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Abstract
This paper studies issues of sparse representation in nonlinear vector spaces. In particular, we focus on complete weighted
lattices Maragos (Math. Control Signals Syst 29: 21, 2017), a class of nonlinear spaces that generalizes mathematical mor-
phology and max-plus algebra. We show how one can obtain sparse solutions to equations that arise in such spaces and
discuss the computational hardness of the problem. Then, the focus shifts to max-plus algebra and, in particular, to sparse
approximate solutions to max-plus equations. The developed theoretical tools allow us to make structured arguments about
the pruning of a special class of neural networks, called morphological neural networks.
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1 Introduction

Mathematicalmorphology focuses on the shape and structure
of an image. It was developed initially throughout the 1970s
and 1980s and was successfully applied to nonlinear image
and signal analysis, while its mathematical foundations were
further consolidated and expanded during the 1990’s. A cen-
tral motivation for its development as an image processing
paradigm lies at the following observation: contrary to acous-
tic signals that obey a linear superposition, visual signals do
not combine linearly [15]. There is an inherent ordering in
the way humans (or sensors) receive such signals:

“…any object that is seen hides those that are placed
beyond it with respect to the viewer …” ( [30]).

Mathematically, this simple but key observation suggests
a need for structures different than the usual vector spaces.
The notion of ordering is central in lattices (order the-
ory) and, indeed, lattices serve as the theoretical basis of
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mathematical morphology [15,16,29,31].We refer interested
readers to prior work [27,30,31] for a classical treatment
of mathematical morphology, while recent articles [3,14,22]
cover a wide range of theory and applications of Mathemat-
ical Morphology.

In our work, we leverage the unifying framework of
weighted lattices [23,24] that generalizes mathematical mor-
phology. Conceptually, a weighted lattice resembles a vector
(linear) space whose vector addition is substituted by point-
wise vector maximum/minimum and scalar multiplication
by an arbitrary scalar operation (that distributes over max-
ima/minima). The crucial difference is the nonlinearity of
maximum/minimum. This enriches the space with a natural
ordering, but deprives it of inverse operations. At the core
of these spaces lies also the concept of duality, which stems
from the concurrent treatment of both maximum and min-
imum operations. We study the problem of finding sparse
vectors in such spaces. Similar to the study of sparsity in
linear algebra [11], sparse vectors in weighted lattices rep-
resent the simplest explanations of our equations. It can be
shown [24] that the archetypal morphological image opera-
tors (dilations and erosions) admit compact representations
on a weighted lattice through simple matrix equations. Thus,
by finding sparse solutions in their equations, we are able to
find the simplest input that produces a specified output in a
morphological system.

The most well-known special case that arises in this
weighted lattice framework is max-plus algebra. Max-plus
algebra also stems from the max-plus or tropical semiring
that forms the arithmetic of tropical geometry [20]. Its two
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key operations is maximum and addition and it is defined
over R ∪ {−∞}. A variety of problems from optimization
and optimal control have been solved via a max-plus treat-
ment [1,4,13], while recently a connection betweenmax-plus
algebra and several areas ofmachine learning has been estab-
lished [25,32,38]. Recently, sparsity inmax-plus algebra was
introduced [34]. In particular, it was shown that finding the
sparsest solution to a max-plus equation is equivalent to the
minimum set cover problem and, thus, NP-complete. Addi-
tionally, the problem of sparse �1 approximate solutions was
studied, together with that of the recovery of a sparse vector.
On a related note, the connection between max-plus equa-
tions and set covers has been observed before [6], while the
pruning of the optimal value function in optimal control can
be viewed as the search of an exact sparse representation of
a max-plus basis of functions [13]. Herein, we extend ideas
frommax-plus algebra to anyweighted lattice. Such a generic
treatment will allow one to leverage sparse representations
in more general spaces, such as the max-min ones that have
been utilized for ultrametric image processing [2].

This work makes the following contributions:

– It introduces the concept of sparsity on a large class of
nonlinear vector spaces.

– It studies the problem of finding sparse solutions to equa-
tions arising in these spaces.

– Focusing onmax-algebra, it poses and solves generalized
problems of computing the sparsest approximate solution
to a matrix max-plus equation. Contrary to prior work,
this allows the approximation error to be measured by
any �p norm, while in the case of �∞ we consider a more
“natural” optimization problem.

– Finally, we briefly present an application of the theory in
the pruning of morphological neural networks.

The current paper is an extended version of our prior work
[35], and its novel part involves the generalization of spar-
sity on Weighted Lattices (as opposed to only in max-plus
algebra)—see Sects. 2.1 and 3, together with numerical com-
putations at the end of Sect. 4.2. In particular, we address a
hyperparameter selection problem of the �∞ optimization
problem, while we, also, confirm the theoretical predictions
for the approximation error of the resultant vector.

2 Background Concepts

Notation. We use roman letters for functions, signals and
their arguments and Greek letters mainly for operators. Also,
boldface roman letters for vectors (lowcase) and matrices
(capital). Let [n] = {1, 2, . . . , n}.

2.1 Lattice Spaces

A partially ordered set, briefly poset (P,≤), is a set P
equipped with a binary relation ≤ that is a partial order-
ing on P , i.e., ≤ is reflexive, antisymmetric and transitive. If
S ⊆ P , then an element B ∈ P is called an upper bound of
S if X ≤ B for all X ∈ S. The least upper bound of S (if it
exists) is called its supremum and is often denoted by

∨
S.

Likewise, we define lower bounds, greatest lower bounds or
infima of S (

∧
S).

