inter-room feature averaging, where vectors from
each room are augmented by the feature average across
the remaining R − 1 rooms, resulting in ten-dimensional
representations of segment T ,

f (all)
r, avg ,T =

[
f (all)
r,T , avg

r ′ �= r

{
f (all)
r ′,T

} ]
, (11)

for each room r = 1 , 2 , . . . ,R . This way, feature vector
dimensionality is no longer a function of R . Alterna-
tives to (11) can also be designed, for example, employing
feature extrema instead of averages.

5.3 SVM classification
The fused feature vectors are fed to appropriately
designed classifiers, in order to determine the room
of origin for a given segment. In this paper, linear
SVMs are employed for this purpose, due to the two-
class nature of the problem (room-inside vs. room-
outside segment classification), as well as the relatively
small corpus size (see also Section 7.1).1 Specifically,
two SVM modeling approaches are considered, result-
ing to a total of five different models, as discussed
next:

• Room-specific SVM models, where a separate clas-
sifier is built for each smart home room. Each training
segment thus provides data to a total of R SVMs as a
room-inside or -outside class sample, while during test-
ing, a candidate segment is fed to the SVM of the room
in which it was detected by the first stage. The SVMs can
be built on any of the three feature vectors of Section 5.2,
given by (9), (10), or (11), thus resulting in three different
systems.

• Global SVMmodels, where a single SVM is developed
being applicable to all rooms, thus removing dependence
of the number of SVM models on R . Each training
segment provides its data to the global SVM a total
of R times (once as a room-inside sample and R −
1 times as a room-outside one). During testing, candi-
date segments are fed to this global SVM. In both cases,
room-dependent features are used, provided by (9) or
(11), yielding two different systems. Features (10) are
not used, as they would have re-introduced dependency
on R .
Among the above modeling options, the proposed sys-

tem employs room-specific SVMs on inter-room con-
catenated features (10). Note also that since each room

1All SVMs are trained in Matlab�, by its svmtrain.m function. By
default, the regularization parameters are set taking into account the
unbalanced nature of the two classes of interest. For this purpose, different
penalties are set for misclassifying each class samples, with their ratio being
equal to the inverse ratio of the two class sample sizes.
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decides for its own final segments, it is possible that a seg-
ment gets assigned to multiple rooms or to no rooms at
all.

5.4 Temporal operation and post-processing
In practice, the SVM classification of speech segments can
be performed at two different temporal scales:

• Over the entire segment, where a single scalar feature
is extracted for the segment for each of the five categories
of Section 5.1, providing a single sample for SVM training
or testing. Thus, assignment to a given room is made for
the whole segment.

• Over segment sliding windows, where features are
extracted on medium-sized windows sliding over the
given segment. As a result, each segment provides mul-
tiple data points for SVM training or testing (per win-
dow). The scheme allows segment breakup and selective
assignment of its parts into the room that it was detected
in by the first stage of the algorithm.
The proposed room-localized SAD system employs the

sliding window approach, using windows of 600 ms in
size advancing by a 100-ms shift. This necessitates minor
modifications to the feature extraction methodology of
Section 5.1. In particular, there is no longer the need of
averaging in (6) and (7), since the medium-sized win-
dow sizes coincide, thus trivially allowing for one window
only. Further, in (4), the non-speech energy is computed
over the 0.5-s interval preceding the first window of the
segment.
As a final step, post-processing is also applied to the

results. Specifically, speech segments with less than
0.7-s distance between them are unified, whereas speech
segments of less than 0.4-s duration are deleted.

6 Baseline approaches
Two additional, simpler systems are presented in this
section, both following a two-stage architecture, to serve
as baselines against the developed room-localized SAD
system. The first method employs MFCC features and
GMM classifiers in both its algorithmic stages, while the
second extends the well-known statistical model-based
approach of Sohn et al. [36] to room-localized SAD, by
incorporating a simple SNR-based room assignment cri-
terion. Details follow.

6.1 MFCC/GMM-based system
This baseline follows our earlier work [33], and it is mainly
considered in order to evaluate a system based entirely
on a standard acoustic front-end (MFCC features), aiming
also to demonstrate the value of the room discriminant
features of Section 5.1.
Its first stage is identical to that of the proposed system.

Namely, for every smart home room, it performs weighted
log-likelihood summation of MFCC/GMM-based scores

by means of (1) and (2) over all room microphones (M =
M r ) for classes J ={ sp r , sil all } (see also Section 4.4).
At the second stage, segments generated by the first

stage are further examined and classified as room-inside
or room-outside speech. For this purpose, room-specific
GMMs are trained for each class J = { sp r , sp r̄ } , and
unweighted log-likelihood summation of MFCC/GMM-
based scores is performed over all room microphones
(M = M r ), followed by averaging over all short-time
frames in the segment. Segments classified as room-
outside speech are then deleted from the SAD output of
the given room.

6.2 Sohn’s algorithmwith SNR criterion
The first stage of this baseline employs the well-known
and effective SAD algorithm of Sohn et al. As they detail
in [36], the method is based on a likelihood ratio test
between speech and noise models, considered as Gaussians
in the frequency domain under an i.i.d. assumption in fre-
quency and that of additive uncorrelated noise. Following
noise model estimation using observed noise and of the
necessary SNRs by a decision-directed approach, the
likelihood ratio test is performed, and decision results
are smoothed by means of an HMM-based hangover
scheme [36].
In the designed baseline, Sohn’s SAD is employed for

each smart home room r , using a single ad hoc selected
room microphone m ∈ M r . Then, at the second stage,
for a first-stage generated segment in room r , the SNR
of microphone m is compared to a global threshold;
if below it, the particular segment is deleted from the
room’s SAD output. This baseline thus presents a well-
established and relatively simple to implement approach
for room-localized SAD.

