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A B S T R A C T

We examine 3D reconstruction in unordered sets of uncalibrated images. We introduce a linear method to
self-calibrate and find the metric reconstruction of a camera pair. We assume unknown and varying focal
lengths but otherwise known internal camera parameters and a known projective reconstruction of the camera
pair. We recover two possible camera configurations in space and use the Cheirality condition, that all 3D scene
points are in front of both cameras, to disambiguate the solution. Towards identifying camera configurations
that would perplex solution disambiguation, we show in two Theorems, first that the two solutions are
in mirror positions and then the relations between their viewing directions. We validate our approach in
synthetic and real scenes. In camera pair self-calibration and metric reconstruction, our method performs on par
(median rotation error 𝛥𝑅 = 3.49◦) with the standard approach of Kruppa equations followed by 5P algorithm
(𝛥𝑅 = 3.77◦). We get realistic multi-view reconstructions, using numerous camera pair metric reconstructions
generated by our linear method, rotation-averaging algorithms and a novel method to average focal length
estimates.
. Introduction

Multi-view geometry (mvg) is a Computer Vision (CV) subfield that
ttempts to understand the structure of the 3D world given a collection
f its images (Hartley and Zisserman, 2004). As the binocular human
ision is naturally 3D, the same underlying principles allow the recov-
ry of the 3D world structure in mvg reconstruction methods. However,
prerequisite is to have calibrated cameras, an assumption that is often
iolated in unordered image sets, in which we only have images that
re obtained from various sources (e.g. found on the internet). In this
aper we focus on self-calibration and multi-view reconstruction using
elations between camera pairs.

Assuming a camera pair with unknown and different focal lengths
s the only unknown internal parameters, a standard robust approach
o self-calibration and metric reconstruction first applies the 7-point
lgorithm (Hartley and Zisserman, 2004) inside a RANSAC (Fischler
nd Bolles, 1981) procedure to find the fundamental matrix. In this
rojective framework, the Kruppa equations (Hartley, 1997) are used
o determine the unknown focal lengths. Next, applying the 5-point
lgorithm inside a RANSAC procedure (Nistér, 2004), leads to a met-
ic reconstruction. Since focal lengths are recovered in a projective
ramework, only epipolar geometry constraints (a point in one image
ust lie on the corresponding epipolar line in another image) may

e used to check the solution plausibility. Solving self-calibration and
etric reconstruction problems simultaneously, permits application of
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more intuitive and restrictive geometric arguments, i.e the Cheiral-
ity condition, to solidly verify both extrinsic and intrinsic camera
parameters.

Self-calibration methods are derived from relations on the Dual Ab-
solute Conic (DAC, also appears as ‘absolute quadric’ in the literature)
𝑄∗

∞ and the Dual Image of the Absolute Conic (DIAC) 𝜔∗
∞ (Pollefeys

et al., 1999; Seo et al., 2001; Hartley, 1997). However, existing meth-
ods require three or four images to provide a solution (Seo et al.,
2001), use numerical methods to determine DAC when more than two
views are used (Pollefeys et al., 1999), provide an initial DAC estimate
that violates the rank-2 condition (Pollefeys et al., 1999; Seo et al.,
2001) and do not examine the relations between the recovered putative
solutions (Pollefeys et al., 1999). A self-calibration method for two
views has been proposed which arrives at a one-dimensional space of
solutions that can be reduced to four solutions by imposing the rank-
2 condition (Pollefeys et al., 1999). In mvg reconstructions additional
assumptions have been made to determine focal lengths, as availability
of EXIF tags (Olsson and Enqvist, 2011; Snavely et al., 2010), equality
of focal lengths across all images (Martinec and Pajdla, 2007; Stewénius
et al., 2005) and vanishing points correspondences (Sinha et al., 2010).

Towards a multi-view reconstruction, camera pairs have been uti-
lized in previous approaches. Different estimates for a rotation matrix
𝑅 can be combined with a rotation averaging algorithm (Hartley et al.,
2011) and reconstructions of pairs of images can be combined with
rotation registration methods (Govindu, 2001, 2004; Hartley et al.,
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2013) to initialize an instance of Structure-from-Motion with known
rotations (Kahl and Hartley, 2008; Olsson and Enqvist, 2011) and
produce a multiple-view reconstruction.

Concerning robustness, erroneous solutions in mvg problems are
directly caused by erroneous or noisy image correspondences. Two
complementary general approaches, applying RANSAC procedures to
repeatedly sample minimal point sets and verifying the initial point
correspondences, have been utilized in different problems to improve
the validity of the recovered solution (Chum and Matas, 2012; Snavely
et al., 2006).

In this paper, we assume that the only available input are the images
and use image pair relations and averaging methods to robustly recon-
struct the depicted scene. More specifically, we derive a linear method
for the self-calibration and metric reconstruction of camera pairs with
unknown and different focal lengths, unifying two problems that were
previously solved independently, to a single system of equations. We
further examine the two solutions recovered by our method through the
derivation of two theorems about the solutions’ positions and viewing
directions. We integrate our aforementioned methods to a multi-view
reconstruction pipeline, utilizing 𝐿∞-norm algorithms and introducing
a method to average different estimates of a single focal length 𝑓𝑖,
which uses the structure of the problem, specifically that each estimate
for 𝑓𝑖 comes from a pair of images 𝑖, 𝑗 and is so paired with a second
estimate 𝑓𝑗 . Our main innovations and contributions are2:

• We introduce a novel linear method for the self-calibration and
metric reconstruction of an image pair which recovers the min-
imum possible number of solutions (two). Solution disambigua-
tion is simplified as the ambiguity in the recovered solutions is
minimized.

• We extend camera-pair self-calibration and metric reconstruc-
tion theory with a method, based on DIAC, which acquires a
closed-form solution. Our equations and solutions may be further
analyzed in the future to quantify the effect of noise or special
camera-pair configurations.

• We exploit the underlying geometry, specifically that all recon-
structed world points must lie in front of the cameras (Cheirality
condition), to disambiguate the metric reconstruction solutions.
We also apply the Cheirality condition to reject pair-based so-
lutions in the practical case of outlier ridden image correspon-
dences. We show that heuristics can be avoided when simple
geometric arguments are applied.

• We describe, in two theorems, the relative orientation and po-
sitions of the two recovered metric-reconstruction solutions. We
identify (in Appendix) critical camera configurations. This theory
can be used to determine if a given camera configuration can be
disambiguated easily.

• In multi-view reconstruction, we shift the focus from getting
a single accurate solution to averaging multiple solutions. We
integrate our methods to a multi-view reconstruction pipeline that
is based in averaging methods for relative rotations, registered
rotations and focal lengths. We recover numerous image pair met-
ric reconstructions in minimal correspondences sets (eight-point)
and average the recovered solutions. We show that our methods
for fast camera-pair self-calibration and metric reconstruction can
be integrated in the framework of optimal algorithms in mvg
under the 𝐿1 (e.g. rotation averaging) and 𝐿∞ (e.g. structure from
motion with known rotations) norms (Hartley and Kahl, 2007).

• We introduce a focal length averaging method and a measure
(’Joint confidence count’) to evaluate fit of focal length estimates.
Our focal length averaging relies on the introduced image pair
self-calibration method and utilizes the pair-based recovery of
focal lengths.

2 Implementations available at https://github.com/nmelan/Multi-view-
eometry.
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The rest of this article is organized as follows: Section 2 briefly out-
lines mvg background and discusses related work. Section 3 introduces
our method for self-calibration and metric reconstruction. In Section 4,
we integrate our methods to a reconstruction pipeline. In doing so, we
develop novel averaging methods for 𝑓 estimates recovered from image
pairs. Results for camera pair reconstruction, focal length averaging and
multi-view reconstruction are given in Section 5. Section 6 contains our
conclusions.

2. Background & related work

In the following bold font (e.g. 𝐯) is used for vectors and capital case
ormal font (e.g. 𝐾) is reserved for matrices.

.1. Elements of multiple view geometry

In this section we summarize basic notions about the projection
f 3D scenes to 2D planes (Hartley and Zisserman, 2004; Faugeras
t al., 2004). In a metric reconstruction parallel world lines converge
t the plane at infinity 𝝅∞:

(

0 0 0 1
)𝑇 . The absolute conic 𝛺∞

s a conic on 𝝅∞ which satisfies 𝑥21 + 𝑥22 + 𝑥23 = 1, 𝑥4 = 0, where
=

(

𝑥1 𝑥2 𝑥3 𝑥4
)𝑇 is the homogeneous representation of world

points.
By taking all the planes tangent to 𝛺∞, we construct 𝑄∗

∞, which is
the dual surface of 𝛺∞. 𝑄∗

∞ is described in a metric reconstruction by
the 4 × 4 matrix

𝑄∗
∞ =

[

𝐼3×3 𝟎𝟑
𝟎𝐓𝟑 0

]

(1)

Now, considering projective reconstructions of 3-space (a 3D scene) and
projections to image plane we have the following Results (Hartley and
Zisserman, 2004):

Result 1. The projection of 𝑄∗ by projection matrix 𝑃 in the image
plane is the dual conic

𝐷∗ = 𝑃𝑄∗𝑃 𝑇 (2)

Result 2. If the 3-space is transformed by homography 𝐻 , that is
𝐗′ = 𝐻𝐗, then planes of 3-space are transformed according to

𝝅′ = 𝐻−𝑇 𝝅 (3)

Result 3. If 𝐻 is a 4 × 4 matrix representing a projective transfor-
ation of 3-space, then the fundamental matrices corresponding to the
airs of camera matrices {𝑃 , 𝑃 ′}, {𝑃𝐻, 𝑃 ′𝐻} are the same.

esult 4. Suppose the rank 2 matrix 𝐹 can be decomposed in two
ifferent ways as

= [𝐚]𝑥𝐴 (4)

= [�̂�]𝑥�̂� (5)

hen

�̂� = 𝜅𝐚 (6)
̂ = 𝜅−1(𝐴 + 𝐚𝐯𝐓) (7)

or some non-zero constant 𝜅 and 3-vector 𝐯

Using the preceding Results, we formulate the equations to solve
he camera self-calibration problem and to determine 𝝅∞ position in a
rojective reconstruction.

We summarize our notation in Table 1. We use subscripts
1, 2, 𝑖, 𝑗…) to refer to different cameras and superscripts to refer to
ifferent solutions in the metric reconstruction of the camera pair. We
se 𝐾 to denote internal calibration matrices, 𝑅 for rotation matrices
nd 𝐂 for camera center of projection. In Fig. 1 we vizualize camera
rojection and geometric entities (𝑄∗

∞, 𝜔∞, 𝜋∞) we use to derive our

elf-calibration and metric reconstruction method.

https://github.com/nmelan/Multi-view-Geometry
https://github.com/nmelan/Multi-view-Geometry
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Fig. 1. Camera geometry. Left: Pinhole camera projection. Let the center of projection
𝐂 be at the origin of a Euclidean coordinate system and the plane 𝑍 = 𝑓 be the
image plane. A world point 𝐗𝐰 is projected to the image by a ray joining 𝐂 with
𝐗𝐰. In general, the camera and world coordinate frames are related by a Euclidean
(Rotation 𝑅 and translation 𝐭) transformation. Right: The dual absolute conic 𝑄∗

∞
projects to the dual image of the absolute conic 𝜔∗

∞. The projection equation provides
the constraints we use in this paper to solve came pair self-calibration and metric
reconstruction problem.