A lattice (L,≤) is a poset whose finite subsets have a
supremum and an infimum. A lattice (L,≤) is complete if
each of its subsets (even infinite) has a supremum and an
infimum in L. We denote the supremum and infimum of L
by � = ∨L and ⊥ = ∧L, respectively.

From any lattice L, we can construct a new specific one
in the following way: letO(L) be the set of all functions f :
L → L. Then, equipped with elementwise partial ordering

 and elementwise supremum and infimum, this set is also a
lattice. We denote it by (O(L),
) and is called an operator
lattice. Special elements of this lattice that will be relevant
to our analysis are the following:

– The identity operator id : id(X) = X forall X ∈ L,
– Extensive operators ψ : id 
 ψ ,
– Antiextensive operators ψ : ψ 
 id,
– Idempotent operators ψ : ψ2 = ψ (where ψ2(X) =

ψ(ψ(X))),
– Increasing operators ψ : X ≤ Y ⇒ ψ(X) 
 ψ(Y ).

The fundamental blocks of morphological operators con-
sist of four classes of increasing operators, namely dilations,
erosions, opening and closing. An operator δ is called dila-
tion if δ(

∨
i Xi ) = ∨

i δ(Xi ) for any collection {Xi }. Dually,
an operator ε is called erosion if ε(

∧
i Xi ) = ∧

i ε(Xi )

for any collection {Xi }. An operator is an opening if it is
increasing, antiextensive and idempotent, while an opera-
tor is a closing if it is increasing, extensive and idempotent.
Such operators, and combinations of them, have been applied
successfully to several problems in image processing and
computer vision. Central to the analysis of complete lat-
tices and mathematical morphology is, also, the following
notion that pairs an operator with another which resembles
its inverse. The pair (δ, ε) of operators on a complete lattice
L is an adjunction on L if δ(X) ≤ Y ⇐⇒ X ≤ ε(Y ) for
all X ,Y ∈ L.

We enrich the lattice structure with two additional binary
operations. An algebra (K,∨,∧, �, �′) is called clodum
(complete lattice-ordered double monoid) if:
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(C1) (K,∨,∧) is a complete, distributive lattice.
(C2) (K, �) is a monoid where � distributes over suprema,

that is a�(
∨

i xi ) = ∨
i (a�xi ) for all a, xi ∈ K.

(C3) (K, �′) is a monoid where �′ distributes over infima,
that is a�′(

∧
i xi ) = ∧

i (α�′xi ) for all a, xi ∈ K.

Examples of such spaces are

– The Max-plus space (R,∨,∧,+,+′), where R = R ∪
{−∞,+∞} and+,+′ are identical for real numbers, but
a+(−∞) = (−∞)+a = −∞ and a+′ ∞ = ∞+′a =
∞ for any a ∈ R. Note that here both (R,+) and (R,+′)
are groups, so this clodum has a richer structure. We call
such a space clog (complete lattice-ordered group) and
we refer to this specific clog as the max-plus clog.

– The max-min clodum ([0, 1],∨,∧,min,max).

A clodum serves as a scalar arithmetic in our analysis.
Based on it, we now define the nonlinear vector spaces that
are the central object of our work. Consider a set V and
a clodum (K,∨,∧, �, �′) with identity elements of e, e′,
respectively, and infimum, supremum O, I , respectively. V
equipped with:

(a) a vector supremum operation (∨ : V × V → V ) and a
vector infimum operation (∧ : V × V → V ), and

(b) two operations of “scalar multiplication” (� : K× V →
V and �′ : K × V → V )

is called aWeighted Lattice space overK if for any X ,Y , Z ∈
V , a, b ∈ K the following axioms hold [24]:

(WL1) X ∨ Y ∈ V and X ∧ Y ∈ V .
(WL2) X ∨ Y = Y ∨ X and X ∧ Y = Y ∧ X .
(WL3) X ∨ (Y ∨ Z) = (X ∨ Y ) ∨ Z and X ∧ (Y ∧ Z) =

(X ∧ Y ) ∧ Z .
(WL4) ∃O ∈ V : O ∨ X = X , O ∧ X = O and ∃I ∈ V :

I ∧ X = X , I ∨ X = I .
(WL5) X ≤ Y ⇐⇒ Y = X ∨ Y and X ≤ Y ⇐⇒ X =

X ∧ Y , where ≤ is a partial ordering of V .
(WL6) X∨(Y∧Z) = (X∧Y )∨(X∧Z) and X∧(Y∨Z) =

(X ∧ Y ) ∨ (X ∧ Z).
(WL7) a�X ∈ V and a�′X ∈ V .
(WL8) a�(b�X) = (a�b)�X and a�′(b�′X) = (a�′b)�′X .
(WL9) e�X = X and e′�′X = X .

(WL10) a�(X ∨ Y ) = (a�X) ∨ (a�Y ) and a�′(X ∧ Y ) =
(a�′X) ∧ (a�′Y ).

(WL11) (a ∨ b)�X = (a�X) ∨ (b�X) and (a ∧ b)�′X =
(a�′X) ∧ (b�′X).

Additionally, ifV is closedunder infinite supremaand infima,
and (WL10), (WL11) hold even for infinite collections of

(scalar or vector) suprema and infima, then V is called a
Complete Weighted Lattice (CWL) space.