7 Databases and experimental framework
We now proceed to describe the databases where the
proposed system, its variations, and baselines are eval-
uated, as well as to discuss the adopted experimental
framework and evaluation metrics used. In particular, the
presentation refers to the experiments of Sections 8.1–
8.4. An additional dataset and a slightly modified eval-
uation framework, necessary to allow comparisons with
recent deep learning-based works, are detailed in the
corresponding Section 8.5.

7.1 The DIRHA corpora
The experiments in Sections 8.1–8.4 are conducted
on two databases: the Greek-language part of DIRHA-
simcorpora II [61], hereafter referred to as “DIRHA-
sim”, and the “DIRHA-real” Greek corpus [16].2 The
datasets are either simulated or recorded inside a smart
2DIRHA-sim is found at https://dirha.fbk.eu/simcorpora, whereas
DIRHA-real is available on request to the authors.

https://dirha.fbk.eu/simcorpora
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home apartment (with an average reverberation time of
0.72 s), developed for the purposes of the DIRHA research
project [10]. Its floor plan is depicted in Figs. 1 and 6,
showing that five of its rooms (living room, kitchen,
bathroom, corridor, and bedroom) are equipped with
a total of 40 microphones grouped in 14 arrays. Most
arrays consist of two or three microphones (with lin-
ear topology) located on the room walls, while, for each
of the living room and kitchen, a six-element pentagon-
shaped array is also located at the ceiling. As a result,
concerning the set of adjacent microphone pairs used
in Sections 5.1.2 and 5.1.5, the two-element arrays pro-
vide one such pair, the three-element arrays two, and
the pentagon-shaped arrays five, with all latter pairs con-
taining the central array microphone. The corridor thus
yields the least pairs (one), while the living room the most
(ten).
As indicated by its name, the DIRHA-sim dataset con-

tains audio simulations, produced as detailed in [61].
Briefly, first, about 9k room impulse responses are mea-
sured at each of 40 smart homemicrophones from 57 pos-
sible source locations uniformly distributed in the rooms
of interest and with up to 8 source orientations for each
(as shown in Fig. 6). These are then used to convolve high-
quality, close-talk speech by 20 subjects (recorded at a
48-kHz sampling rate and an SNR average of 50 dB), while
real, long-duration background noises and shorter acous-
tic events are also added to the resulting simulations. In
total, 150 1-min simulation sequences containing speech
and noise are available. In contrast, the DIRHA-real set

Fig. 6 Floor plan of the multi-room DIRHA apartment where the
datasets of Section 7.1 are simulated or recorded. Black circles
indicate the 40 microphones installed inside five rooms on their walls
or ceiling. Colored squares and arrows indicate possible positions and
orientations of speech and other acoustic event sources (figure from
[62])

contains actual recordings of 5 subjects acquired by the 40
microphones inside the smart home under realistic noise
conditions [16]. In total, 60 1-min recorded sequences of
speech and noise are available. Statistics of the two sets are
summarized in Table 1.
Apart from the main difference concerning the nature

of the two sets (simulated vs. real), there exist two addi-
tional variations, as can be also observed in the waveform
examples of Fig. 7. First, DIRHA-sim is characterized by
more adverse noise conditions, containing more back-
ground noises and acoustic events besides speech. Fur-
ther, in DIRHA-sim, speech often overlaps with other
acoustic events or speech in different rooms of the smart
home. Indeed, as listed in Table 1, speech overlap there
reaches 47% (22 out of 47 min). These facts deemDIRHA-
sim much more challenging for room-localized SAD than
DIRHA-real.

7.2 Experimental framework andmetrics
In the experiments of Sections 8.1–8.4, the DIRHA-sim
dataset of 150 simulations is partitioned into a train-
ing set containing 75 of them and a test set with the
remaining 75. Optimization of the first-stage algorithmic
parameters of Section 4.3 (i.e., the transition penalty and
constant prior added to the speech-class log-likelihood),
as well as of the global threshold used in conjunction with
Sohn’s baseline, are performed on the training set. In the
case of DIRHA-real, all 60 recordings are used for test-
ing systems developed on the DIRHA-sim training data.
This framework allows to also gauge the usefulness of
simulated databases for training models and developing
features and systems that can perform well in real-case
scenarios, even when differences between the sets are
significant.
For evaluation, the recall, precision, and F-score met-

rics are used, all computed at the frame level with a 10-ms
time resolution and reported in percentage. Evaluation of
room-localized SAD differs somewhat to the traditional
room-independent case, as can be easily inferred from

Table 1 Characteristics and statistics of the DIRHA-sim and
DIRHA-real corpora, used in the experiments of this paper

Data Databases

characteristics DIRHA-sim DIRHA-real

Speech source Loudspeaker Human

1-min-long sequences (#) 150 60

Total speech (min) 47 19

Overlapped speech (min) 22 0

Non-speech events (#) 72 Untranscribed

Background noises (#) 10 Untranscribed

Subjects (#) 20 5

Average SNR (dB) 13 15
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Fig. 7 Examples of multi-microphone data of the DIRHA corpora used in this work. Microphone waveforms in three rooms are shown. Left: a
multi-speaker acoustic scene in the DIRHA-sim dataset. Right: a single-speaker scene in the DIRHA-real data