Table 1
A summary of notation, with references to uses in text.

subscripts

M Metric Reconstruction, e.g. 𝑃𝑀
P Projective Reconstruction, e.g. 𝑃𝑃
i Refers to Camera i (𝑖 = 1, 2) in camera pair, e.g. 𝑃𝑃 1
GT Ground Truth

superscripts

i Refers to solution i (𝑖 = 1, 2) for the second camera,
e.g. 𝐱𝟏

Accents, as in 𝐩′ and 𝐩 Discriminate between the two solutions for camera
2

P matrix representations
[

𝐾𝑅 −𝐾𝑅𝐂
]

Metric reconstruction
[

𝑃𝑖 𝐚
]

Metric reconstruction
[

𝐾𝑅 𝐚
]

Metric reconstruction

𝐦𝐢 i-row vector of left 3 × 3 P matrix block
[

[𝐚]𝑥𝐹 𝐚
]

with
𝐚 ∶ 𝐹 𝑇 𝐚 = 𝟎

Projective Reconstruction in canonical form

Simplifications

[𝐚]𝑥 ≜
⎡

⎢

⎢

⎣

0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

⎤

⎥

⎥

⎦

with 𝐚 =
(

𝑎1 𝑎2 𝑎3
)𝑇

[𝐚]𝑥 satisfies 𝐚 × 𝐛 = [𝐚]𝑥𝐛

2.2. Focal length estimation in the general setting

Different approaches have been followed to estimate focal lengths in
related mvg problems. In Perspective-n-Points (PnP) problem, Grobner
basis methods have been recently employed (Wu, 2015; Jiang et al.,
2014). A new camera parametrization has been introduced to solve the
minimal 3.5-correspondences PnP leading to ten solutions (Wu, 2015).
Steering to a different direction, a sampling scheme to randomly sample
promising 𝑓 values and then solve camera pose with known focal length
has been developed (Sattler et al., 2014). Finally, concerning a moving
camera with constant parameters, branch and prune paradigm has been
applied to estimate Dual Absolute Quadric, DIAC (Paudel and Van Gool,
2018; Habed et al., 2014).

2.3. Approaches to multiple view reconstruction

In a reconstruction pipeline, initially Structure from Motion (SfM)
is solved to get 𝑃 ,𝐗, assuming image point correspondences and self-
alibrated cameras. The fundamental method to solve SfM is Bundle
 i

3

Adjustment (BA) (Lourakis and Argyros, 2009),3 an iterative, numerical
algorithm to minimize the reprojection error of the recovered solution.

In standard approaches to SfM a sequence of SfM sub-problems are
solved (sequential SfM) (Snavely et al., 2010, 2006; Wu et al., 2011). In
each iteration, more, possibly uncalibrated, cameras and world points
are added to the SfM problem which is solved using BA. Such methods
are sensitive to the initial camera pair selection, solve a large number of
optimization problems numerically and optimize an objective function
with possibly multiple local minima. An optimized sequential SfM
pipeline that addresses robustness, accuracy, reconstruction complete-
ness and efficiency has been made publicly available (Schonberger and
Frahm, 2016).

A different approach has been developed to solve the SfM-with-
known-rotations problem within the framework of optimal algorithms
in multiple-view geometry (mvg) and 𝐿∞ mvg algorithms (Dalalyan
and Keriven, 2009; Hartley and Kahl, 2007; Kahl and Hartley, 2008;
Olsson and Enqvist, 2011; Olsson and Kahl, 2010; Zach and Pollefeys,
2010). In this formulation, the camera rotation matrices 𝑅𝑖 are initially
determined or are assumed known. Then SfM-with-known-rotations
is formulated as a convex-optimization problem, for which a unique
global minimum exists. Rotation averaging has become a key sub-
problem in SfM and has been studied in depth both theoretically, to
identify when rotation averaging becomes hard (Wilson et al., 2016),
and in practice by benchmarking methods with respect to performance
and robustness to outliers (Tron et al., 2016).

For the actual solution of SfM-with-known-rotations, either a se-
quence of Second-Order Cone Programs (SOCP) are solved to arrive at
an exact solution, or approximate solutions are recovered by solving
SOCP or linear programs (Martinec and Pajdla, 2007; Enqvist et al.,
2011; Olsson and Enqvist, 2011; Sinha et al., 2010). BA may still be
applied as a last fine-tuning of the solution.

A SfM solution, allows the reconstruction of a low number of 3D
points (sparse point cloud), limited by the number of image points
correspondences. Multi-view stereo (mvs) algorithms can be used at this
point to produce a dense point cloud, which contains a much larger
number of 3D points (Furukawa and Ponce, 2010). Finally, surface re-
construction algorithms can be used to produce a 3D surface (Kazhdan
et al., 2006).

3. A method for metric reconstruction in pairs of uncalibrated
images

In this section we examine a camera pair 𝑖, 𝑗 described by a pro-
jective reconstruction and recover the pair’s metric reconstruction:
𝑓𝑖, 𝑓𝑗 , 𝑅𝑖𝑗 ,𝐂𝐢,𝐂𝐣. We formulate the problem’s equations and then pro-
pose a linear solution. The spatial arrangement of the two recovered so-
lutions is described in two theorems (proofs are provided in Appendix).
The solutions are disambiguated using the Cheirality condition. To
simplify the exposition of our method’s derivation we disregard the
constants involved in projective identities. We show in Section 3.4 that,
nevertheless, the correctness of our method is preserved.

3.1. Formulation of system equations

Let us consider two pinhole cameras 𝑃1, 𝑃2 and further-to simplify
the equations and matrices — that 𝑃1 coordinate system is aligned
with the world coordinate system (𝐂𝟏 = 𝟎, 𝑧 = 𝑓 is the image plane
n a 𝑥𝑦𝑧 Cartesian coordinate system). Let us further assume, that
he corresponding image coordinate systems are selected so that the
nternal parameters of each camera 𝐾𝑖 can be written as

𝑖 =
⎡

⎢

⎢

⎣

𝑓𝑖 0 0
0 𝑓𝑖 0
0 0 1

⎤

⎥

⎥

⎦

(8)

3 Implementation available at http://users.ics.forth.gr/~lourakis/sba/
ndex.html.

http://users.ics.forth.gr/~lourakis/sba/index.html
http://users.ics.forth.gr/~lourakis/sba/index.html
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where 𝑓𝑖 is the focal length. We assumed square camera pixels and
zero skew. Principal point is set to zero assuming that it lies at the
image center and setting the origin of image coordinates at the principal
point. We disregard nonlinear lens distortions, e.g. as in fisheye lenses,
that diverge from the pinhole camera model. The previous assumptions
are routinely employed in multiple view geometry and are thoroughly
discussed in the literature (Hartley and Zisserman, 2004).

We start from a projective reconstruction of the two cameras, given
by 𝑃𝑃1, 𝑃𝑃2, which is related to the metric reconstruction by a world
(3D) homography 𝐻 as in

𝑃𝑀1 = 𝑃𝑃1𝐻

𝑃𝑀2 = 𝑃𝑃2𝐻
(9)

Using Result 1, Eq. (1), we project 𝑄∗
∞ to the image plane of camera 2.

For this projection, 𝜔∗
2 we have:

⎡

⎢

⎢

⎣

𝑓 2
2 0 0
0 𝑓 2

2 0
0 0 1

⎤

⎥

⎥

⎦

= 𝜔∗
2 = 𝑃𝑃2𝐻𝑄

∗
∞𝐻

𝑇 𝑃 𝑇𝑃2 (10)

o introduce the unknowns in Eq. (10), we use the canonical repre-
entation of the projective reconstruction, so that 𝑃𝑃1 =

[

𝐼 𝟎
]

. From
q. (9), we have for the homography

=
[

𝐾1 𝟎
𝐯𝐓 𝜎

]

(11)

here 𝐯 is yet undetermined and the scale factor 𝜎 can be ignored
𝜎 = 1).

To fully determine 𝐻 , we turn to the plane at infinity

∞,𝐏 ≜
(

𝐩𝐓 1
)𝑇 ≜

(

𝑝1 𝑝2 𝑝3 1
)𝑇 (12)

sing Result 2 we arrive at

=
[

𝐾1 𝟎
−𝐩𝐓𝐾1 1

]

(13)

ubstituting 𝐻 from Eq. (13) to Eq. (10) we get

∗
2 = 𝑃𝑃2

[

𝐾1𝐾𝑇
1 −𝐾1𝐾𝑇

1 𝐩
−𝐩𝐓𝐾1𝐾𝑇

1 𝐩𝐓𝐾1𝐾𝑇
1 𝐩

]

𝑃 𝑇𝑃2 (14)

q. (14) comprise a non-linear system with respect to the five un-
nowns (plane at infinity coordinates and focal lengths) we want to
etermine to acquire a metric reconstruction of the scene. We note
hat 𝜔∗

∞ is symmetric by definition, and is also homogeneous, thus it
rovides five independent equations.

.2. Linearization

In Eq. (14), we substitute

𝑃2 ≜
⎡

⎢

⎢

⎣

𝑝11 𝑝12 𝑝13 𝑝14
𝑝21 𝑝22 𝑝23 𝑝24
𝑝31 𝑝32 𝑝33 𝑝34

⎤

⎥

⎥

⎦

(15)

e define an indeterminate vector 𝐱𝐨 using polynomials in 𝑓1, 𝑓2, 𝑝1,
2, 𝑝3

𝐨 ≜

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓 2
1
𝑓 2
2

𝑓 2
1 𝑝

2
1 + 𝑓

2
1 𝑝

2
2 + 𝑝

2
3

𝑝3
𝑓 2
1 𝑝1
𝑓 2
1 𝑝2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(16)

he augmented matrix [𝐴𝑠|𝐛] for the linear system

𝑠𝐱𝐨 = 𝐛 (17)

s then given by Eq. (18) in Box I.

e derived the above equations (in order of appearance) from ele-
ents 𝜔∗

2(2, 2), 𝜔
∗
2(2, 3), 𝜔

∗
2(1, 3), 𝜔

∗
2(1, 1), 𝜔

∗
2(1, 2), 𝜔

∗
2(3, 3) of 𝜔∗

2. In the
ollowing, we use the first five equations as explained in Section 3.4.
 {

4

The matrix of Eq. (18) is rank deficient. Thus, we presented a linear
ystem of five (in the best case) linearly-independent equations, in six
nknowns. To solve it, we turn to the polynomial relations between the
oordinates of 𝐱𝐨.