One may notice the similarities of the aforementioned
axioms with those of a vector (linear) space. In this work, we
will focus on finite-dimensional cases where V = Kn, n ∈
N. For instance, over the max-plus clog (R,∨,∧,+,+′)
consider the set V = R

n
of n-dimensional vectors, the ele-

mentwise supremum ∨ and infimum ∧ operations, and the
extension of+,+′: a+v = [a+vi ]ni=1, a+′v = [a+′vi ]ni=1

for all a ∈ R, v ∈ R
n
. Then V is a complete weighted lattice,

as it satisfies axioms (WL1-WL11) and the completeness
properties. This space includes both max-plus and min-plus
algebras, while the concurrent treatment of them highlights
the duality of their principles.

The main operators that arise in such spaces are max -�
and min -�′ multiplications of a matrix A ∈ Km×n with a
vector x ∈ Kn :

δA(x) � A � x = [
n∨

j=1

ai j�x j ]mi=1 (1)

and

εA(x) � A � ′ x = [
n∧

j=1

ai j�
′x j ]mi=1, (2)

respectively. It canbeproved that these operators are dilations
and erosions, and they are the fundamental blocks of sup -�
and inf -� superpositions (Theorem 1 at [24]). When these
operators are viewed as systems that operate on signals, a
representation theory of a whole class of nonlinear systems
can be revealed. In systems theory, inverse problems are,
typically, of interest. That is, one searches for the unknown
input that produced ameasured outcome through our system.
In our treatment, this can be formulated as a max -� equation:

δA(x) = b (3)

Of course the same can be done for systems satisfying
inf -� superpositions via min -�′ equations. Let S(A,b) =
{x ∈ Kn | δA(x) = b} be the set of its solutions. Next the-
orem associates to equation (3) a vector εA∗(b), where εA∗
is called the adjoint operator of δA and can be expressed as
follows:

εA∗(y) = [
m∨

i=1

ζ(ai j , yi )]nj=1, (4)

where ζ(a, w) � sup{u ∈ K : a�u ≤ w}. We say that δA
together with εA∗ form an adjunction.

Theorem 1 [24] If S(A,b) �= ∅, then εA∗(b) ∈ S(A,b) and
x ≤ εA∗(b) for all x ∈ S(A,b).
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These are exactly the equations whose sparse solutions
will be studied.

2.2 Max-Plus Algebra

Max-plus arithmetic consists of the idempotent semiring
(Rmax,max,+), where Rmax = R ∪ {−∞} is equipped
with the standard maximum and sum operations, respec-
tively. Max-plus algebra consists of vector operations that
extend max-plus arithmetic to R

n
max. They include the point-

wise operations of partial ordering x ≤ y and pointwise
supremum x ∨ y = [xi ∨ yi ], together with a class of vector
transformations defined below. Max-plus algebra is isomor-
phic to the tropical algebra, namely the min-plus semiring
(Rmin,min,+),Rmin = R∪{∞}when extended toR

n
min in a

similar fashion. Vector transformations on R
n
max (resp. R

n
min)

that distribute over max-plus (resp. min-plus) vector super-
positions can be represented as a max-plus� (resp. min-plus
�′

) product of a matrix A ∈ R
m×n
max (Rm×n

min ) with an input
vector x ∈ R

n
max(R

n
min):

[A � x]i �
n∨

k=1

aik + xk, [A �′
x]i �

n∧

k=1

aik + xk (5)

In the case of a max-plus matrix equation A � x = b, there
is a solution if and only if the vector

x̂ = (−A)ᵀ �′
b (6)

satisfies it [6,8,24]. We call this vector the principal solution
of the equation. It also satisfies the inequality A � x̂ ≤ b.

2.3 Submodularity

LetU be a universe of elements. A set function f : 2U → R

is called submodular [19] if ∀A ⊆ B ⊆ U , k /∈ B holds:

f (A ∪ {k}) − f (A) ≥ f (B ∪ {k}) − f (B). (7)

A set function f is called supermodular if − f is submod-
ular. Submodular functions occur as models of many real
world evaluations in a number of fields and allow many hard
combinatorial problems to be solved fast and with strong
approximation guarantees [5,18]. It has been suggested that
their importance in discrete optimization is similar to convex
functions’ in continuous optimization [19].

The following definition captures the idea of how far a
given function is from being submodular and generalizes the
notion of submodularity.

Definition 1 [9] Let U be a set and f : 2U → R
+ be an

increasing, non-negative, function. The submodularity ratio
of f is

γU ,k( f ) � min
L⊆U ,S:|S|≤k,S∩L=∅

∑
x∈S f (L ∪ {x}) − f (L)

f (L ∪ S) − f (L)

(8)

Proposition 1 [9] An increasing function f : 2U → R is
submodular if and only if γU ,k( f ) ≥ 1, ∀ U , k.

In [9], the authors used the submodularity ratio to analyze
the properties of greedy algorithms in discrete optimization
problems with functions that are only approximately sub-
modular (γ ∈ (0, 1)). They proved that the performance
of the algorithms degrade gradually as a function of γ ,
thus allowing guarantees for a wider variety of objective
functions.

3 Sparsity on CompleteWeighted Lattices

Let (Kn,∨,∧, �, �′) be a complete weighted lattice over a
scalar clodum (K,∨,∧, �, �′). First, we define sparsity in
this space.

Definition 2 We call a vector x ∈ Kn sparse if it contains
many ⊥ elements, where ⊥ = ∧K (the infimum of K).
We define its support set, supp(x), to be the set of positions
where vector x has values greater than ⊥, that is supp(x) =
{i | xi �= ⊥}.
Let A ∈ Km×n,b ∈ Km . Without loss of generality, we
assume bi �= ⊥ and

∨
j ai j �= ⊥ for all i ∈ [m]. We are

interested in the sparsest solution of equation (3). This can
be expressed as the following optimization problem:

arg min
x∈Kn

|supp(x)|
s.t. δA(x) = b,

(9)

where supp(x) = {
j ∈ [n] | x j �= ⊥}

is the support set of x.
Of course, we will study (9) in the cases where S(A,b) �= ∅.
Therefore, from Theorem 1, we know that εA∗(b) ∈ S(A,b).