Fig. 1. In traditional SAD, the aim is to detect speech
anywhere in the smart home, and as a result, each test-
set sequence is evaluated only once (75 sequences for
DIRHA-sim and 60 for DIRHA-real). In contrast, in the
room-localized case, for each sequence, a total of R =
5 SAD outputs are evaluated (one for each room), with
ground truth each time considering only speech occur-
ring inside the given room. Thus, 75 × 5 = 375 and
60 × 5 = 300 SAD outputs in total are evaluated for
the DIRHA-sim and DIRHA-real test sets, respectively.
This affects the evaluation metrics: for example, recall for
room-localized SAD is computed as the ratio between
the number of correctly detected room-inside speech
frames and the total number of such frames in the ground
truth. In total, the test set contains 447 room-inside
and 1788 room-outside speech segments in the DIRHA-
sim case, and 232 and 928 segments, respectively, in
DIRHA-real.

8 Experimental results
Next, we report our experiments. We first focus on
room-independent SAD results, subsequently covering
the room-localized case extensively. We also provide an
error analysis of the proposed system, as well as a study
on its robustness to the number of available microphones.
We conclude the section with a comparison to recent deep
learning-based approaches.

8.1 Room-independent SAD
Room-independent SAD is evaluated first, primarily
to showcase its easier nature compared to the room-
localized task, as well as to benchmark differences
between the various techniques of Sections 4 and 6 and
simple channel selection schemes. Results are reported
in Table 2 for both DIRHA-sim and DIRHA-real sets in
terms of recall, precision, and F-score.

Specifically, in the lower part of Table 2, both the
GMM- and HMM-based decoding schemes of Section 4.3
are presented in conjunction with the six fusion tech-
niques of Section 4.2, but for the room-independent
SAD system variant discussed at the end of Section 4.4
that uses all 40 smart home microphones (M = M all
and J = { sp all , sil all } ). These results are compared to
two single-channel systems where microphone selection
is driven by the best SNR per test-set sequence (actual
based on ground-truth segmentation, or estimated), as
well as the oracle-best channel result (that with the max-
imum F-score per sequence) and the average of all chan-
nel results. Finally, Sohn’s algorithm is also considered,
applied for each room (a single room microphone is used
for each room), with the union of the results across rooms
obtained.
For DIRHA-sim (left side of Table 2), we immediately

observe the superiority of HMM-based Viterbi decod-
ing over frame-based GMM segmentation. The best
result is obtained by multi-channel fusion using log-
likelihood summation scheme “w-sum”, achieving an F-
score of 91.80%. This is significantly higher than Sohn’s
method (68.29%), and it represents a 53.5% relative error
reduction in F-score compared to the best estimated
SNR single-channel system (91.80% vs. 82.38%). Note
that the latter performs similarly to the average of all
channel results (82.69%), while it lags the ideal actual
SNR case (90.10%) where channel SNR computations
employ ground-truth information. These comparisons
confirm that the challenging nature of DIRHA-sim
adversely affects SNR estimation. Note finally that the
best multi-channel system still lags the oracle-best
channel one (95.73%), showing potential for further
improvements.
Similar observations hold in the DIRHA-real case (right

side of Table 2). The best system again employs log-
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Table 2 Room-independent SAD results on the DIRHA-sim (left) and DIRHA-real (right) test sets, further discussed in Section 8.1

Method DIRHA-sim DIRHA-real

Recall Precision F-score Recall Precision F-score

GMM HMM GMM HMM GMM HMM GMM HMM GMM HMM GMM HMM

Oracle-best 96.94 94.67 94.01 96.82 95.45 95.73 93.01 95.49 95.91 96.46 94.44 95.97

Channel avg. 87.86 82.26 76.64 83.13 81.82 82.69 65.56 71.57 89.47 87.42 75.37 78.34

Best act.-SNR 94.56 92.36 83.85 87.95 88.88 90.10 88.77 90.33 88.95 86.87 88.86 88.57

Best est.-SNR 96.60 93.63 66.56 73.54 78.81 82.38 92.43 93.41 74.38 74.02 82.43 82.59

Sohn’s 81.22 58.91 68.29 78.05 61.51 68.80

Decision fusion “u-sum” 94.39 91.08 83.60 90.97 88.67 91.01 74.76 89.11 96.54 91.70 84.26 90.39

“w-sum” 95.00 91.78 83.57 91.82 88.92 91.80 76.87 87.37 96.58 93.37 85.67 90.27

“u-max” 74.17 82.51 75.28 73.69 74.72 77.85 45.66 68.40 97.21 95.01 62.14 79.54

“w-max” 95.44 95.53 82.34 87.16 88.41 91.15 79.76 89.66 95.77 88.70 87.03 89.18

“u-vote” 92.55 88.92 84.18 92.24 88.16 90.55 69.12 83.39 96.61 95.02 80.58 88.82

“w-vote” 91.37 91.83 87.39 90.40 89.34 91.11 74.76 85.03 96.54 94.82 84.26 89.66

likelihood summation, with scheme “u-sum” reaching an
F-score of 90.39%. This corresponds to a 44.8% relative
F-score error reduction compared to the best estimated
SNR single-channel system (90.39% vs. 82.59%). The latter
performs now better than the average of all channel results
(78.34%), and it lies somewhat closer to the best actual
SNR system (88.57%) than in the DIRHA-sim case, due
to the less adverse DIRHA-real environment. Note finally
that, as above, the best multi-channel system lags the
oracle-best channel result (95.97%).