.3. Recovering the solutions

Taking five of Eqs. (17) (see Section 3.4 about which equations to
ake) we have the linear system

5𝐱𝐨 = 𝐛𝟓 (19)

pplying Gaussian elimination to (19), we bring the augmented matrix
o the form
⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 𝟎 𝑏1
0 1 0 0 0 𝟎 𝑏2
0 0 1 0 0 0 𝑏3
0 0 0 1 0 𝑐 𝑏4
0 0 0 0 1 𝑑 𝑏5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(20)

here:

1. The elements in default font, are in the usual form expected
when we apply Gaussian elimination in the general case

2. The elements in bold font, are a result of the problem’s structure,
that is of the special relations in Eq. (19)

3. Finally, the element in slanted font (third row, sixth column),
is as given when we use the canonical representation for the
projective reconstruction, which is:

𝑃𝑃1 =
[

𝐼 𝟎
]

, 𝑃𝑃 2 =
[

[𝐚]𝑥𝐹 𝐚
]

(21)

Where 𝐚 is the left null vector of 𝐹 : 𝐹 𝑇 𝐚 = 𝟎. By using the
canonical pair, the leftmost 3 × 3 block in 𝑃𝑃2 is rank 2, and
consequently has linearly-dependent row-vectors

he derivation of Eq. (20) is given in Appendix.
To solve for the focal lengths (𝑓1, 𝑓2) and 𝝅∞ (𝑝1, 𝑝2, 𝑝3), we now

ave from (20)

𝑓 2
1 = 𝑏1 (22)

𝑓 2
2 = 𝑏2 (23)

2
1 𝑝

2
1 + 𝑓

2
1 𝑝

2
2 + 𝑝

2
3 = 𝑏3 (24)

𝑝3 + 𝑐𝑓 2
1 𝑝2 = 𝑏4 (25)

𝑓 2
1 𝑝1 + 𝑑𝑓

2
1 𝑝1 = 𝑏5 (26)

e substitute 𝑝1, from (26), and 𝑝3, from (25), to Eq. (24) and obtain
quadratic equation in 𝑝2. Thus, we determine 𝑓1, 𝑓2 uniquely and

1, 𝑝2, 𝑝3 with a two-way ambiguity. We refer to those two solutions
s

𝐱𝟏𝐨 =
(

𝑏1 𝑏2 𝑏3 𝑝3 𝑓 2
1 𝑝1 𝑓 2

1 𝑝2
)𝑇

𝐱𝟐𝐨 =
(

𝑏1 𝑏2 𝑏3 𝑝′3 𝑓 2
1 𝑝

′
1 𝑓 2

1 𝑝
′
2
)𝑇 (27)

.4. The effect of homogeneous representation on the derived equations

In this section we investigate the effect of projective identities on
he metric reconstruction method we introduced, specifically on the
ormulation of Eq. (17). We show that the consideration of the proper
onstants involved in Eq. (14) does not cancel the linearity of Eq. (17),
wing to the assumed diagonal 𝐾 matrices and provided we choose
pecific 𝜔∗

2 elements to write Eq. (17).
Let

𝑃 ′
𝐺𝑇 1, 𝑃

′
𝐺𝑇 2} ≜ {

[

𝐼 𝟎
]

,
[

𝐴 𝐚
]

} (28)

e the ground truth camera matrices we aim to recover, and
[ ] [ ̂ ̂

]

𝑃𝑃1, 𝑃𝑃 2} ≜ { 𝐼 𝟎 , 𝐴 𝐚 } (29)
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𝑝221 + 𝑝
2
22 −1 𝑝224 −2 𝑝23𝑝24 −2 𝑝21𝑝24 −2 𝑝22𝑝24 −𝑝223

𝑝21𝑝31 + 𝑝22𝑝32 0 𝑝24𝑝34 −𝑝23𝑝34 − 𝑝24𝑝33 −𝑝21𝑝34 − 𝑝24𝑝31 −𝑝22𝑝34 − 𝑝24𝑝32 −𝑝23𝑝33
𝑝11𝑝31 + 𝑝12𝑝32 0 𝑝14𝑝34 −𝑝13𝑝34 − 𝑝14𝑝33 −𝑝11𝑝34 − 𝑝14𝑝31 −𝑝12𝑝34 − 𝑝14𝑝32 −𝑝13𝑝33

𝑝211 + 𝑝
2
12 −1 𝑝214 −2 𝑝13𝑝14 −2 𝑝11𝑝14 −2 𝑝12𝑝14 −𝑝213

𝑝11𝑝21 + 𝑝12𝑝22 0 𝑝14𝑝24 −𝑝13𝑝24 − 𝑝14𝑝23 −𝑝11𝑝24 − 𝑝14𝑝21 −𝑝12𝑝24 − 𝑝14𝑝22 −𝑝13𝑝23
𝑝231 + 𝑝

2
32 0 𝑝234 −2 𝑝33𝑝34 −2 𝑝31𝑝34 −2 𝑝32𝑝34 −𝑝233 + 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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Box I.
W
t

𝐻

O
E

W
3

E

𝜔

W
s

h

3

c

Fig. 2. We visualize the geometric relations of Theorems 1,2. In the graph, we display
the centers of projection (𝐂𝟏 ,𝐂𝟐) and viewing directions (𝐯𝟏 , 𝐯𝟐), for each of the two
solutions of Eq. (27). In pink, we display solution 1 and in red solution 2. The
ommon plane of 𝐂𝟏 ,𝐂𝟐 , 𝐯𝟏 , 𝐯𝟐 is highlighted. The angles satisfy 𝜖 = 𝛿, 𝜁 = 𝜂. Pink
nd red world-points demonstrate points in front of the respective cameras-solutions.
For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

e the starting projective reconstruction.
𝑃 ′
𝐺𝑇 1 is related to the recovered solution 𝑃𝐺𝑇 1 (applying the method

e introduced) by the homography

𝑘 =
[

𝐾−1
1 𝟎
𝟎𝐓 1

]

(30)

o recap, we get from 𝑃𝑃 to 𝑃𝐺𝑇 by homography 𝐻 , from 𝑃𝑃 to 𝑃 ′
𝐺𝑇

y 𝐻 ′ and from 𝑃𝐺𝑇 to 𝑃 ′
𝐺𝑇 by 𝐻𝑘.

For the camera pairs (28), (29), we have the respective Fundamental
atrices
′
𝐺𝑇 =

[

[�̂�]𝑥�̂�
]

, for (28) (31)

𝐹𝑃 =
[

[𝐚]𝑥𝐴
]

, for (29) (32)

rom Result 3, since 𝑃 ′
𝐺𝑇 , 𝑃𝑃 reconstructions are related by 𝐻 ′, the re-

onstructions share a common fundamental matrix. Since fundamental
atrices are homogeneous entities, we have

𝑃 = 𝜖𝐹 ′
𝐺𝑇 (33)

ow, we turn to Result 4 and get

�̂� = 𝜅𝐚 (34)
̂ = 𝜖−1𝜅−1(𝐴 + 𝐚𝐯𝐓) (35)

e write the previous equations in matrix form to get the projective
ransformation 𝐻 ′

′ ≜
[

𝜅−1𝜖−1𝐼 𝟎
𝜅−1𝜖−1𝐯𝐓 𝜅

]

(36)

′ satisfies
𝜅−1𝜖−1𝑃 ′

𝐺𝑇 1 = 𝑃𝑃1𝐻
′

𝑃 ′
𝐺𝑇 2 = 𝑃𝑃1𝐻

′ (37)

ow, we get 𝐻 from 𝐻 ′,𝐻−1
𝑘

𝜅−1𝜖−1𝐾1 𝟎
−1 −1 𝐓

]

(38)

𝜅 𝜖 𝐯 𝐾1 𝜅

5

e set the bottom-right element to 1, as we disregard the true scale of
he reconstruction, and get the final form of 𝐻

=
[

𝜅−1𝜖−1𝐾1 𝟎
𝜅−1𝜖−1𝐯𝐓𝐾1 1

]

(39)

ne should compare the homographies of Eqs. (13) and (39). Using
q. (13) instead of Eq. (39) in Eq. (9), we get from 𝑃𝑃 to

𝑃𝑀1 =
[

𝐾1 𝟎
]

𝑃𝑀2 =
[

𝜇𝐾2𝑅2 𝐚
] (40)

e observe that the translation direction 𝐚 is correct but the left-most
× 3 block of camera 2 is multiplied by a constant 𝜇.

To see how the constants in Eq. (39) affect Eq. (17), we substitute
q. (39) in Eq. (10) and get for 𝜔∗

2 the expression

∗
2 = 𝑃𝑃2

[

(𝜅𝜖)−2𝐾1𝐾𝑇
1 −(𝜅𝜖)−2𝐾1𝐾𝑇

1 𝐩
−(𝜅𝜖)−2𝐩𝐓𝐾1𝐾𝑇

1 (𝜅𝜖)−2𝐩𝐓𝐾1𝐾𝑇
1 𝐩

]

𝑃 𝑇𝑃2 (41)

e encourage to compare the corrected 𝜔∗
2 equation-Eq. (41)- to the

implified 𝜔∗
2 equation-Eq. (14).

To avoid the determination of additional unknowns in Eq. (17), we
ave:

• All equations derived from 𝜔∗
2 elements off the diagonal are of the

form 𝐚𝐱𝐨 = 𝟎, thus the constant (𝜅𝜖)−1 can be eliminated
• The equation derived from element 𝜔∗

2(3, 3) cannot be used with-
out determining additional constants. So, excluding 𝜔∗

2(3, 3) we
may only use the other five of the six original equations of
Eq. (17)

• Using equations involving 𝑓2 (𝜔∗
2(1, 1), 𝜔

∗
2(2, 2)), we can only de-

termine 𝑓2 up to a multiplicative constant. So we may redefine
𝐱𝟎 (Eq. (16)) and substitute 𝑓 2

2 with 𝑐𝑓 2
2 (c a properly defined

constant)

.5. The final self-calibration and metric reconstruction method

The complete method to solve the metric reconstruction and self
alibration problem follows:

1. We solve the system (17), keeping five equations and discarding
the equation derived from 𝜔∗

2(3, 3).
2. In the previous step (1), we have recovered 𝑐𝑓 2

2 (𝑐 a constant).
To fully determine 𝑓2, many different approaches are possible.
We propose to repeat step 1, putting camera 2 at the origin
of the coordinate system (in place of camera 1). This can be
done by transposing the fundamental matrix 𝐹 for the camera
pair. Following this approach, we may additionally determine
the constant 𝜅𝜖 in Eq. (41).

3. Using the homography of Eq. (13) or Eq. (39), we recover
the metric reconstruction 𝑃𝑀1, 𝑃𝑀2 from Eq. (9). Depending on
which homography we have used, one camera matrix (𝑃𝑀2 for
Eq. (13) or 𝑃𝑀1 for Eq. (39)) will have the left-most 3 × 3 block
multiplied by a constant, as in Eq. (40). This has no effect on the
correctness of the representation, and the image points are the
same in each case.

4. The 𝑃𝑀𝑖 matrices are factored as 𝑃𝑀𝑖 =
[

𝐾𝑖𝑅𝑖𝑗 𝐭𝐢𝐣
]

to recover
𝑅𝑖𝑗 , 𝐭𝐢𝐣.
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a

Fig. 3. An illustration of the intermediate results leading to Theorem 1. An arrow is drawn whenever the equation at its tail is used to prove the equation at its tip. The full
proof is given in Appendix.
Fig. 4. An illustration of the intermediate results leading to Theorem 2. An arrow is drawn whenever the equation at its tail is used to prove the equation at its tip. The full
proof is given in Appendix.
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3.6. Solution disambiguation and geometric relations of the two solutions

We use the Cheirality condition to determine the valid solution of
Eq. (17): The correct one of solutions (27) can be identified by requiring
all world points that are visible from camera 2 to be in the space in front
of camera 2 (see Fig. 2).

Whenever the two recovered solutions represent cameras with di-
vergent viewing directions, Cheirality condition is more likely to iden-
tify the valid solution. We explore in Theorems 1 and 2 the geometric
relations between the two solutions, aiming to vizualize solutions’
relations and disambiguation. Proofs of Theorems 1 and 2 are outlined
in Figs. 3 and 4. Full proofs are given in Appendix.