We now define for each x ∈ S(A,b) n sets that reveal the
combinatorial notion of (9):

I j (x) = {
i ∈ [m] | ai j�x j = bi

}
, j ∈ [n]. (10)

Each set I j (x) contains the rows of the equation that the j-th
component of x satisfies (or covers). Notice that it must hold⋃

j∈[n] I j (x) = [m] for any x ∈ S(A,b) (each row of the
equation must be satisfied).

Let now C ⊂ [n] be a set of minimum cardinality for
which

⋃
j∈C I j (εA∗(b)) = [m] holds. That is, C contains

the bare minimum of elements of εA∗(b) that are needed
to satisfy the constraint of (9). C defines a solution of
Problem (9):
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Proposition 2 Vector x? ∈ Kn, defined as

x�
j =

{
[εA∗(b)] j , j ∈ C

⊥, otherwise
(11)

is a solution to Problem (9).

Proof Let x′ ∈ S(A,b), then
⋃

j∈supp(x′) I j (x
′) = [m].

Then, it can be seen (Lemma 1) that also
⋃

j∈supp(x′)
I j (εA∗(b)) = [m] holds. Thus, by the definition of C , it
is |supp(x′)| ≥ |C | = |supp(x)|.

The proof of Lemma 1 concludes the proof. ��

Lemma 1 I j (x) ⊆ I j (εA∗(b)) for all x ∈ S(A,b).

Proof Let x ∈ S(A,b) and i ∈ I j (x), then ai j�x j = bi .
It holds x j ≤ [εA∗(b)] j (from Theorem 1) and, since �

is an increasing operation (as a dilation in K), we have
ai j�x j ≤ ai j�[εA∗(b)] j ⇐⇒ bi ≤ ai j�[εA∗(b)] j . But
ai j�[εA∗(b)] j ≤ bi for all i, j (since εA∗(b) ∈ S(A,b)), so
ai j�[εA∗(b)] j = bi , or i ∈ I j (εA∗(b)). ��

Therefore, finding the sparsest solution of a dilation equa-
tion δA(x) = b requires the following steps:

– Computing an erosion, εA∗(b).
– Computing n sets of indices I j (εA∗(b)) for all j ∈ [n].
– Finding the minimum set cover of [m] from the

{I j (εA∗(b))}nj=1 collection.

Example 1 Consider the scalar max-min clodum ([0, 1],∨,

∧,min,max). We are searching for the sparsest solution of
the following equation:

⎛

⎝
1 0.4 0
0.3 1 0.5
0.7 0.2 1

⎞

⎠ ∧
⎛

⎝
x1
x2
x3

⎞

⎠ =
⎛

⎝
0.8
0.4
0.7

⎞

⎠ . (12)

The adjoint vector erosion is defined through the scalar
erosion ζ (see (4) and [24] for further details):

ζ(a, w) =
{

w, w < a

1, w ≥ a.
(13)

Hence:

ε(b) =
⎛

⎝
ζ(1, 0.8) ∧ ζ(0.3, 0.4) ∧ ζ(0.7, 0.7)
ζ(0.4, 0.8) ∧ ζ(1, 0.4) ∧ ζ(0.2, 0.7)
ζ(0, 0.8) ∧ ζ(0.5, 0.4) ∧ ζ(1, 0.7)

⎞

⎠

=
⎛

⎝
0.8 ∧ 1 ∧ 1
1 ∧ 0.4 ∧ 1
1 ∧ 0.4 ∧ 0.7

⎞

⎠ =
⎛

⎝
0.8
0.4
0.4

⎞

⎠ ,

(14)

which is a solution to equation (12), since:

δ(ε(b)) =
⎛

⎝
1 0.4 0
0.3 1 0.5
0.7 0.2 1

⎞

⎠ ∧
⎛

⎝
0.8
0.4
0.4

⎞

⎠

=
⎛

⎝
min(1, 0.8) ∨ min(0.4, 0.4) ∨ min(0, 0.4)
min(0.3, 0.8) ∨ min(1, 0.4) ∨ min(0.5, 0.4)
min(0.7, 0.8) ∨ min(0.2, 0.4) ∨ min(1, 0.4)

⎞

⎠

=
⎛

⎝
0.8 ∨ 0.4 ∨ 0
0.3 ∨ 0.4 ∨ 0.4
0.7 ∨ 0.2 ∨ 0.4

⎞

⎠ =
⎛

⎝
0.8
0.4
0.7

⎞

⎠ . (15)

Its three indices sets are I1(ε(b)) = {1, 3}, I2(ε(b)) =
I3(ε(b)) = {2}; thus, the sparsest solutions are the vectors
(
0.8, 0.4, 0

)T
and

(
0.8, 0, 0.4

)T
. Notice that the sparsest

solution is not unique.

Finding the minimum set cover of a set is an NP-complete
problem. Nevertheless, we can resort to known polynomial
time approximation algorithms for solving it. In particular,
we can create iteratively a cover by picking each time the set
that contains the most currently non-covered elements [36].
This requires O(n2) time and produces a set cover whose
size is at most H(dmax) times the cardinality of the optimal
cover (where dmax the largest cardinality of a I j (ε(b)) and
H(n) denotes the n-th harmonic number).