8.2 Room-localized SAD results
We now switch focus to the room-localized SAD task.
Our experiments are organized as follows: First, we eval-
uate the several possible choices of the system’s first stage
discussed in Section 4.4. Next, we investigate its sec-
ond stage and the performance of the room discriminant
features of Section 5.1. Finally, we present comparative
results between our proposed system and the alternative
baselines of Section 6.
The first experiment, reported in Table 3, compares

the various design choices concerning the possible classes

Table 3 Effect of the various choices in the design of the
system’s first stage (discussed in Section 4.4) to the
room-localized SAD performance on the DIRHA-sim test set

Oper M Classes J Recall Precision F-score

RI M all { sp all , sil all } 72.30 56.63 63.51

RL M r { sp r , sil all } 72.07 61.08 66.12

{ sp r , sil r } 71.20 60.39 65.35

{ sp r , sp r̄ , sil all } 71.00 62.40 66.43

For consistency, the first stage is always followed by the second stage of the
MFCC/GMM baseline of Section 6.1. RI denotes room-independent operation
(“oper”) of the first stage and RL room-localized one

and microphones used in the first stage of the room-
localized SAD system, as summarized in Section 4.4.
In all cases, decision fusion by means of log-likelihood
summation scheme “u-sum” is employed across micro-
phones. For consistency in the comparisons, the various
first stages considered are always followed by an identical
second stage, namely that of the MFCC/GMM baseline of
Section 6.1.
It is clear from Table 3 that the room-independent

scheme leads to the worst performance, trailing all room-
localized variants. The basic reason is that in the lat-
ter schemes, the first stage can achieve high recall for
room-inside speech and produces less room-outside seg-
ments compared to the room-independent case; thus,
the second stage has an easier task. The second line
of the table corresponds to the classes and microphone
set options chosen in the proposed system. These yield
the highest recall (72.07%) among the room-localized
SAD variants, with an F-score second, but very close,
to the three-class modeling approach of the last line
(66.12% vs. 66.43%).
The second experiment, reported in Table 4, con-

centrates on the proposed room discriminant features
of Section 5.1, as well as their feature fusion schemes
of Section 5.2 and the SVM modeling approaches of
Section 5.3 operating over entire segments. The evalua-
tion is conducted for the room-inside vs. room-outside
speech classification task of the second stage of the
developed algorithm. For this purpose, the ground-truth
speech boundaries are used, thus decoupling the com-
parisons from the first stage. Further, results include four
rooms of the smart home, excluding the corridor (R =
4 ). Importantly, in addition to single features and their
intra-room fusion (9), various feature subsets are also
considered. Specifically, in Table 4, the best two, three,
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Table 4 Performance of the room discriminant features of Section 5.1 and their combinations, in conjunction with inter-room fusion
(Section 5.2) and SVM modeling (Section 5.3) for the room-inside vs. room-outside speech classification task of the second stage of the
proposed algorithm

Set SVM Feature Recall Precision F-score

models ( • ) f (•)

r,T f (•)

r, avg ,T f (•)

home ,T f (•)

r,T f (•)

r, avg ,T f (•)

home ,T f (•)

r,T f (•)

r, avg ,T f (•)

home ,T

DIRHA-sim (en) 63.97 37.93 40.06 50.51 86.03 86.92 56.45 52.65 54.84

(coh) 47.46 87.41 88.66 67.90 77.01 76.05 55.87 81.88 81.87

(ev) 82.89 90.81 90.38 78.01 74.85 76.28 80.37 82.06 82.74

(ts) 71.91 86.00 89.35 52.21 74.46 79.28 60.50 79.82 84.01

Room- (srp) 76.76 79.85 79.25 53.94 56.44 60.94 63.36 66.13 68.90

specific (ts,srp) 80.67 89.33 90.58 66.72 79.37 82.97 73.03 84.05 86.61

(ts,srp,ev) 91.74 90.74 91.86 85.20 83.26 85.27 88.35 86.84 88.44

(ts,srp,ev,coh) 90.62 90.42 92.27 83.65 84.96 85.80 86.99 87.61 88.92

(en,coh,ev)[34] 89.48 87.65 90.37 78.90 81.16 81.69 83.86 84.28 85.81

(all) 91.14 89.65 91.40 83.93 85.30 85.40 87.39 87.42 88.30

Global 91.12 92.21 n/a 78.49 79.63 n/a 84.34 85.46 n/a

DIRHA-real (en) 63.65 24.39 27.68 55.30 100.00 100.00 59.18 39.22 43.36

(coh) 5.61 71.35 78.99 100.00 61.67 57.22 10.62 66.16 66.71

(ev) 99.02 99.73 99.73 97.40 98.07 98.21 98.21 98.89 98.96

(ts) 68.94 97.44 97.94 81.42 95.25 93.41 74.67 96.33 95.62

Room- (srp) 85.36 87.91 80.75 75.50 77.98 75.29 80.13 82.65 77.93

specific (ts,srp) 90.28 94.52 97.33 91.58 95.32 86.76 90.92 94.92 91.74

(ts,srp,ev) 99.90 98.82 97.81 99.82 97.87 97.24 99.86 98.34 97.53

(ts,srp,ev,coh) 98.52 98.99 98.11 99.94 98.37 87.09 99.23 98.68 92.27

(en,coh,ev)[34] 98.25 99.73 99.50 99.60 98.64 90.84 98.92 99.18 94.98

(all) 98.89 98.85 95.68 99.94 98.46 80.21 99.42 98.66 87.26

Global 99.33 100.00 n/a 100.00 99.84 n/a 99.66 99.92 n/a

Results are reported on R = 4 rooms of the DIRHA smart home (excluding the corridor) on the DIRHA-sim (top) and DIRHA-real (bottom) test sets using ground-truth speech
segment boundaries. All SVMs operate over entire segments