Theorem 1. Let

{𝑃 1
𝑚1, 𝑃

1
𝑚2}, {𝑃

2
𝑚1, 𝑃

2
𝑚2} (42)

denote the reconstructions derived from Eq. (27). Then, cameras 𝑃 1
𝑚2, 𝑃

2
𝑚2

re in mirror positions with respect to the origin (position of 𝑃 1 , 𝑃 2 ). The
𝑚1 𝑚1

6

enters of projection 𝐂𝟏
𝐦𝟐,𝐂

𝟐
𝐦𝟐 satisfy

𝟏
𝐦𝟐 = −𝐂𝟐

𝐦𝟐 (43)

heorem 2. Let camera 1 be positioned on the origin of the world
oordinate system, with a viewing direction aligned to 𝑧 axis. We denote
𝟏
𝐦𝟐, 𝐯

𝟐
𝐦𝟐 the viewing directions of 𝑃 1

𝑚2, 𝑃
2
𝑚2 and 𝐂𝟏

𝐦𝟐,𝐂
𝟐
𝐦𝟐 the position

ectors of the corresponding centers of projection. Then, 𝐂𝟏
𝐦𝟐,𝐂

𝟐
𝐦𝟐 bisect

he angles formed by 𝐯𝟏𝐦𝟐, 𝐯
𝟐
𝐦𝟐, in the plane defined by 𝐯𝟏𝐦𝟐, 𝐯

𝟐
𝐦𝟐. Thus, we

ave:

𝐂𝟏
𝐦𝟐, 𝐯

𝟏
𝐦𝟐 = ∠𝐂𝟏

𝐦𝟐, 𝐯
𝟐
𝐦𝟐 (44)

𝐂𝟐
𝐦𝟐, 𝐯

𝟏
𝐦𝟐 = ∠𝐂𝟐

𝐦𝟐, 𝐯
𝟐
𝐦𝟐 (45)

From Theorems 1,2, we easily deduce that

𝐂𝟏 , 𝐯𝐣 + ∠𝐂𝟐 , 𝐯𝐣 = 180◦ (46)
𝐦𝟐 𝐦𝟐 𝐦𝟐 𝐦𝟐
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Fig. 5. Our pipeline to reconstruct a 3D scene from an unordered set of 2D photographs. In the first row, we display a flow diagram of the algorithm stages. Novel parts are
displayed in green. The second row outlines the core methods we use. We highlight methods we introduced in this paper. The third row contains a visualization of data type.
n the last row we list the most important references per stage.
Fig. 6. Distribution of 𝑓𝑖 estimates for camera 𝑖, obtained by camera pairs’ reconstructions. 𝑓 estimates were collected from all available camera pairs. We observe that for some
cameras (right), focal length can be readily determined. The opposite holds for other cameras (left).
Source: Data from castle-P30 (Strecha et al., 2008a).
s
a
d

The larger ∠𝐯𝟏𝐦𝟐, 𝐯
𝟐
𝐦𝟐 is, the easier it would be to disambiguate

the solutions by the Cheirality condition. From Theorem 2, we have
that ∠𝐯𝟏𝐦𝟐, 𝐯

𝟐
𝐦𝟐 = 2∠𝐯𝟏𝐦𝟐,𝐂

𝟏
𝐦𝟐 and that ∠𝐯𝟏𝐦𝟐,𝐂

𝟏
𝐦𝟐 decreases when the

translation of camera 2 (with respect to camera 1) is aligned with
camera 2 viewing direction (Eq. (112)).

4. An application to the multiple-view reconstruction problem

We integrate our method for the pair-based estimation of 𝑅, 𝑓 in
existing pipelines to solve the multiple-view reconstruction problem
and produce the 3D-model of a scene.

Our approach is outlined in Fig. 5. We start by pairwise match-
ing of SIFT features. To reduce the outliers, we validate the initial
correspondences using a custom verification method which we have
successfully tested (i.e. high precision) on small sets of photographs of
7

architectural scenes (buildings). Pairwise metric reconstructions (Sec-
tion 4.1) are acquired by the methods of Section 3. Focal lengths
estimates are averaged (Section 4.1.1). 𝑅𝑖𝑗 estimates are also averaged
and then registered in a global coordinate system (Section 4.1.2). Then
final reconstruction is done using the non-sequential SfM-with-known-
rotations formulation of Olsson and Enqvist (2011), which we have
modified extensively, using the methods of the preceding sections as
well as the 𝑓,𝑅 averaging algorithms (Section 4.1).

4.1. Averaging pair-based solutions for 𝑓,𝑅

In this paper we introduced computationally efficient methods for
𝑅𝑖𝑗 , 𝑓𝑖 estimation, which we apply in randomly sampled minimal corre-
pondences sets, in a way that resembles RANSAC procedures (Fischler
nd Bolles, 1981). Each sample yields a 𝑓𝑖, 𝑅𝑖𝑗 solution which is vali-
ated by the Cheirality condition. The multiple 𝑓 , 𝑅 estimates, one
𝑖 𝑖𝑗
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Fig. 7. A demonstration of confidence count computation. Each disk represents a 𝑓𝑖
estimate. We compute the cc for the central value, depicted here with a bold border.
This cc depends on the number of estimates within a 𝛽 = 10% range, depicted with a
blue rectangle in the picture.

Fig. 8. Joint confidence count computation for a 𝑓1 estimate. Each disk represents
a 𝑓1 estimate. We compute the Jcc for the central value, depicted here with a bold
border. This time, each disk is divided in half, to demonstrate that each 𝑓1 estimate
s paired with one 𝑓2 estimate, each 𝑓2 estimate originating from a different 1, 𝑗 pair.

e use different disk colors for different cameras. Jcc depends on the sum of elements
ithin range (inside the blue rectangle). In contrast with cc computation, each element

ontributes a different amount to the sum, depending on cc of 𝑓2.

rom each minimal sample, are then averaged, to produce the final
olutions.

The Cheirality condition is applied to disambiguate the solutions.
n practical situations erroneous matches corrupt the data. We reject a
olution if there exists a point in the sampled minimal set that is behind
camera in both of the two recovered solutions.

In 𝑓𝑖, case, we introduce a novel averaging method. In the case of
airwise rotations 𝑅𝑖𝑗 , we apply the Weiszfeld algorithm (Hartley et al.,
011, 2013), which converges to the median (𝐿1-average) rotation. We
lso use a form of the Weiszfeld algorithm (multiple rotation averaging)
n the rotation registration problem to get the final camera rotation
atrices 𝑅𝑖 (Section 4.1.2).

.1.1. Focal length estimates
The distribution of 𝑓𝑖 estimates for camera 𝑖 collected from all the

econstructed image pairs 𝑖, 𝑗 can be skewed or multimodal (Fig. 6), in
hich case the mean or median estimate will not correctly determine
𝑖 value.

We introduce new measures to evaluate the fit of focal length
stimates. We initially introduce the Confidence count (cc) and then
odify cc using the problem structure to introduce the Joint confidence

ount (Jcc). We assume that in each image pair that contains image 𝑖,
e receive a number of correct and a number of erroneous estimates

or 𝑓𝑖, and that erroneous estimates originating from different 𝑖, 𝑗 image
airs vary significantly in value, whereas correct ones aggregate.

We visualize cc computation in Fig. 7. Simplifying aspects of the
omputation, we can describe it as a binning procedure, where the bin
ange is adapted to contain all estimates within 𝛽% deviation:

1. We collect all 𝑓 𝑛𝑖 estimates of 𝑓𝑖, originating from all the differ-
ent images we have matched with image 𝑖.

2. For each 𝑓 𝑛𝑖 , we count the number of estimates, 𝑓𝑘𝑖 , within a 𝛽%
error range. This sum is the confidence count 𝑐𝑐𝑛𝑖 for estimate
𝑓 𝑛𝑖 .

3. We normalize 𝑐𝑐𝑛𝑖 values to 0…1 range. This step is critical for
Jcc computation.

e estimate 𝑓𝑖 by the 𝑓 𝑛𝑖 value with maximum 𝑐𝑐𝑛𝑖 .
To further improve the 𝑓 estimation, we introduce Jcc (Fig. 8). Since

ach estimate 𝑓 𝑛𝑖 is paired with some estimate 𝑓 𝑛𝑗 (the estimates were
omputed in an image pair), we expect that if 𝑓 𝑛𝑖 is a good estimate
hen 𝑓 𝑛𝑗 will be accurate too. To compute Jcc, we follow a similar to
c procedure, but this time each estimate 𝑓𝑘𝑖 in 𝛽% range contributes

a different amount to Jcc sum. This amount is proportional to 𝑐𝑐𝑘𝑗 of
stimate 𝑓𝑘𝑗 that is paired with 𝑓𝑘𝑖 . Good 𝑓𝑘𝑗 estimates have higher
onfidence counts, and contribute more to Jcc.

In greater detail, to compute the 𝐽𝑐𝑐𝑛𝑖 of estimate 𝑓 𝑛𝑖 about image 𝑖,
we have:
8

1. Let 𝑘 = 1…𝑚 be the 𝑚 images we matched with image 𝑖. For
each image 𝑘 we have:

• From all estimates within 𝛽% range of 𝑓 𝑛𝑖 , we pick the 𝐿
ones that originate from pair 𝑖, 𝑘

• Since every 𝑓𝑖 estimate originating from 𝑖, 𝑘 pair is matched
to an 𝑓𝑘 estimate, from the 𝐿 estimates of the previous step
we get the corresponding 𝐿 estimates of 𝑓𝑘

• For each of the 𝐿 estimates of 𝑓𝑘, we have a confidence
count 𝑐𝑐𝑛𝑘. We get their mean. We do not use the direct
sum, to diminish the influence of a large sum (large 𝐿) of
low cc’s

2. 𝐽𝑐𝑐𝑛𝑖 is the sum of the previous 𝑚 mean values.

We estimate 𝑓𝑖 by the 𝑓 𝑛𝑖 value with maximum 𝐽𝑐𝑐𝑛𝑖 .
In all our experiments we set 𝛽 = 10%, as a reasonable error range

round 𝑓 estimates. In synthetic scenes (data not shown) we have
ound that our focal length estimates were repeatedly within a 10%
rror margin, in the majority (≈ 80%) of the cases for reasonable noise
evels corrupting the correspondences (Gaussian noise with standard
eviation equal to 1% image size).

.1.2. Rotation estimates
In this section, we summarize rotation averaging using the Weiszfeld

lgorithm (Hartley et al., 2011, 2013). Weiszfeld algorithm returns the
1-mean in a set of points in space 𝑛. Many different metrics have
een defined for rotation matrices (Hartley et al., 2013). We limit our
nalysis here to

𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 (𝑅,𝑆) ≜ angle of rotation 𝑅𝑆−1 (47)

eiszfeld algorithm is a gradient-descent method and is guaranteed to
onverge to the true 𝐿1-mean in the case of single rotation averaging,
s averaging of pairwise rotation estimates 𝑅𝑖𝑗 .

The 𝐿1-mean of 𝑅𝑖 estimates of a single rotation is the rotation 𝑅𝑦
hat minimizes:
𝑛

𝑖=1
𝑑𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 (𝑅𝑖, 𝑅𝑦) (48)

n the case of rotation registration, the convergence of Weiszfeld algo-
ithm is not guaranteed.

We applied Weiszfeld algorithm to weight the estimates 𝑅𝑖𝑗 of the
airwise rotations we acquired through random sampling of minimal
oint sets (8 points) yielding a 𝑅𝑖𝑗 solution.

In the rotation registration problem we applied the Weiszfeld algo-
ithm in the following manner:

1. We construct the rotations graph which has a node for every
image and an edge 𝑒𝑖𝑗 between nodes 𝑖, 𝑗 if we have the relative
rotation 𝑅𝑖𝑗 between the respective images. We take a spanning
tree in this graph, and using 𝑅𝑗 = 𝑅𝑖𝑗𝑅𝑖 we get the initial 𝑅𝑗
estimates.

2. For every node 𝑖 in the graph, we use all available estimates
𝑅𝑖𝑗 to get inconsistent estimates 𝑅𝑘𝑖 , 𝑘 = 1, 2,… through 𝑅𝑖 =
𝑅𝑗𝑖𝑅𝑗 . We average estimates 𝑅𝑘𝑖 with one iteration of Weiszfeld
algorithm.

3. We repeat the previous step 𝑛 times (𝑛 = 20).

5. Results & discussion

5.1. Metric reconstruction in pairs of images

Our method for self-calibration in image pairs may be used instead
of the established Kruppa equations approach, as both methods are
based on 𝜔∗

∞ and provide the exact same focal length estimates. How-
ever our formulation in Eqs. (18) allows to additionally recover a metric
reconstruction.
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Table 2
Median errors in focal length (𝑓 ), relative rotation (𝑅) and relative translation (𝐭)
in pairwise reconstructions obtained by our method. Synthetic scenes were created,
corrupted by Gaussian noise. Noise level 𝜎 is given as a percentage of image size. We
created two thousand scenes per noise level.