Now we show that Problem (9) is indeed NP-hard for a
certain class of cloda, that satisfy the following condition:

Assumption I

∃c ≥ e, c �= e :
∨

{u ∈ K | c�u = c} = e (16)

Note that each clog satisfies Assumption I, since c�u =
c ⇐⇒ u = e, ∀c. However, it doesn’t hold in the max-min
clodum ([0, 1],∨,∧,min,max) thatwe just studied, because
�c ≥ e, c �= e (since e = �).

Theorem 2 Letk-sparsebe the decision problemcounterpart
of (9): Given matrices A ∈ Km×n,b ∈ Km with values from
a scalar clodum K that satisfies Assumption I, is there a
solution x ∈ Kn of equation (3) with |supp(x)| ≤ k?
k-sparse is NP-hard.

Proof Let k-Set Cover be the following problem: Let U =
[m] be a set and {Mj }nj=1 a collection of n other sets. Is there
a set of indices S, such that |S| ≤ k and ∪ j∈SM j = U?
We will show that k-Set Cover reduces in polynomial time
to k-sparse.

We construct A ∈ Km×n and b ∈ Km as following:

ai j =
{
c, i ∈ Mj

e, otherwise

bi = c, ∀i ∈ [m],
(17)
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where c ∈ K is a witness of formula (16). First, we calculate
the vector erosion εA� (b) (denoted as ε(b) for the sake of
simplicity):

[ε(b)] j =
∧

i

ζ(a ji , bi ) = ζ(c, c) ∧ ζ(e, c). (18)

We have:

ζ(e, c) = sup{u ∈ K | e�u ≤ c}
= sup{u ∈ K | u ≤ c} = c,

ζ(c, c) = sup{u ∈ K | c�u ≤ c}.
(19)

Let u ≥ e, then c�u ≥ c, so if c�u ≤ c, then
c�u = c. Hence, from Assumption I: ζ(c, c) = e. There-
fore, [ε(b)] j = e, ∀ j ∈ [n]. We can now show the two
directions of the reduction:

⇒: If (U , {Mj }, k) has a cover S (meaning
⋃

j∈S M j = U
with |S| ≤ k), then we define x as:

x j =
{

[ε(b)] j = e, j ∈ S

⊥, otherwise
(20)

and
∨

j ai j�x j = c�e ∨ e�⊥ = c, so δ(x) = b with
|supp(x)| = |S| ≤ k; thus, (A,b) has a k-sparse solution.

⇐: In the opposite direction, if (A,b) has a k-sparse solu-
tion x, then

⋃
j∈supp(x) I j (x) = [m]. We have:

I j (x) = {i | ai j�x j = bi }
= {i | ai j�x j = c} (21)

From Theorem 1, it is x j ≤ [ε(b)] j = e; hence, I j (x) =
{i | ai j = c} = Mj . So, (U , {Mj }) has a cover of cardinality
at most k. ��

4 Sparsity in Max-plus Algebra

Wenow turn our attention to themax-plus clog (referred to as
max-plus algebra for the rest of this section). Sparsity in this
space was introduced in [34]. A vector x ∈ R

n
max is called

sparse if it contains many −∞ elements and we define its
support set, supp(x), to be the set of positions where vector x
has finite values, that is supp(x) = {i | xi �= −∞}. We know
from Theorem 2 (its max-plus version was proved in [34])
that finding an exact solution to a max-plus matrix equation:

A � x = b (22)

is an NP-hard problem. However, in many problems and
applications an approximate solution may be sufficient
(or even preferable). For instance, one may use max-plus

equations to fit a convex function to data, by utilizing the
representation as maxima of hyperplanes that each convex
function admits [26]. Solving these equations gives us the
exact hyperplanes that form our function, meaning that, in
the presence of noisy data, an approximate solution might
be beneficial. This is because such a solution would be less
susceptible to the variance of the data.

4.1 Sparse �p, p < ∞ Approximate Solutions
to Max-plus Equations

Hence, we will study now the problem of finding the spars-
est �p approximate solution to the max-plus matrix equation
A � x = b,A ∈ R

m×n,b ∈ R
m . Such a solution should i)

haveminimumsupport set supp(x), and ii) have small enough
approximation error ‖b − A � x‖p

p, for some �p, p < ∞,
norm. For this reason, given a prescribed constant ε, we for-
mulate the following optimization problem:

arg min
x∈Rn

max

|supp(x)|, s.t. ‖b − A � x‖p
p ≤ ε, p < ∞

A � x ≤ b.

(23)

Note that we add an additional constraintA � x ≤ b, also
known as the “lateness” constraint. This constraint makes
problem (23) more tractable; it enables the reformulation of
problem (23) as a set optimization problem in (31). In many
applications, this constraint is desirable–see [34]. However,
in other situations, it might lead to less sparse solutions or
higher residual error. A possible way to overcome this con-
straint is explored in Sect. 4.2.

Even with the additional lateness constraint, problem (23)
is very hard to solve. Observe, for example, that when ε = 0,
we recover the initial exact problem that is NP-hard. Thus,
we do not expect to find an efficient algorithm which solves
(23) exactly. Instead, as we prove next, there is a polyno-
mial time algorithm which finds an approximate solution,
by leveraging its supermodular properties. By approximate
solution, we now mean a vector that has a support set of
approximately minimum cardinality. This approximation is
quantified in Proposition 4.