and four feature combinations are listed, as selected by
wrapper-based sequential forward feature selection [76,
ch. 5.7.2] that is conducted on DIRHA-sim (based on the
corresponding proposed system F-scores). In addition,
the three-feature subset of our previous work [34] is eval-
uated. Notice that the notation in (10) and (11) is slightly
extended to allow inter-room fusion of single features and
subsets.
Concerning DIRHA-sim (Table 4, top), in the case of

room-specific SVMs, we observe that for most individ-
ual features of Section 5.1 (with the exception of the
energy-based one), performance improves by inter-room
fusion. The best feature is the proposed spectrogram tex-
ture smoothness, achieving an F-score of 84.01% after
fusion by (10). In contrast, the energy-based feature per-
forms the worst at a 52.65% F-score after fusion by (11).
For the entire feature vector (“all”) obtained by intra-
room fusion (9), small differences are observed between
no room combination and inter-room fusion by (10) or

(11), with the best F-score reaching 88.30%. Global SVM
modeling performs slightly worse (85.46% F-score with
fusion (11)).
Regarding feature subsets, the best two-feature set con-

sists of the spectrogram texture smoothness and the SRP-
based feature; envelope variance is then added to yield the
best three-member set; and subsequently, the coherence-
based one is chosen. All subsets demonstrate better per-
formance than individual features, when fused by (10) or
(11). Also, we can observe that energy does not boost
performance further, as the best four-feature set slightly
outperforms the “all” set, achieving an 88.92% vs. 88.30%
F-score with fusion (10). Finally, compared to our previ-
ous work [34], the “all” set achieves a 17.5% relative error
reduction in F-score (88.30% vs. 85.81% with (10)).
In the less challenging DIRHA-real set (Table 4, bot-

tom), the coherence, envelope variance, and spectrogram
texture smoothness features take advantage of inter-room
combination, whereas the energy- (as also on DIRHA-
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sim) and SRP-based ones fail to do so. The highest
performing feature is the envelope variance with an
F-score of 98.96% after fusion by (10), closely followed
by spectrogram texture smoothness at 96.33% after fusion
by (11). For the entire feature vector (“all”) obtained
by intra-room fusion (9), small differences are observed
between no room combination and inter-room fusion
by (11), regardless of the SVM models used. However,
concatenation across all rooms by (10) fails to improve
matters (an F-score of only 87.26% is attained). This is
probably due to the high dimensionality of the result-
ing vector and the use of multiple SVMs, in conjunc-
tion with the mismatch between the DIRHA-sim trained
models and DIRHA-real test conditions. This seems
also supported by the fact that inter-room fusion by
means of (11) in most cases outperforms (10). Never-
theless, the best “all” feature system reaches an almost
perfect F-score of 99.92%, obtained by global SVMs and
fusion (11). Note also that this is very close to the
99.86% F-score of the spectrogram texture smoothness-
SRP-envelope variance combination with no inter-room
fusion.
As a complement to this experiment and to further gain

insights into the room discriminant features, their corre-
lation is investigated. For this purpose, the Pearson corre-
lation coefficient is computed among all features over the
speech segments of the DIRHA-sim test set, resulting in
the matrix of Fig. 8. As expected, the envelope variance,
spectrogram texture smoothness, and coherence-based
features demonstrate high correlation between them, as
they are all related to reverberation. On the contrary, the
energy- and SRP-based ones exhibit low correlation with
all features.
In the third experiment, reported in Table 5, once again

ground-truth segments are considered as input to the

Fig. 8 Pearson correlation coefficients between the room
discriminant features of Section 5.1, computed on DIRHA-sim
(ev, envelope variance; ts, spectrogram texture smoothness; coh,
coherence-based; en, energy-based; srp, SRP-based)

second stage. The aim here is threefold: first, to showcase
the superiority of the proposed room discriminant feature
approach over the baselines of Section 6; second, to high-
light performance differences among the various smart
home rooms; and third, to further compare the fusion
schemes of Section 5.2. Specifically, the MFCC/GMM-
based second stage of the baseline of Section 6.1 is listed
in the first line of Table 5, followed by the SNR-based
room assignment scheme of Section 6.2, as well as room-
specific SVM modeling on (9), (11), and (10) operating
over entire segments. F-scores are reported for each room
separately (no corridor F-score is shown for DIRHA-
real, as there are no ground-truth room-inside segments
there), as well as for all four (excluding the corridor) or
five rooms.
It is clear from Table 5 that the proposed approach dra-