Noise level 𝜎 (%) Median 𝛥𝑓 𝛥𝑅 (◦) 𝛥𝐭 (◦)

0.2 0.0069 0.04 0.53
0.4 0.0179 0.08 1.17
0.6 0.0200 0.12 1.65
0.8 0.0360 0.16 2.42
1 0.0412 0.21 2.98

We compare the two methods in noise-corrupted synthetic scenes.
e put one camera at the origin of the coordinate system, oriented

owards 𝑧-axis and sample the second camera position uniformly on
he unit sphere. To orient the second camera we sample rotation axis
oordinates from a uniform distribution in range [0, 1] and randomly set
rotation angle less than 30◦ (Pernek and Hajder, 2013). World (3-D)
oints are uniformly sampled and all points not visible by either one of
he cameras are filtered out in the final synthetic scene. Each camera
as an image diagonal of 1 and a focal length uniformly sampled
n [0.5, 1.5]. We added Gaussian noise to the image points positions,
nd not to world points or other entities, to simulate actual noisy
orrespondences. The noise standard deviation ranges from 0 to 1%
f image size (Chandraker et al., 2007a,b; Gherardi and Fusiello, 2010;
ukelova et al., 2008).

To quantify the error in 𝑓 estimation we use 𝛥𝑓 (Chandraker et al.,
007a; Gherardi and Fusiello, 2010; Kukelova et al., 2008):

𝑓 ≜
|

|

|

|

|

𝑓
𝑓

− 1
|

|

|

|

|

, where 𝑓 is an estimate of 𝑓 (49)

To quantify the reconstruction error, we use (i)the angle (𝛥𝑅)
etween the relative rotation estimate and the true relative rotation
𝑖𝑗 (between two paired views 𝑖, 𝑗) and (ii)the angle (𝛥𝐭) between the

ranslation estimate and the true translation 𝐭.
We observed that our method (Section 3) and Kruppa equations

roduce identical 𝑓𝑖 estimates. In rare cases with extremely noise-
orrupted correspondences, our method failed — i.e. provided 𝑓 2

𝑖 < 0
solutions, and the Kruppa method produced largely erroneous focal
length estimates, with 𝛥𝑓 > 1.5 on average.

In Table 2 we provide 𝛥𝑓, 𝛥𝑅, 𝛥𝐭 errors in synthetic scenes, for noise
levels with standard deviation up to 1% of image size. Our method has
low 𝛥𝑓, 𝛥𝑅 errors but larger 𝛥𝐭 error. In our multi-view reconstruction
ipeline (Fig. 5) we improve the 𝑓,𝑅 estimates we obtain from camera-

pair reconstructions through averaging methods and re-estimate from
scratch 𝐭 in the subsequent SfM-with-known-rotations stage.

Next we focus on relative rotation 𝑅𝑖𝑗 evaluation, since 𝑅𝑖𝑗 estimates
are used in our reconstruction pipeline (Section 4) and thus the accu-
racy of 𝑅𝑖𝑗 estimation is important. We compare our approach to the
5-Point (5P) algorithm for relative pose estimation (Nistér, 2004). In
order to fairly compare the two approaches, we used the same noisy
point correspondences as input, which were obtained through SIFT
feature matching. Also, the same internal camera parameters were used
in both approaches and were provided by the method described in
Section 3. The dataset used was the multi-view dataset of Strecha et al.
(2008b). The two methods we compared were:

• Randomly sample 𝑛1 minimal subsets of correspondences and
acquire 𝑅𝑖𝑗 estimates using the method of Section 3. Acquire the
final 𝑅𝑖𝑗 estimate by rotation averaging (Hartley et al., 2011)
as detailed in Section 4.1.2. We sampled 𝑛1 = 200 sets, after
experimenting with different 𝑛1 values in various datasets. The
used 𝑛1 value is much lower than the maximum allowed RANSAC
iterations in available F-matrix estimation implementations (e.g
1000 iterations in 7-point F matrix algorithm (Kovesi, 2000))
9

Table 3
Performance of the 5P algorithm and our method in recovering the relative rotations
𝑅𝑖𝑗 . We initialize BA with each of the aforementioned methods and do 20 BA iterations.
n BA, the internal parameter matrices 𝐾𝑖 are held constant. Dataset castle-P30 (Strecha

et al., 2008b). Total number of pairs is 186. Castle-P30 was selected as the worst
performing in multi-view reconstruction amongst (Strecha et al., 2008b) sets (data not
shown)

Median 𝛥𝑅(◦) 𝛥𝑅 < 10◦ (pairs) 𝛥𝑅 < 5◦ (pairs)

Proposed Method 3.49 123 106
5P 3.77 128 104

• Use the 5P algorithm inside a RANSAC procedure to acquire 𝑅𝑖𝑗
estimate. The implementation we used does 50 RANSAC itera-
tions (Olsson and Enqvist, 2011). Note that because only five
(compared to seven or eight points) are sampled, less RANSAC
iterations are required (Fischler and Bolles, 1981)

In each of the two methods above, 𝑅𝑖𝑗 estimates were fine-tuned
by running few (twenty) BA iterations for each reconstructed pair
𝑖, 𝑗 (Lourakis and Argyros, 2009).

The initialization of BA is important, to improve convergence and
to reduce the computational cost. The results show that 5P and our
method can both be used as BA initializations with similar perfor-
mance (Table 3). In our multi-view reconstruction pipeline (Fig. 5),
pairwise rotation inaccuracies are reduced through rotation averaging
in rotation registration step and BA.

The pairwise rotations results (Table 3) imply that to further reduce
the reconstruction error, we should turn to other problem parameters
as image correspondences and focal length estimates.

We have argued that the metric reconstruction framework allows
for more solid validation. Indeed, we observed that defining as inliers
the points satisfying the Cheirality condition and then simply selecting
the maximum-inliers solution (i.e. RANSAC-like, no averaging yet),
not only greatly simplifies the problem of best solution selection,
but also already improves the reconstruction’s accuracy. In data not
shown, an approach based on epipolar geometry (i.e. robust F matrix
computation) has been extensively investigated. Competing (1)F matrix
estimation approaches (RANSAC, MAPSAC (Torr, 2002), least median
squares (Rousseeuw, 1984), M-estimator (Torr and Murray, 1997),
Levenberg–Marquardt optimization, orthogonal least squares (Arman-
gué and Salvi, 2003), see Armangué and Salvi (2003) for F estimation
methods) and (2)various heuristics on defining inliers using thresholds
on reprojection error and using the number of inliers to choose the
reliable reconstructions, were applied. Both steps, robust F estimation
and using inliers to reject reconstructions, affected the reconstruction’s
accuracy, yet all these methods underperformed applying the Cheirality
condition to select the best (maximum-inliers) solution.

Furthermore, through Theorems 1, 2 we get insight on the config-
uration in space of the two acquired solutions and the way the actual
camera pair configuration determines the two solutions’ configuration.

The metric reconstruction formulation of Sections 3.1–3.4 allows to
explore important aspects including the critical camera configurations
(see Appendix).

Finally, concerning the optimality of our method, it is known that
in the case of two views – as examined in this paper — 𝜋∞ can only be
determined up to a two-solutions ambiguity (Kahl, 1999; Soatto et al.,
2003). Thus we have introduced a linear method that requires a mini-
mal number of point correspondences (required to acquire a projective
transform) and is optimal in the number of recovered solutions.

5.2. Improving focal length estimation in multi-view reconstructions

We show in Table 4 the improved 𝑓 estimates we get with cc.
Further improvement is achieved by Jcc measure. Specifically, we see
that using the exact same 𝑓 estimates but altering the way we acquire

the final 𝑓 value can greatly reduce mean 𝛥𝑓 (over all images in the
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Table 4
Focal length averaging on castle-P30 (Strecha et al., 2008a). We did 300 RANSAC
iterations and used the 8-point algorithm for fundamental matrix computation. Then
we applied the method of Section 3 for 𝑓 estimation. Correspondences were obtained
through SIFT features detection and matching.

Method Median Confidence count Joint confidence count

Mean 𝛥𝑓 error 0.28 0.17 0.07

Table 5
Median errors in 𝐭, 𝑅, 𝑓 estimation in the final reconstruction. Correspondences were
btained through SIFT features detection and matching.
ource: Datasets from (Strecha et al., 2008a).
Dataset 𝛥𝐭(◦) 𝛥𝑅(◦) 𝛥𝑓

castle-P30 3.10 1.06 0.0389
castle-P19 7.35 4.17 0.0586
entry-P10 4.62 4.67 0.2118
Herz-Jesu-P8 1.00 0.68 0.0266
Herz-Jesu-P25 0.41 0.31 0.0049
Fountain-P11 0.44 0.41 0.0095

Fig. 9. Joint confidence count distribution, which displays a clear peak near correct
𝑓 value.
Source: Data from castle-P30 (Strecha et al., 2008a).

ataset) from 0.28, achieved using the median of 𝑓𝑖 estimates, down to
0.07, achieved using Jcc method.

In Fig. 9 we present an non-ambiguous Jcc distribution from which
𝑓 can be correctly determined, in contrast to ambiguous 𝑓 estimate
istributions displayed in Fig. 6.

.3. Multi-view reconstruction in unordered image sets

Multi-view reconstructions demonstrate the validity of our ap-
roach. In Table 5, we provide quantitative performance measures for
ulti-view reconstructions that were acquired applying the proposed
ipeline (Fig. 5), on unordered image datasets and with no other
nput apart from the scene photographs. In Fig. 10 we qualitatively
isplay the results of the proposed reconstruction pipeline. The results
n Table 5 and Fig. 10 demonstrate that the introduced methods can be
sed in unordered image sets to produce quality reconstructions of the
hotographed scenes.

Using the introduced (Section 3) self-calibration and metric recon-
truction method combined with 𝑓 and rotation averaging methods,
llowed us to shift the focus from robust 𝐹 estimation (projective
econstruction) to robust averaging of pairwise metric reconstruction
btained from minimal point correspondences sets. Each pairwise solu-
ion is solidly verified using metric reconstruction arguments (Cheiral-
ty condition). Furthermore, instead of relying on a single, accurate
olution, e.g. robust 𝐹 estimation, we propose to average multiple
stimates of an unknown parameter (𝑓𝑖, 𝑅𝑖𝑗 , 𝑅𝑖) to reach a robust final
stimate.
10
Thus, we utilized the fast linear pairwise metric reconstruction
ethod (Section 3) to sample numerous minimal solution-yielding sets

n all the available camera pairs. Then, we diverged from choosing
he best 𝑓𝑖, 𝑅𝑖𝑗 solution, e.g. by maximizing the number of inliers or
inimizing the reconstruction error, and instead used 𝑓𝑖, 𝑅𝑖𝑗 averaging

methods (Section 4.1). In 𝑓𝑖 estimation, grouping all 𝑓𝑖 estimates that
originate in different 𝑖, 𝑗 camera pairs (in Jcc estimation) allowed us to
further improve estimation accuracy.

Averaging pairwise estimates has been explored in the literature
enabling the integration of our self-calibration and metric reconstruc-
tion method to optimized SfM algorithms (Wilson and Snavely, 2014;
Cui and Tan, 2015; Chatterjee and Govindu, 2018) which focus on
aspects as translation averaging (Wilson and Snavely, 2014), scale,
rotation and translation (similarity) averaging through initial depth-
map computation (Cui and Tan, 2015) or fast and accurate relative
rotation averaging (Chatterjee and Govindu, 2018).