First, let us show that the above problem can be formed
as a discrete optimization problem over a set. The analysis
is similar to prior work [34], where the case p = 1 was
examined. For the rest of this section, let J = [n].
Lemma 2 (Projection on the support set, �pcase) Let
T ⊆ J ,

XT = {x ∈ R
n
max : supp(x) = T , A � x ≤ b}. (24)

and x|T be defined as x̂ inside T and −∞ otherwise, where
x̂ is the principal solution defined in (6). Then, it holds:
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1. x|T ∈ XT .
2. ‖b − A � x|T ‖p

p ≤ ‖b − A � x‖p
p ∀x ∈ XT .

Proof 1. It suffices to show that A � x|T ≤ b. For j ∈ T it
is [x|T ] j = x̂ j and for j ∈ J \ T , [x|T ] j = −∞ ≤ x̂ j .
Thus,

x|T ≤ x̂ ⇐⇒ A � x|T ≤ A � x̂ �⇒ A � x|T ≤ b.

(25)

Hence, x|T ∈ XT .
2. Let x ∈ XT , then A � x ≤ b ⇐⇒ x ≤ x̂,

which implies (since both x, x|T have−∞ values outside
of T ):

x ≤ x|T ⇐⇒ b − A � x|T ≤ b − A � x. (26)

Hence,

‖b − A � x|T ‖p
p

=
∑

j∈T
(b − A � x|T )

p
j

≤
∑

j∈T
(b − A � x)pj = ‖b − A � x‖p

p. (27)

��
The previous lemma informs us that we can fix the finite

values of a solution of Problem (23) to be equal to those of
the principal solution x̂. Indeed,

Proposition 3 Let xOPT be an optimal solution of (23), then
we can construct a new one with values inside the support
set equal to those of the principal solution x̂.

Proof Define

z =
{
x̂ j , j ∈ supp(xOPT)

−∞, otherwise
, (28)

then supp(xOPT) = supp(z) and, from Lemma 2, ‖b − A �
z‖p

p ≤ ‖b − A � xOPT‖p
p and A � z ≤ b. Thus, z is also an

optimal solution of (23). ��
Therefore, the only variable that matters in Problem (23)

is the support set. To further clarify this, let us proceed with
the following definitions:

Definition 3 Let T ⊆ J be a candidate support and let A j

denote the j-th column of A. The error vector e : 2J → R
m

is defined as:

e(T ) =
{
b − ∨

j∈T (A j + x̂ j ), T �= ∅
∨

j∈J e({ j}), T = ∅.
(29)

Observe that for any T , it holds
∨

j∈T (A j + x̂ j ) ≤
∨

j∈J (A j + x̂ j ) ≤ b, which means that the above vector
e(T ) = (e1(T ), e2(T ), . . . , em(T ))ᵀ is always non-negative.
We also define the corresponding error function Ep : 2J →
R as:

Ep(T ) = ‖e(T )‖p
p =

m∑

i=1

(ei (T ))p. (30)

Problem (23) can now be written as:

arg min
T⊆J

|T |
s.t. Ep(T ) ≤ ε

(31)

The main results of this section are based on the following
properties of Ep.

Theorem 3 Error function Ep is decreasing and
supermodular.

Proof Regarding the monotonicity, let ∅ �= C ⊆ B ⊂ J ,
then

∨

j∈C
(A j + x̂ j ) ≤

∨

j∈B
(A j + x̂ j ) ⇐⇒ e(B) ≤ e(C), (32)

thus raising the, non-negative, components of the two vectors
to the p-th power and adding the inequalities together yield
Ep(B) ≤ Ep(C). The case for C = ∅ easily follows from
the definition of e.

Let S, L ⊆ U ⊆ J , with |S| ≤ K , S ∩ L = ∅ and define
f (U ) = −Ep(U ), ∀ U . Then:

γU ,K ( f ) = min
L,S

∑
sk∈S f (L ∪ {sk}) − f (L)

f (L ∪ S) − f (L)
, (33)

where f (L) = ∑m
i=1[bi − ∨

j∈L(Ai j + x̂ j )]p.
Let now I1 be the set:

I1 = {i |
∨

j∈L∪S

(Ai j + x̂ j ) =
∨

j∈L
(Ai j + x̂ j )} (34)

and for each sk ∈ S, we define two sets of indices:

I2(sk) = {i |
∨

j∈L∪{sk }
(Ai j + x̂ j ) =

∨

j∈L∪S

(Ai j + x̂ j ) >
∨

j∈L
(Ai j + x̂ j )}

(35)
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and

I3(sk) = {i |
∨

j∈L∪S

(Ai j + x̂ j ) >

∨

j∈L∪{sk }
(Ai j + x̂ j ) >

∨

j∈L
(Ai j + x̂ j )}.

(36)

Then, if

�1(L, S) =
∑

sk∈S

∑

i∈I1,I2(sk )
{−[bi −

∨

j∈L∪{sk }
(Ai j + x̂ j )]p

+ [bi −
∨

j∈L
(Ai j + x̂ j )]p}

(37)

and

�2(L, S) =
∑

sk∈S

∑

i∈I3(sk )
−[bi −

∨

j∈L∪{sk }
(Ai j + x̂ j )]p

+ [bi −
∨

j∈L
(Ai j + x̂ j )]p,

(38)

the ratio becomes:

γU ,K ( f ) = min
L,S

�1(L, S) + �2(L, S)

�1(L, S)
≥ 1, ∀ U , K (39)

meaning (Proposition 1) that f is submodular or, equiva-
lently, Ep = − f is supermodular. ��

Algorithm 1: Approximate solution of problem (23)
Input: A,b
Compute x̂ = (−A)ᵀ �′

b
if Ep(J ) > ε then

return Infeasible
Set T0 = ∅, k = 0
while Ep(Tk) > ε do

j = argmins∈J\Tk Ep(Tk ∪ {s})
Tk+1 = Tk ∪ { j}
k = k + 1

end
x j = x̂ j , j ∈ Tk and x j = −∞, otherwise
return x, Tk

Setting Ẽ p(T ) = max(Ep(T ), ε)1 and leveraging the pre-
vious theorem, we are able to formulate problem (31), and
thus the initial one (23), as a cardinality minimization prob-
lem subject to a supermodular equality constraint [36], which
allows us to approximately solve it by the greedy Algorithm
1. Algorithm 1 selects greedily at each step the index j whose
inclusion on the support set yields the greatest decrease on
the error function. The calculation of the principal solution

1 The new, truncated, error function remains supermodular [18].

requiresO(nm) time and the greedy selection of the support
set of the solution costsO(n2) time. We call the solutions of
problem (23) Sparse Greatest Lower Estimates of b. Regard-
ing the approximation ratio between the optimal solution and
the output of Algorithm 1, the following proposition holds.

Proposition 4 Let x be the output of Algorithm 1 after k >

0 iterations of the inner while loop and Tk the respective
support set. Then, if T ∗ is the support set of the optimal
solution of (23), the following inequality holds:

|Tk |
|T ∗| ≤ 1 + log

(
m�p − ε

Ep(Tk−1) − ε

)

, (40)

where � = ∨
i, j (bi − Ai j − x̂ j ).

Proof From [36], the following bound holds for the cardi-
nality minimization problem subject to a supermodular and
decreasing constraint, defined as function f : 2J → R, by
the greedy algorithm:

|Tk |
|T ∗| ≤ 1 + log

(
f (∅) − f (J )

f (Tk−1) − f (J )

)

(41)

For our problem, it is f = Ẽ p. Observe now that, since
k > 0, Ẽ p(∅) = Ep(∅) ≤ m�p, 0 ≤ Ẽ p(J ) = ε and
Ẽ p(Tk−1) > ε. Therefore, the result follows. ��

The ratio warns us to expect less optimal and, thus, less
sparse vectors when increasing the norm p that we use to
measure the approximation. It also hints toward an inapprox-
imability result when p → ∞, which is formalized next.

4.2 Sparse Vectors with Minimum �∞ Errors

Although in some settings theA � x ≤ b constraint is needed
[34], in other cases it could disqualify potentially sparser
vectors from consideration. Omitting the constraint, on the
other hand, makes it unclear how to search for minimum
error solutions for any �p (p < ∞) norm. For instance, it
has recently been reported that it is NP-hard to determine
if a given point is a local minimum for the �2 norm [17].
For that reason, we shift our attention to the case of p =
∞. It is well known [6,8] that the problem minx∈Rn

max
‖b −

A � x‖∞ has a closed form solution; it can be calculated in
O(nm) time by adding to the principal solution element-wise
the half of its �∞ error. Note that this new vector does not
necessarily satisfyA � x ≤ b, so it shows away to overcome
the aforementioned limitation 2

2 Anadditionalmotivation for the adoption of the �∞ comes from recent
work on Supermodular Optimization that shows that certain problems
that are NP-hard under general �p normed error functions are actually
solvable in polynomial time when p = ∞ [21].
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First, let us demonstrate that problem (23), when consider-
ing the �∞ norm, becomes non-approximable by the greedy
Algorithm 1. Hence, consider now the following optimiza-
tion problem:

arg min
x∈Rn

max

|supp(x)|
s.t. ‖b − A � x‖∞ ≤ ε.

(42)

Thanks to a similar construction as in the previous section,
this problem can be recast as a set-search problem.

Lemma 3 (Projection on the support set, �∞case) Let T ⊆
J , x|T defined as x̂ inside T and −∞ otherwise and x∗ =
x|T + ‖b−A�x|T ‖∞

2 . Then ∀ z ∈ R
n
max with supp(z) = T , it

holds:

‖b − A � z‖∞ ≥ ‖b − A � x∗‖∞ = ‖b − A � x|T ‖∞
2

.

(43)

proof (Sketch) By fixing the support set of the considered
vectors equal to T , equivalently we omit the columns and
indices of A and x, respectively, that do not belong in T
(since they will not be considered at the evaluation of the
maximum). By doing so, we get a new equation with same
vector b and restricted A, x. The vector x∗ that minimizes
the �∞ error of this equation is obtained from its principal
solution plus the half of its �∞ error. But now observe that
the new principal solution shares the same values with the
original principal solution (follows from Lemma 2) inside
T , which is exactly vector x|T . Extending x∗ back to R

n
max

yields the result. ��
So, a similar result to Proposition 3 holds.

Proposition 5 Let xOPT be an optimal solution of (42), then
we can construct a new one with values inside the support
set equal to those of the principal solution x̂ plus the half of
its �∞ error.

By defining E∞(T ) = ‖b−A�x|T ‖∞
2 , (42) becomes:

arg min
T⊆J

|T |
s.t. E∞(T ) ≤ ε

(44)

Unfortunately this problem does not admit an approxi-
mate solution by the greedy Algorithm 1 (to be precise, the
modified version of Algorithm 1 when Ep becomes E∞), as
its error function, although decreasing, is not supermodular.
The following example also reveals that the submodularity
ratio (8) of E∞ is 0. Therefore, it is not even approximately
supermodular and a solution by Algorithm 1 can be arbitrar-
ily bad [9].