matically outperforms the baselines, e.g., for R = 5, on
DIRHA-sim, the best result (84.26%) represents a 46.7%
and 73.2% relative error reduction over the baselines of
Sections 6.1 and 6.2, respectively, while on DIRHA-real,
the corresponding reductions of the best result (93.34%)
stand at 78.6% and 87.8% relative. It is also clear that
the corridor is a challenging room, as seen by its low
DIRHA-sim F-scores and the performance drop from the
R = 4 to the R = 5 case. This is primarily due to
its central location in the smart home floor plan (see
also Fig. 6) exposing it to sounds coming from all other
rooms, as well as the small number of microphones in it
(only two). Regarding the multi-room results of the fea-
ture fusion schemes of Section 5.2, inter-room feature
concatenation (10) performs best on DIRHA-sim, fol-
lowed by (11). This can be expected as (10) captures
more detailed information (albeit at higher dimension-
ality). Similarly, fusion (11) is superior to the lack of
inter-room combination in (9). On DIRHA-real, how-
ever, the above are reversed, as features (9) outperform
(11) and, in turn, fusion by (10). This is primarily due
to the mismatch of the DIRHA-sim trained SVMs to the
DIRHA-real conditions, thus favoring lower-dimensional
representations that generalize better, as also observed in
Table 4.
Finally, Table 6 reports on the full task of room-

localized SAD. Its upper part covers single-stage methods,
namely the best room-independent approach (“best RI”),
as well as the first stages of the MFCC/GMM baseline of
Section 6.1 (recall that this is identical to the proposed
system’s first stage) and Sohn’s algorithm (Section 6.2).
The complete two-stage baselines are evaluated next,
followed by the proposed algorithm employing room-
specific SVMs on features (10) operating over the entire
segments (“seg”) or over sliding windows (“win”), where
results both with and without the corridor are reported.
As shown in Table 6, the proposed system operating

over sliding windows reaches satisfactory performance,
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Table 5 Comparison of the two baselines of Section 6 (upper part) and the room discriminant feature-based approach (lower part) for
the room-inside vs. room-outside speech classification task

Features DIRHA-sim DIRHA-real

Single room Multi-room Single room Multi-room

Liv. Kitch. Bath. Bed. Corr. R = 4 R = 5 Liv. Kitch. Bath. Bed. R = 4 R = 5

MFCCs 70.96 72.52 61.25 76.94 39.03 72.32 70.49 46.93 71.50 80.98 58.11 68.91 68.91

SNR 55.59 57.57 17.38 50.75 8.80 48.59 41.22 41.47 72.99 53.42 31.63 53.74 45.54

f (all)
r,T 83.74 92.83 83.33 86.76 34.28 87.39 80.63 97.17 100.00 99.89 100.00 99.42 93.34

f (all)
r, avg ,T 84.80 92.83 84.48 85.05 38.11 87.42 81.46 99.50 97.51 99.89 99.16 98.66 89.94

f (all)
home ,T 86.29 89.96 91.67 88.25 39.66 88.30 84.26 97.88 79.23 95.00 93.63 87.26 79.19

F-scores are reported for each room, as well as over R = 4 rooms (excluding the corridor) and all R = 5 rooms of the DIRHA smart home, on both DIRHA-sim (left) and
DIRHA-real (right) test sets using ground-truth speech segment boundaries. Room-specific SVMs are employed, operating over entire segments

namely a 80.98% F-score on DIRHA-sim and 87.68%
on DIRHA-real, which are further improved if the
corridor is excluded. The algorithm clearly outper-
forms the two-stage baselines dramatically, resulting
to relative error reductions of 43.9% and 73.2% on
DIRHA-sim compared to the methods of Sections 6.1
and 6.2, respectively. The corresponding improve-
ments stand at 44.3% and 82.4% on DIRHA-real. The
single-stage systems considered perform even worse.
Not surprisingly, the addition of the second stage
helps both baselines, especially the MFCC/GMM
system.
Concerning the operation of the second stage over

entire segments vs. sliding windows, it can be observed
in Table 6 that the latter scheme fares slightly better on
the more challenging DIRHA-sim dataset. An example
of its superiority is provided in Fig. 9 (same as in Fig. 7
(left)). There, the kitchen SAD results are shown for a
case of two overlapping speakers located inside differ-
ent rooms (“speaker 5” in the living room and “speaker
4” in the kitchen). The first stage of the system returns
a segment containing both. Then, at the second stage,
the segment-operating scheme classifies it entirely as
kitchen-inside speech, whereas the sliding window one

allows to only keep the part belonging to “speaker 4”.
Further, both schemes delete three erroneous first-stage
segments, but fail to do so for two that originate in the liv-
ing room. However, on the less challenging DIRHA-real
set, a slightly worse performance for the sliding-window
scheme is observed in Table 6. This can be attributed
to the lack of overlapping speech segments originating
in different rooms, in conjunction with the obvious fact
that window-based decisions rely on less data than entire
segments.

8.3 Error analysis
This section attempts to provide additional insights into
the performance of the various room discriminant fea-
tures of Section 5.1. In particular, the focus lies on how
such is affected by the speech source location and the
amount of overlap in the detected segment.
Figure 10 concentrates on the two novel features

proposed, namely the spectrogram texture smoothness
(upper part) and the SRP-based feature (lower figure).
There, in the case of segments with ground-truth
boundaries and no overlap, performance of the features
for living room-inside vs. living room-outside classifica-
tion on DIRHA-sim data is visualized by an appropriate

Table 6 Performance of various approaches for the full task of room-localized SAD on DIRHA-sim (left) and DIRHA-real (right)