5.4. Contributions to linear self-calibration and metric reconstruction

We discuss our contributions to linear self-calibration of image pairs
and to multi-view reconstruction, in the context of the closely related
approach of Pollefeys et al. (1999). Concerning the two aforementioned
methods, our approach and Pollefeys et al. (1999), differences emerge
on linearization, number of solutions and solution disambiguation. Both
methods are based on 𝜔∗ expression in Eq. (14). However, while our
approach solves directly for 𝑓1, 𝑓2, 𝑝1, 𝑝2, 𝑝3 and directly imposes the
ank degeneracy of the dual absolute quadric, the approach of Pollefeys
t al. (1999) solves for 𝐻𝑄∗

∞𝐻
𝑇 (Eq. (10)) elements in Eq. (14), and

hen imposes the degeneracy constraint through SVD decomposition.
n the 2-views case, this approach leads to four solutions, however
isambiguation using the Cheirality condition was not discussed and
he geometric arrangement of the four solutions in space was left
nexplored (Pollefeys et al., 1999). Furthermore, while our approach
nly discusses image pairs, the approach of Pollefeys et al. (1999)
xtends Eq. (14) to 𝑛-views (𝑛 > 2).

More importantly, while we validate our methods for two views, the
uthors in Pollefeys et al. (1999) steer their attention to simultaneous
-view self-calibration, omitting any experiments on two views. Specif-
cally, simulations with synthetic data explored error with respect to
oise-level (for six views) and error with respect to number of views
for 𝑛 > 5 views).

Of equal importance are differences in integration to multi-view
econstruction. While in our approach we start from pair reconstruc-
ions, benefiting from the combinatorial increase in the number of
air reconstructions compared to the number of images, the authors
f Pollefeys et al. (1999) upgrade a projective n-view reconstruction to
metric n-view reconstruction in one-step, and always consider all n-

iews simultaneously. Both approaches provide images of reconstructed
eometry as a demonstration of faithful, to the human eye, n-view
econstructions.

Consequently, we see that both approaches validate n-view recon-
truction similarly, yet two-view validation is only investigated in our
pproach.

Overall, while both methods apply to two-view reconstruction,
ethod (Pollefeys et al., 1999) is validated only in n-view case (𝑛 > 2).

n contrast, we explore pair-based reconstructions, provide data on 𝛥𝑓
and 𝛥𝑅𝑖𝑗 errors (𝛥𝑅𝑖𝑗 is not discussed in Pollefeys et al. (1999)) and
construct a pair-based multi-view reconstruction pipeline that aims at
robustness through solution averaging methods.

6. Conclusions

Using the DIAC, we developed a linear self-calibration and metric
reconstruction method. We recover the optimal number of solutions
(two) for the case of two cameras, assuming unknown and varying

focal lengths but otherwise known internal parameters. Two theorems
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Fig. 10. 3D reconstruction results, as dense point clouds. Top Row: Datasets (Strecha et al., 2008a), Herz-Jesu-P25 (left) and Fountain-P11. Middle Row: Dataset castle-P19 (Strecha
et al., 2008a) (left) and photo set of Monument of Lysicrates, Athens (right). Bottom Row: Photo sets of locations in Athens, Parthenon (left) and Karyatids (right). The scenes
in Athens were photographed by the authors with a simple compact camera.
describe the relative configuration of the two recovered solutions and
provide support to use the Cheirality condition for solution disam-
biguation. We demonstrate the validity of our approach using both
synthetic and real data. Comparisons to Kruppa equations and the
5P algorithm revealed that our method performs similarly to these
standard approaches. Subsequently we show that the large number of
11
𝑓,𝑅 estimates that are produced by our self-calibration and metric
reconstruction method can be utilized through averaging methods,
shifting our focus from choosing the best solution, e.g. as in optimized
and robust 𝐹 estimation prior to self-calibration, to finding the best
solution averaging method. All our methods were integrated to a full
multiple-view reconstruction pipeline to produce visually high-quality
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reconstructions on both standard datasets and image sets we shot using
a conventional camera. Multi-view reconstructions were obtained com-
bining camera pair reconstructions using rotation averaging algorithms
and a novel approach to average focal length estimates.
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Appendix A. Gaussian elimination in self calibration and metric
reconstruction equations: The general case and critical configura-
tions

To simplify the expressions, we introduce the notation

𝐏𝜸
𝐢 : row vector produced from 𝑖th row of [𝐚]𝑥𝐹

and permute 𝐱𝟎 elements with the permutation

4 ↔ 6 (50)

We denote the permuted vector by 𝐱 and the corresponding system
matrix by 𝐴𝑝𝑟. Using this notation, we write 𝐴𝑝𝑟 as

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐫𝟏 𝜙1
1𝐏

𝜸
𝟐 𝜓1

𝐫𝟐 𝜙1
2𝐏

𝜸
𝟐 + 𝜙

2
2𝐏

𝜸
𝟑 𝜓2

𝐫𝟑 𝜙1
3𝐏

𝜸
𝟏 + 𝜙

2
3𝐏

𝜸
𝟑 𝜓3

𝐫𝟒 𝜙1
4𝐏

𝜸
𝟏 𝜓4

𝐫𝟓 𝜙1
5𝐏

𝜸
𝟏 + 𝜙

2
5𝐏

𝜸
𝟐 𝜓5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(51)

where 𝐫𝐢 are 1 × 3 vectors and 𝜙, 𝜓 are appropriate constants of no
special structure.

We aim to eliminate the elements in the rows 1–3 and columns 4–6
of 𝐴𝑝𝑟, which we refer to as 𝐴𝑛, and then to apply regular Gaussian elim-
ination. This is generally possible (see below), owing to the structure of
𝐴𝑛 rows in (51), which are linear combinations of 𝐏𝜸

𝐢 vectors and, also,
sing the canonical projective reconstruction allows us to substitute
𝜸
𝟑 = 𝑑1𝐏

𝜸
𝟏 + 𝑑2𝐏

𝜸
𝟐 (52)

hus, the elimination of 𝐴𝑛 elements is now straightforward by ap-
lying row-operations to matrix 𝐴𝑝𝑟. We then apply ordinary Gaussian
limination to reduce 𝐴𝑝𝑟 to the form of (20).

Next, we identify critical camera configurations in which the linear
ystem we examine becomes degenerate.

First, we have camera configurations in which 𝑓1, 𝑓2, 𝜋∞ cannot be
etermined, following any approach:

• no rotation (Strecha et al., 2006)
• translation along the viewing direction of camera and rotation

around the viewing direction (Kahl, 1999; Sturm, 2002)

Additionally, we have critical configurations for specific self-
alibration and metric reconstruction methods. We searched for critical
onfigurations in the literature and checked, reproducing the critical
onfigurations in synthetic scenes, if the degeneracies arise using the
ethod we introduced. The following camera configurations were
ound to be critical for our method:

12
• relative position of two cameras can be described by planar
motion (Brooks et al., 1996)

• the first camera’s viewing direction, the baseline (line connecting
the two camera centers) and the vector perpendicular to the
baseline and to the second camera’s viewing direction, are all
coplanar (Brooks and Pan, 1996)

• camera centers are positioned on a sphere and their viewing
directions are radiuses of that sphere (Brooks et al., 1996)

• camera relative rotation is around an axis that is parallel to
camera translation vector and rotation angle is 90◦ (Ma et al.,
2000)

ppendix B. Geometric relations between the two recovered solu-
ions for metric reconstruction of a camera pair

We proceed with the proofs of Theorems 1 and 2.

esult 5. Let 𝑃 denote a projection matrix. The center of projection 𝐂𝐏
as no image, as it is projected to point 𝟎. Equivalently, 𝐂𝐏 =

(

𝐂𝐓 1
)𝑇

s a right null-vector of 𝑃 .

esult 6. Let 𝑃 denote a projection matrix. 𝑃 can be decomposed as

=
[

𝐾𝑅 −𝐾𝑅𝐂
]

(53)

Results 5, 6 describe properties of the camera position 𝐂. The
ollowing Result is concerned with the camera direction

esult 7. Assume a projection matrix

=
[

𝑀 𝐩
]

(54)

et the vector 𝐦𝐓
𝟑 denote the third row of 𝑀 . Then the vector

= det (𝑀)𝐦𝟑 (55)

s in the direction of the principal axis (the viewing direction) of 𝑃 and
is directed towards the front of the camera.

The next two lemmas describe properties of metric reconstructions
𝑃 1
𝑚2, 𝑃

2
𝑚2 derived from Eq. (27)

emma 1. Let
𝑃 1
𝑚2 =

[

𝐾1
2𝑅

1 𝐚𝟏
]

𝑃 2
𝑚2 =

[

𝐾2
2𝑅

2 𝐚𝟐
] (56)

e the projection matrices for camera 2 derived from Eq. (27). Then
𝟏 = 𝐚𝟐 ≜ 𝐚 (57)

roof. Considering:

1. The form of homography (13)
2. Eq. (9): 𝑃 𝑖𝑚2 = 𝑃𝑃 2𝐻 𝑖 where 𝐻 𝑖 denotes the homography ob-

tained by substituting the 𝑖th solution of Eq. (27)

he lemma is readily deduced □

emma 2. Let 𝑃 1
𝑚2, 𝑃

2
𝑚2 as in Lemma 1. We have:

1
2𝑅

1
2 −𝐾

2
2𝑅

2
2 = 𝐚𝐧𝐓 (58)

here 𝐧 is an appropriate vector.

roof. As in proof of Lemma 1, by observing that 𝐻 𝑖 for different 𝑖
alues differ only in 𝐯 ≜ −𝐩𝐓𝐾. □

We note that Lemma 2 is a general result, independent of (27).
owever, we omit this proof now.
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Lemma 3. For the reconstructions 𝑃 1
𝑚2 =

[

𝑃1 𝐚
]

, 𝑃 2
𝑚2 =

[

𝑃2 𝐚
]

we
ave

det 𝑃1 = ±det 𝑃2 (59)

roof. We formed 𝑃 1
𝑚2, 𝑃

2
𝑚2 from solutions of Eq. (14), so the projection

atrices have the same 𝜔∗. Using now Eq. (1) we have:
∗
1 = 𝑃 1

𝑚2𝑄
∗
∞𝑃

1
𝑚2
𝑇

= 𝑃1𝑃
𝑇
1

= 𝜔∗
2

= 𝑃2𝑃
𝑇
2 (60)

sing known properties of determinants we have

et 𝑃1𝑃 𝑇1 = det 𝑃2𝑃 𝑇2 ⇒

det 𝑃12 = det 𝑃22 ⇒

det 𝑃1 = ±det 𝑃2 □ (61)

From this last proof, the next Lemma becomes apparent

Lemma 4. Concerning the reconstructions 𝑃 1
𝑚2, 𝑃

2
𝑚2 of Lemma 3, we have

𝐾1
𝑚2 = 𝐾2

𝑚2 (62)

Proof. From the equality of 𝜔∗
1, 𝜔

∗
2 and the diagonality of the internal

calibration matrices 𝐾1
𝑚2, 𝐾

2
𝑚2 we prove the Lemma. □

In the following we introduce the simplified notation: 𝐾2 ≜ 𝐾1
𝑚2 =

𝐾2
𝑚2. We next refine Lemma 3, to lift the sign ambiguity in Eq. (59).

Lemma 5. For the reconstructions 𝑃 1
𝑚2, 𝑃

2
𝑚2 we have

𝐂1
𝐦𝟐 = 𝐂𝟐

𝐦𝟐 ≜ 𝐂 ⟺ 𝐧𝐓𝐂 = 0 (63)

Proof.