Method DIRHA-sim DIRHA-real

Recall Precision F-score Recall Precision F-score

Single-stage Best RI 92.22 19.49 32.18 92.71 16.25 27.66

MFCC/GMM 89.87 41.60 56.87 88.02 57.06 69.24

Sohn’s 73.17 17.33 28.02 73.40 17.71 28.53

Two-stage MFCC/GMM 72.07 61.08 66.12 78.94 76.87 77.89

baselines Sohn’s 43.14 21.96 29.11 46.39 22.26 30.08

Proposed Seg (R = 5) 82.16 77.35 79.68 88.27 89.30 88.78

Win (R = 5) 83.09 78.96 80.98 86.51 88.87 87.68

Win (R = 4) 84.65 86.10 85.37 86.51 94.03 90.11
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Fig. 9 Example of the proposed room-localized SAD system output
for the kitchen of the DIRHA smart home, shown in green when
operating over the entire first-stage segments (depicted in black), or
in red dashed line when operating over shifting windows. The
example is that of Fig. 7 (left)

Fig. 10 Visualization of error rates in living room-inside vs. living
room-outside segment classification for each speech source position
and orientation on the DIRHA-sim test set, using two features of
Section 5.1. Upper: spectrogram texture smoothness. Lower:
SRP-based feature. Blue and red circular sectors indicate low and high
percentage of errors, respectively, while gray sectors indicate unused
orientations

coloring scheme within circular sectors that correspond
to the various speech source positions and orientations in
the smart home (blue indicates lowmisclassification rates,
while red high ones). It can be observed that errors mostly
occur around the living room boundaries, but differ across
features. For example, the spectrogram texture smooth-
ness misclassifies mainly segments of adjacent rooms with
orientation towards the living room doors, as they reach
its microphones with less reverberation. In contrast, the
SRP feature classifies such correctly, as they produce high
acoustic energy at the living room doors. However, it
misclassifies room-inside segments near these doors.
Finally, Fig. 11 aims to quantify the effects of over-

lap to the room discrimination performance of the vari-
ous features. For this purpose, two cases are considered:
“low overlap” concerning speech segments with less than
30% of overlap with acoustic events of other rooms,
and “high overlap” with more than 30%. Performance
is measured in frame-based F-score, using ground-truth
first-stage (room-independent) speech boundaries. In all
single-feature sets, five-dimensional vectors are produced
(one feature per room). Clearly, most sets exhibit low per-
formance in the high overlap condition, with some (spec-
trogram texture smoothness, energy-based, and fused
features) affected more.

8.4 Robustness to reducedmicrophone setups
The proposed room-localized SAD algorithm relies on
the availability of multiple microphones in the multi-
room DIRHA apartment. As this installation includes
40 microphones, the question naturally arises as to
how dependent the system is on such an expensive
setup.

Fig. 11 Performance of the room discriminant features of Section 5.1
in classifying speech segments exhibiting low or high overlap with
audio events in other rooms for theDIRHA-sim test set (en, energy-based;
coh, coherence-based; srp, SRP-based; ts, spectrogram texture
smoothness; ev, envelope variance; all, intra-room fusion (9)) In all
cases, inter-room fusion (10) and room-specific SVMs are used
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To investigate this, four reduced “nested” setups are
considered, gradually decreasing the number of smart
home microphones |Mall| from 40 down to 5, specifi-
cally to |Mall| = 25, 16, 10, and 5, as depicted in Fig. 12
(compare to the original configuration of Figs. 1 and 6).
Note that the |Mall| = 10 setup includes one micro-
phone pair in each room, while the |Mall| = 5 config-
uration only one microphone per room. For the latter,
coherence- and SRP-based features cannot be computed
due to the absence of microphone pairs, thus reducing
the set of available features to three per room (see also
Fig. 13).
The first experiment, summarized in Table 7, quan-

tifies the effects of reduced microphone setups to the
GMM-HMM based SAD module. Specifically, room-
independent SAD performance on the DIRHA-sim test
set is reported (see also Table 2), employing HMM-based
Viterbi decoding and “w-sum” decision fusion over the
microphones of the various setups. To further reduce
system complexity, a simplified modeling approach is
also evaluated, where only a single GMM is trained on
data of a specific microphone, in place of microphone-
specific models. In particular, the living room ceiling
central microphone, available in all configurations, is used
for this purpose. In that case, (1) and (2) are slightly
modified by setting bm,j(om,t) ← bM,j(om,t), for all
m ∈ M , where M denotes the specific GMM-training
microphone.
Concerning SAD performance, it is evident fromTable 7

that it remains robust to the number of available micro-
phones. In particular, the F-score degrades gracefully
and monotonically as the installation becomes leaner:
In the microphone-specific modeling case, the full-setup
F-score of 91.80% reduces to 89.60% for |Mall| = 5,
exhibiting an absolute drop of only 2.2%. A similar
trend is also observed in the single-GMM case. Fur-
ther, comparing the two modeling approaches, the single-
GMMone yields small only F-score absolute degradations
within the 1.7 to 2.6% range (depending on the setup).
Thus, in the lack of multi-channel training data, a single-
microphone model constitutes a viable approach leading
to satisfactory results.

In the second experiment, depicted in Fig. 13, the per-
formance of the room discriminant features of Section 5.1
is examined as a function of the number of available
microphones. For this purpose, the room-inside vs. room-
outside classification task (second stage of the algorithm)
is considered with ground-truth segmentation on the
DIRHA-sim test set. It can be readily noted that reduced
setups have a noticeable, albeit not dramatic, effect on
the performance of the intra-room fused features (“all”),
degrading the full-setup F-score of 88.30% ( |Mall| = 40)
to 85.10% for |Mall| = 16 and 80.86% for |Mall| = 5.
Thus, the multi-channel second stage can benefit from
larger microphone numbers, but can also perform sat-
isfactorily with fewer microphones. Regarding individual
feature performance in reduced setups, the envelope vari-
ance seems the most robust, while the SRP-based feature
the least.

8.5 Comparison to deep learning approaches
As overviewed in Section 2, a number of works on
room-localized SAD have appeared recently, proposing
single-stage algorithms based on deep learning methods
[29–32]. In this section, a performance comparison to our
developed system is provided.
To enable such comparison, the experimental frame-

work of these works is followed, deviating from that
of Section 7. In particular, the corpus used is the
Italian-language part of the DIRHA simcorpora (DIRHA-
sim-evalita), first introduced as part of the SASLODOM
evaluation campaign at the EVALITA’14 workshop
[77]. This contains 80 1-min simulations, generated
in the DIRHA apartment as discussed in Section 7.1.
Experiments are conducted by tenfold cross-validation
to reduce performance variance, with each test fold
containing eight simulations. Results are reported in
terms of the “overall SAD detection error” metric, as
defined in [77], considering only two rooms (R = 2)
of the DIRHA apartment, i.e., living room and
kitchen.
Comparative results between the best deep learn-

ing results of [29–32] and our proposed algorithm are
presented in Table 8. In particular, the best system of

Fig. 12 Reduced microphone setups of Section 8.4. Left to right: |Mall| = 25, 16, 10, and 5 microphones used (shown in red)
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Fig. 13 Performance of the room discriminant features of Section 5.1
for the speech-inside vs. speech-outside classification task with
ground-truth segmentation on the DIRHA-sim test set, using various
numbers of microphones (en, energy-based; coh, coherence-based;
srp, SRP-based; ts, spectrogram texture smoothness; ev, envelope
variance; all, intra-room fusion (9)) Inter-room fusion (10) and
room-specific SVMs are used

[29, 30], employing a DNN over 187-dimensional fea-
tures of various types that are extracted from the best
microphone per room, yields a SAD error of 5.8%.
Further, the 3D-CNN system of [31], operating on
40-dimensional log-Mel filterbank energies after temporal
splicing and combining information from the three best
microphones per room, exhibits a 7.0% SAD error. This
improves to 5.2%, when employing all microphones avail-
able in the two rooms [32]. Finally, a 3.5% SAD error
is reported in [32], when the aforementioned 3D-CNN
is extended incorporating 51-dimensional GCC-PHAT
patterns [70] to jointly provide SAD and speaker loca-
tion estimates (marked as “SAD+SLOC” in the table).
However, it should be noted that this system employs
additional information during its training, in the form of
ground-truth speaker positions (in 2D room coordinates).

Table 7 Room-independent SAD results on the DIRHA-sim test
set, employing all available microphones (|Mall|= 40) or the
reduced setups of Fig. 12

|Mall| Microphone-specific GMMs Single-microphone GMM

Recall Precision F-score Recall Precision F-score

40 91.78 91.82 91.80 91.21 87.25 89.19

25 91.45 91.41 91.43 90.66 87.58 89.09

16 91.50 90.89 91.19 87.51 90.69 89.07

10 90.84 89.39 90.11 90.33 86.42 88.33

5 88.22 91.02 89.60 89.21 86.61 87.89

In all cases, HMM-based Viterbi decoding and “w-sum” decision fusion are used,
where the combined log-likelihoods result from microphone-specific GMMs (left) or
a GMM trained on a single microphone (right)

Table 8 Performance (in overall SAD detection error [77]) of
deep learning-based approaches vs. the proposed algorithm for
room-localized SAD on the DIRHA-sim-evalita corpus

Method SAD error(%)

Deep learning DNN [30] 5.8

3D-CNN [31] 7.0

3D-CNN [32] 5.2

3D-CNN (SAD+SLOC) [32] 3.5

Proposed Seg 5.7

Win 4.7

In comparison, our proposed algorithm exhibits SAD
errors of 5.7% and 4.7%, when operating over entire seg-
ments (“seg”) or sliding windows (“win”), respectively.
The latter represents a 19% relative SAD error reduc-
tion over the DNN of [30] and 10% over the 3D-CNN
of [32], proving better than segment-based operation in
the challenging and noisy DIRHA-sim-evalita data (as also
observed in Table 6 for DIRHA-sim). These comparisons
highlight the competitiveness of our two-stage system and
the suitability of the five room discriminant features of
its second stage. Of course, it is possible that the deep
learning methods could have gained advantage if more
training data had been available in the DIRHA corpora.

9 Conclusions
We have presented an efficient multi-channel, two-stage
approach to address speech activity detection in multi-
room smart home environments, equipped with multi-
ple microphone arrays distributed inside them. In the
general scenario, possibly, concurrent speech activity in
different rooms needs to be detected and the effect of
cross-room interference suppressed. For this purpose,
the proposed room-localized SAD system first employs
a multi-channel speech/non-speech segmentation mod-
ule per room, and it subsequently determines whether
detected speech activity occurs inside or outside each
room by utilizing a novel set of room discriminant
features. Experiments on a suitable multi-room, multi-
channel dataset demonstrate satisfactory performance on
both simulated and real data, reaching F-scores of 81.0%
and 87.7%, respectively, while significantly outperform-
ing alternatives that combine well-known baselines and
features (MFCCs, Sohn’s SAD, SNR), as well as compar-
ing favorably to deep learning-based approaches (DNNs,
CNNs). The evaluation results verify the robustness of
the two-stage system and the suitability of the devised
hand-crafted features, while also highlighting the realis-
tic design and value of the current simulated database
for developing algorithms that generalize well to real
recorded data.
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