𝑃 1
𝑚2

(

𝐂
1

)

= 𝟎

⟺ 𝐚 = −𝐾2𝑅
1
2𝐂 (64)

Similarly for 𝑃 2
𝑚2

𝑃 2
𝑚2

(

𝐂
1

)

= 𝟎

⟺ 𝐾2𝑅
1
2𝐂 + 𝐚𝐧𝐓𝐂 + 𝐚 = 𝟎

⟺ 𝐾2𝑅
1
2𝐂 + 𝐚𝐧𝐓𝐂 −𝐾2𝑅

1
2𝐂 = 𝟎,holds from Eq. (64)

⟺ 𝐚𝐧𝐓𝐂 = 𝟎

⟺ 𝐧𝐓𝐂 = 0 □ (65)

Lemma 6. For the reconstructions 𝑃 1
𝑚2, 𝑃

2
𝑚2 we have

𝐂𝟏
𝐦𝟏 = −𝐂𝟐

𝐦𝟐 ≜ 𝐂 ⟺ 𝐧𝐓𝐂 = −2 (66)

Proof. As in the proof of Lemma 5

𝑃 1
𝑚2

(

𝐂
1

)

= 𝟎

⟺ 𝐚 = −𝐾2𝑅
1
2𝐂 (67)

Similarly, from matrix 𝑃 2
𝑚2 we have

𝑃 2
𝑚2

(

−𝐂
1

)

= 𝟎

⟺ −𝐾2𝑅
1
2𝐂 + 𝐚𝐧𝐓𝐂 + 𝐚 = 𝟎

⟺ 𝐚 + 𝐚𝐧𝐓𝐂 + 𝐚 = 𝟎, from (67)
⟺ 𝐚(2 + 𝐧𝐓𝐂) = 𝟎

⟺ 𝐧𝐓𝐂 = −2,provided 𝐚 ≠ 𝟎 □ (68)
13
We complement each of Lemmas 5,6, with Lemma 7 and 8 respec-
tively. To prove the last two Lemmas, we use Eq. (69)

Result 8. For each square, invertible matrix 𝑋, column-vector 𝐜 and
row-vector 𝐫 we have

det (𝑋 + 𝐜𝐫) = det𝑋 ⋅ det (1 + 𝐫𝑋−1𝐜) (69)

Lemma 7. For the reconstructions 𝑃 1
𝑚2, 𝑃

2
𝑚2 we have

det 𝑃1 = det 𝑃2 ⟺

𝐧𝐓𝐂𝟏 = 0
(70)

Proof. We use Result 8, for which we note:

1. 𝑃1 is a full-rank matrix (rank 3) for every projection matrix.
The exception, referred to in the literature as ‘‘camera at infin-
ity’’, is out of our scope. Remember we are handling a metric
reconstruction.

2. 𝑃2 can be expressed in terms of 𝑃1, 𝐧, 𝐚, thus permitting the
application of Eq. (69) to determine det 𝑃2.

Now applying the previous points, we have

det 𝑃2 = det 𝑃1

⟺ 1 − 𝐧𝐓𝑅1
2
𝑇𝐾−1

2 𝐚 = 1

⟺ 𝐧𝐓𝑅1
2
𝑇𝐾−1

2 𝐚 = 0

⟺ −𝐧𝐓𝑅1
2
𝑇𝐾−1

2 𝐾2𝑅
1
2𝐂𝟏 = 0,

from (64): 𝐚 = −𝐾2𝑅
1
2𝐂𝟏

⟺ 𝐧𝐓𝐂𝟏 = 0,

as 𝑅𝑅𝑇 = 𝐼 for rotation matrices 𝑅 □ (71)

Lemma 8. For the reconstructions 𝑃 1
𝑚2, 𝑃

2
𝑚2 we have

det 𝑃1 = −det 𝑃2 ⟺

𝐧𝐓𝐂𝟏 = −2
(72)

Proof. As in the proof of Lemma 7,we have:

det 𝑃2 = −det 𝑃1

⟺ 1 − 𝐧𝐓𝑅1
2
𝑇𝐾−1

2 𝐚 = −1

⟺ 𝐧𝐓𝑅1
2
𝑇𝐾−1

2 𝐚 = 2

⟺ −𝐧𝐓𝑅1
2
𝑇𝐾−1

2 𝐾2𝑅
1
2𝐂𝟏 = 2,

from Eq. (64): 𝐚 = −𝐾2𝑅
1
2𝐂𝟏

⟺ 𝐧𝐓𝐂𝟏 = −2,

as 𝑅𝑅𝑇 = 𝐼 for rotation matrices 𝑅 □ (73)

Now, we show that the case of same-sign determinants (det 𝑃 1 =
det 𝑃 2) produces a contradiction, and is so rejected. Regarding the
notation in the following, we clarify that:

1. The projective reconstruction 𝑃𝑃2 is in the canonical representa-
tion form
[

[𝐚]𝑥𝐹 𝐚
]

(74)

with 𝐹 𝑇 𝐚 = 𝟎
2. [𝐚]𝑥 denotes the anti-symmetric matrix defined to compute outer

product with vector 𝐚

[𝐚]𝑥𝐯 = 𝐚 × 𝐯 (75)

3. 𝐞 denotes the right null vector of 𝐹 ,

𝐹 𝐞 = 𝟎 (76)
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Lemma 9. Let

𝑃𝑃2 =
[

𝐴 𝐚
]

=
[

[𝐚]𝑥𝐹 𝐚
]

(77)

denote the projection matrix for camera 2 in the projective reconstruction
nd 𝐩,𝐩′ the solutions for 𝝅∞ acquired from Eq. (27)

𝐩𝐓 =
(

𝑝1 𝑝2 𝑝3
)

𝐩′𝐓 =
(

𝑝′1 𝑝′2 𝑝′3
) (78)

hen

− 𝐩′ = 𝜓𝐞𝐟 (79)

here

𝐞𝐟 =
⎛

⎜

⎜

⎝

𝑒1∕𝑓21
𝑒2∕𝑓21
𝑒3

⎞

⎟

⎟

⎠

(80)

roof. From Eq. (14) and because solutions (27) share the same 𝑓1
alue, we have

𝜔∗
1 = 𝜔∗

2 ⟺

𝑃𝑃2

[

𝐾1𝐾𝑇
1 −𝐾1𝐾𝑇

1 𝐩
−𝐩𝐓𝐾1𝐾𝑇

1 𝐩𝐓𝐾1𝐾𝑇
1 𝐩

]

𝑃 𝑇𝑃 2 =

𝑃𝑃 2

[

𝐾1𝐾𝑇
1 −𝐾1𝐾𝑇

1 𝐩
′

−𝐩′𝐓𝐾1𝐾𝑇
1 𝐩′𝐓𝐾1𝐾𝑇

1 𝐩
′

]

𝑃 𝑇𝑃 2 ⟺

𝐴𝐾1𝐾
𝑇
1 𝐴

𝑇 − 𝐴𝐾1𝐾
𝑇
1 𝐩𝐚

𝐓 − 𝐚𝐩𝐓𝐾1𝐾1𝐴
𝑇 + 𝐚𝐩𝐓𝐾1𝐾

𝑇
1 𝐩𝐚

𝐓 =

𝐴𝐾1𝐾
𝑇
1 𝐴

𝑇 − 𝐴𝐾1𝐾
𝑇
1 𝐩

′𝐚𝐓 − 𝐚𝐩′𝐓𝐾1𝐾1𝐴
𝑇 + 𝐚𝐩′𝐓𝐾1𝐾

𝑇
1 𝐩

′𝐚𝐓

(81)

From Eqs. (27), (24) we have

𝑓 2
1 𝑝

2
1 + 𝑓

2
2 𝑝

2
2 + 𝑝

2
3 = 𝑓 2

1 𝑝
′2
1 + 𝑓

2
2 𝑝

′2
2 + 𝑝

′2
3 = 𝑏3 (82)

and so

(𝑓 2
1 𝑝

2
1 + 𝑓

2
1 𝑝

2
2 + 𝑝

2
3)𝐚𝐚

𝐓 = 𝐚𝐩𝐓𝐾1𝐾
𝑇
1 𝐩𝐚

𝐓 = 𝐚𝐩′𝐓𝐾1𝐾
𝑇
1 𝐩

′𝐚𝐓 (83)

By eliminating the common terms (Eq. (83) and 𝐴𝐾1𝐾1𝐴𝑇 ) we continue
the computations and arrive at

𝐴𝐾1𝐾
𝑇
1 ((𝐩 − 𝐩′)𝐚𝐓) + (𝐚(𝐩𝐓 − 𝐩′𝐓))𝐾1𝐾

𝑇
1 𝐴

𝑇 = 0 ⟺

𝑄 +𝑄𝑇 = 0 (84)

In Eq. (84) we defined

𝑄 ≜ 𝐴𝐾1𝐾
𝑇
1
((

𝐩 − 𝐩′
)

𝐚𝐓
)

(85)

We write 𝑄 as

𝑄 = 𝐴𝐾1𝐾
𝑇
1 ((𝐩 − 𝐩′)𝐚𝐓)

= 𝐴𝐾1𝐾
𝑇
1

⎛

⎜

⎜

⎝

(𝑝1 − 𝑝′1)𝐚
𝐓

(𝑝2 − 𝑝′2)𝐚
𝐓

(𝑝3 − 𝑝′3)𝐚
𝐓

⎞

⎟

⎟

⎠

= 𝐴
⎛

⎜

⎜

⎝

𝑓 2
1 (𝑝1 − 𝑝

′
1)𝐚

𝐓

𝑓 2
1 (𝑝2 − 𝑝

′
2)𝐚

𝐓

(𝑝3 − 𝑝′3)𝐚
𝐓

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝐀𝟏𝑇

𝐀𝟐𝑇

𝐀𝟑𝑇

⎞

⎟

⎟

⎟

⎠

(

𝛥𝑓𝛼1 𝛥𝑓𝛼2 𝛥𝑓𝛼3
)

(86)

where in Eq. (86) we defined

𝛥𝑓 ≜
⎛

⎜

⎜

⎝

𝑓 2
1 (𝑝1 − 𝑝

′
1)

𝑓 2
1 (𝑝2 − 𝑝

′
2)

(𝑝3 − 𝑝′3)

⎞

⎟

⎟

⎠

(87)

From Eq. (84), matrix 𝑄 is anti-symmetric and so has a zero diag-
onal. Imposing the last condition on expression (86), we extract the
following relations
𝟏𝑇
𝐀 𝛥𝑓 = 0 (88)

14
𝐀𝟐𝑇 𝛥𝑓 = 0 (89)

𝐀𝟑𝑇 𝛥𝑓 = 0 (90)

We substitute 𝐴 in Eqs. (88),(89),(90), using the canonical representa-
tion assumption

𝑃𝑃 2 =
[

𝐴 𝐚
]

=
[

[𝐚]𝑥𝐹 𝐚
]

(91)

and write the three resulting equations in matrix form to get

[𝐚]𝑥𝐹𝛥𝑓 = 𝟎 (92)

From Eq. (92) and because [𝐚]𝑥𝐹 has the null vector 𝐞, we get

𝛥𝑓 = 𝜓𝐞 (93)

where 𝜓 is a constant.
Now, from Eq. (93), with simple manipulations we obtain:

⎛

⎜

⎜

⎝

𝑝1 − 𝑝′1
𝑝2 − 𝑝′2
𝑝3 − 𝑝′3

⎞

⎟

⎟

⎠

= 𝜓𝐞𝐟 □ (94)

Lemma 10. With the assumptions and notation of Lemma 9, we have

det 𝑃1 = −det 𝑃2 (95)

Proof. We assume that

det 𝑃1 = det 𝑃2 (96)

and produce a contradiction.
From Lemma 7, we get Eq. (70) and equivalently require that:

𝐧𝐓𝐂𝟏 = 0 (97)

To specify 𝐧 in Eq. (97), we use

1. The definition of 𝐧 in Eq. (58)
2. The relation between 𝑃𝑃 2, 𝑃𝑀2,𝐻 (Eqs. (9),(13)) and the nota-

tion for 𝑃 matrix of Lemma 9

and have

𝑃1 = 𝐴𝐾1 − 𝐚𝐩𝐓𝐾1

𝑃2 = 𝐴𝐾1 − 𝐚𝐩′𝐓𝐾1

⟺ 𝑃2 = 𝑃1 + 𝐚(𝐩 − 𝐩′)𝐓𝐾1 ≜ 𝑃1 − 𝐚𝐧𝐓 (98)

ow, we can rewrite Eq. (97) as

𝐩 − 𝐩′)𝐓𝐊𝟏𝐂𝟏 = 0 (99)

e next have

𝑃 1
𝑀2

(

𝐂𝟏

1

)

= 0 ⟺

𝑃𝑃 2𝐻
1
(

𝐂𝟏

1

)

= 0 ⟺

𝑃 2

(

𝐾1𝐂𝟏

−𝐩𝐓𝐾1𝐂𝟏 + 1

)

= 0 (100)

rom the assumption that 𝑃𝑃2 is in the canonical form (Eq. (74)), it has
null vector (Eq. (76)) that is written as

𝐞
0

)

(101)

o we have:

𝑃 2

(

𝐾1𝐂𝟏

−𝐩𝐓𝐾1𝐂𝟏 + 1

)

= 0 ⟺

𝐾1𝐂𝟏 = 𝜓𝐞 ,where 𝜓 is a constant (102)

−𝐩𝐓𝐾1𝐂𝟏 + 1 = 0 (103)
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From Lemma 9 (Eq. (79)) and the previous Eqs. (99), (102) we get:

𝐞𝐓𝐞𝐅 = 0 ⟺

2
1∕𝑓21 + 𝑒22∕𝑓21 + 𝑒

2
3 = 0 (104)

ince Eq. (104) has no solutions ( 𝐞 ≠ 𝟎 ), we produced a contradiction.
Thus, from Lemma 3, we have proved that

et 𝑃1 = −det 𝑃2 □ (105)

From the preceding Lemmas, we can now readily obtain Theorem 1

roof of Theorem 1. From Lemma 10

et 𝑃1 = −det 𝑃2 (106)

rom Lemmas 6,8 we obtain the equivalent relation
𝟏𝐦𝟐 = −𝐂𝟐

𝐦𝟐 □ (107)

Next, we prove Theorem 2. To avoid a lengthy proof, we settle the
oplanarity of 𝐯𝟏,𝟐𝐦𝟐,𝐂

𝟏,𝟐
𝐦𝟐 with Lemma 11, which follows the main proof.

Let us first summarize some notation

1. We denote 𝐯𝟏𝐦𝟐, 𝐯
𝟐
𝐦𝟐 the vectors that point along the viewing

directions of cameras 𝑃 1
𝑚2, 𝑃

2
𝑚2 respectively

2. For 𝑃 1
𝑚2 we assume

det 𝑃1 > 0 (108)

𝐂 ≜ 𝐂𝟏𝐦𝟐 (109)

roof of Theorem 2. From Results 6, 7, Lemma 1, Theorem 1 we have
or 𝑃 1

𝑚2:

𝐾2𝑅
1𝐂 = −𝐚 ⟺

𝑓2𝐑𝑇𝟏
𝑓2𝐑𝑇𝟐
𝐑𝑇𝟑

⎞

⎟

⎟

⎠

𝐂 = −𝐚 ⟺

𝐑𝑇𝟑 𝐂 = −𝑎3 (110)

We have det 𝑃 1 = det𝐾2𝑅1 > 0 and so
𝟏
𝟐𝐦 = 𝐑𝟑 (111)

onsequently, from Eq. (110), we have
𝟏
𝟐𝐦

𝑇𝐂 = ‖𝐯𝟏𝟐𝐦‖‖𝐂‖ cos∠𝐂, 𝐯
𝟏
𝟐𝐦 = −𝑎3 (112)

n Eq. (112),

𝐑𝐓
𝟑 ‖ = 1, since 𝑅1 is orthogonal as a rotation matrix

e can normalize 𝐂 to unitary by satisfying the condition

𝐾−1
2 𝐚‖ = 1 (113)

ince rotations leave vectors’ measure unchanged.
We can now write Eq. (112) as

os∠𝐂, 𝐯𝟏𝟐𝐦 = −𝑎3 (114)

imilarly, using

𝐂𝟐
𝐦𝟐 = −𝐂 (115)

et 𝑃 2 < 0 (116)

𝐚𝟏 = 𝐚𝟐 (117)

e have

os∠𝐂, 𝐯𝟐𝐦𝟐 = −𝑎3 (118)

nd the remaining relations required for the proof:
𝟐 𝟏
cos∠𝐂 , 𝐯𝐦𝟐 = 𝑎3 (119)

15
cos∠𝐂𝟐, 𝐯𝟐𝐦𝟐 = 𝑎3 (120)

∠𝐂, 𝐯𝟏𝐦𝟐 + ∠𝐂𝟐, 𝐯𝟏𝐦𝟐 = 180◦ (121)

∠𝐂, 𝐯𝟐𝐦𝟐 + ∠𝐂𝟐, 𝐯𝟐𝐦𝟐 = 180◦ (122)

To complete the proof, we show that 𝐯𝟏,𝟐𝐦𝟐,𝐂
𝟏,𝟐
𝐦𝟐 are coplanar. We provide

a constructive proof in Lemma 11. □

Lemma 11. There exist rotation matrices 𝑅𝑥, 𝑅𝑝𝑒𝑟𝑚 so that

𝑅𝑥𝑅𝑝𝑒𝑟𝑚𝑅
1𝐯𝟏𝐦𝟐 =

(

1 0 0
)𝑇 (123)

𝑅𝑥𝑅𝑝𝑒𝑟𝑚𝑅
1𝐯𝟐𝐦𝟐 =

(

𝑥 𝑦 0
)𝑇 (124)

Proof. In this proof, we apply to the 3D space similarity transforms,
that do not alter angles. The aim is to transform the space so that the
resulting coordinate system simplifies the relations of the entities we
examine.

We visualize this process as placing and orienting a ‘‘virtual’’ cam-
era, so that the camera primary plane is the plane on which 𝐯𝟏,𝟐𝐦𝟐,𝐂

𝟏,𝟐
𝐦𝟐

lie. We first do some hypotheses, without loss of generality, to simplify
the notation in the proof:

• Let 𝑃 1
𝑚2 denote the correct representation of 𝑃𝑚2 and 𝑃 2

𝑚2 the
erroneous one

• Let

sign(det 𝑃1) > 0 (125)

so that we can simplify the expression for camera viewing direc-
tion

We apply to space the rotations

𝑅𝑥𝑅𝑝𝑒𝑟𝑚𝑅
1 (126)

where

𝑅1 ∶ rotation matrix of 𝑃 1
𝑚2

𝑅𝑝𝑒𝑟𝑚 ∶ rotation to transpose 𝑥1, 𝑥3
of a vector:

(

𝑥1 𝑥2 𝑥3
)𝑇

𝑅𝑥 ∶rotation to place 𝐂𝟏 in the desired plane

Applying 𝑅1, using orthogonality of 𝑅1 and Result 7, we have for the
viewing direction of camera 2

𝑅1𝐯𝟏𝐦𝟐 =
(

0 0 1
)𝑇 (127)

We then apply 𝑅𝑝𝑒𝑟𝑚, to help with the visualization of this proof

𝑅𝑝𝑒𝑟𝑚 = 𝑅𝑦(90◦) =
⎡

⎢

⎢

⎣

0 0 1
0 1 0
−1 0 0

⎤

⎥

⎥

⎦

(128)

We define 𝑅𝑥, a rotation around 𝑥-axis, to place 𝐂𝟏 on 𝑧−plane and at
the same time leave 𝐯𝟏𝐦𝟐 unchanged. We have

𝑅𝑥 =
⎡

⎢

⎢

⎣

1 0 0
0 cos 𝜃𝑥 − sin 𝜃𝑥
0 sin 𝜃𝑥 cos 𝜃𝑥

⎤

⎥

⎥

⎦

(129)

We transformed 𝐂𝟏 to:

𝐾2𝑅
1𝐂𝟏 = −𝐚 ⟺

𝑅1𝐂𝟏 = −𝐾−1
2 𝐚 ⟺

𝑅𝑝𝑒𝑟𝑚𝑅
1𝐂𝟏 = −𝑅𝑝𝑒𝑟𝑚

(

−𝐾−1
2

)

𝐚 =
⎛

⎜

⎜

⎝

−𝑎3
−𝑓2𝑎2
𝑓2𝑎1

⎞

⎟

⎟

⎠

(130)

Then, applying 𝑅𝑥 we have:

𝑅𝑥𝑅𝑝𝑒𝑟𝑚𝑅
1𝐂𝟏 = 𝑅𝑥

⎛

⎜

⎜

−𝑎3
−𝑓2𝑎2

⎞

⎟

⎟

⎝ 𝑓2𝑎1 ⎠
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=
⎛

⎜

⎜

⎝

𝑥1
𝑥2

−𝑓2𝑎2 sin 𝜃𝑥 + 𝑓2𝑎1 cos 𝜃𝑥

⎞

⎟

⎟

⎠

(131)

To satisfy the condition (𝑥3 = 0) for 𝐂𝟏, we get for 𝑅𝑥

−𝑓2𝑎2 sin 𝜃𝑥 + 𝑓2𝑎1 cos 𝜃𝑥 = 0 ⟺

tan 𝜃𝑥 = 𝑎1∕𝑎2 (132)

Now, we show that the 𝑅𝑥 we specified previously, also places 𝐯𝟐𝐦𝟐 on
the 𝑧−plane of the virtual camera. Let

𝐦𝐢
𝐣 ∶ 𝑗−row of 𝑅𝑖 (133)

We have

𝑅𝑝𝑒𝑟𝑚𝑅
1𝐯𝟐𝐦𝟐 = 𝑅𝑝𝑒𝑟𝑚𝑅

1(−𝐦𝟐
𝟑
𝑇 )

=
(

𝐦𝟏
𝟑(−𝐦

𝟐
𝟑
𝑇 ) 𝐦𝟏

𝟐(−𝐦
𝟐
𝟑
𝑇 ) −𝐦𝟏

𝟏(−𝐦
𝟐
𝟑
𝑇 )
)𝑇

≜
(

𝑥1 𝑥2 𝑥3
)𝑇 (134)

where we used that det 𝑃 2 < 0. Now, it suffices to show

𝑅𝑥
(

𝑥1 𝑥2 𝑥3
)𝑇 =

(

𝑥′1 𝑥′2 0
)

⟺

sin 𝜃𝑥𝐦𝟏
𝟐𝐦

𝟐
𝟑
𝑇 = cos 𝜃𝑥𝐦𝟏

𝟏𝐦
𝟐
𝟑
𝑇

⟺

𝑎1(𝐦𝟐
𝟐 + 𝑓

−1
2 𝑎2𝐧𝐓)𝐦𝟐

𝟑
𝑇 = 𝑎2(𝐦𝟐

𝟏 + 𝑓
−1
2 𝑎1𝐧𝐓)𝐦𝟐

𝟑
𝑇

⟺

𝑎1𝑓
−1
2 𝑎2𝐧𝐓𝐦𝟐

𝟑
𝑇 = 𝑎2𝑓

−1
2 𝑎1𝐧𝐓𝐦𝟐

𝟑
𝑇 (135)

where we used Lemma 2, diagonal form of 𝐾2, the orthogonality of
rotation matrices and that 𝐚𝟏 = 𝐚𝟐.

Thus, we proved that 𝐯𝟏𝐦𝟐, 𝐯
𝟐
𝐦𝟐,𝐂

𝟏,𝐂𝟐 lie in the plane 𝑧 = 0 of the
transformed world coordinate system, which is the primary plane of the
‘‘virtual’’ camera. □
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