Example 2 Let A =
⎛

⎝
0 5 2
4 1 0
0 1 0

⎞

⎠ ,b =
⎛

⎝
3
1
0

⎞

⎠, then principal

solution x̂ is:

x̂ =
⎛

⎝
0 −4 0

−5 −1 −1
−2 0 0

⎞

⎠ �′
⎛

⎝
3
1
0

⎞

⎠ =
⎛

⎝
−3
−2
0

⎞

⎠ .

We calculate now the error function on different sets:

– When T = {3}, then x̂|{3} = (−∞,−∞, 0
)ᵀ

and

E∞({3}) = 1
2‖b−∨

j∈{3}(A j+ x̂ |{3}, j )‖∞ = 1
2‖

⎛

⎝
3
1
0

⎞

⎠−
⎛

⎝
2
0
0

⎞

⎠ ‖∞ = 1
2 .

– When T = {1, 3}, E∞({1, 3}) = 1
2‖

⎛

⎝
3
1
0

⎞

⎠ −
⎛

⎝
−3
1

−3

⎞

⎠
∨

⎛

⎝
2
0
0

⎞

⎠ ‖∞ = 1
2 .

– When T = {2, 3}, E∞({2, 3}) = 1
2‖

⎛

⎝
3
1
0

⎞

⎠ −
⎛

⎝
3

−1
−1

⎞

⎠
∨

⎛

⎝
2
0
0

⎞

⎠ ‖∞ = 1
2 .

– When T = {1, 2, 3}, E∞({1, 2, 3}) = 1
2‖

⎛

⎝
3
1
0

⎞

⎠ −
⎛

⎝
−3
1

−3

⎞

⎠
∨

⎛

⎝
3

−1
−1

⎞

⎠
∨

⎛

⎝
2
0
0

⎞

⎠ ‖∞ = 0.

Let now f = −E∞, L = {3}, S = {1, 2}, then, by (8), we
have:

f ({3} ∪ {1} − f ({3}) + f ({3} ∪ {2}) − f ({3})
f ({3} ∪ {1, 2}) − f ({3})

= −1/2 + 1/2 − 1/2 + 1/2

0 + 1/2
= 0,

(45)

meaning that f has submodularity ratio 0 or E∞ is not even
approximately supermodular.

Although the previous discussion denies from problem
(42) a greedy solution with any guarantees, we propose next
a practical alternative to get a sparse enough vector.

We first obtain a sparse vector xp,ε by solving prob-
lem (23) for a fixed �p, p < ∞, norm. Then, we add to this
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vector element-wise half of its �∞ error ‖b−A�xp,ε‖∞/2.
Interestingly, this new solution minimizes the �∞ error
among all vectors with the same support, as formalized in the
following result. We will call such a solution Sparse Mini-
mum Max Absolute Error (SMMAE) estimate of b and will
denote it by xSMMAE.

Proposition 6 Let xSMMAE ∈ R
n
max be defined as:

xSMMAE = xp,ε + ‖b − A � xp,ε‖∞
2

, (46)

where xp,ε is a solution of problem (23) with fixed (p, ε).
Then ∀ z ∈ R

n
max with supp(z) = supp(xp,ε), it holds

‖b − A � z‖∞ ≥ ‖b − A � xSMMAE‖∞

= ‖b − A � xp,ε‖∞
2

(47)

and, also,

‖b − A � xSMMAE‖∞ ≤
p
√

ε

2
. (48)

Proof Observe that xp,ε is equal to the principal solution x̂
inside supp(xp,ε). So the first inequality holds from Lemma
3. Regarding the second one, we have:

‖b − A � xSMMAE‖∞ = ‖b − A � xp,ε‖∞
2

=
∨

i (bi − [A � xp,ε]i )
2

.

(49)

But, notice that:

(
∨

i

bi − [A � xp,ε]i
)p

=
∨

i

(bi − [A � xp,ε]i )p

≤
∑

i

(bi − [A � xp,ε]i )p ≤ ε,

(50)

so

∨

i

(bi − [A � xp,ε]i ) ≤ p
√

ε (51)

and the result follows from (49). Note that the bound tightens,
as p increases. ��

The abovemethod provides sparse vectors that are approx-
imate solutions of the equation with respect to the �∞ norm
without the need of the lateness constraint. After computing
xp,ε , xSMMAE requires O(m|supp(xp,ε)| + |supp(xp,ε)|) =
O((m + 1)|supp(xp,ε)|) time.

The previous approach, however, depends on the norm
order p that we use to compute the sparse vector xp,ε . Since
the previous theoretical treatment does not give a definite
answer on how to make this choice, we address the problem
numerically, and we find that in general a higher order norm
yields smaller supports, without affecting the fidelity of the
solutions (measured by the �∞ error of the approximation).

We generate random 50 × 100 matrices A with elements
taking values in the set {0, . . . , 98} and 50-dimensional vec-
tors b with values in {0, . . . , 105}. We first compute the
solution of problem (23) for p = 1, setting ε = ‖b −
A� x̂‖1 + 1 to guarantee feasibility (x̂ is the principal solu-
tion defined in (6)). Let x1 be the resultant sparse vector.
Then, we solve (23) for increasing values of p and we set
ε = ‖b−A� x1‖p in order to force the solution to be simi-
lar to x1 (so that the comparison between different values of
p is fair).

First, we assess the sparsity of the resultant vectors (Fig.
1 (left)). We find that the larger the norm order p, the sparser
the vector is, even though the behavior is not strictly mono-
tonic (it has no reason to be from the theory). Second, we
examine the �∞ approximation error of this vector across p
(Fig. 1 (right)). Interestingly, the decreased cardinality of the
support set of the solution does not harm approximation per-
formance as measured by �∞. We see almost no increase in
the error, as p increases. These two insights together suggest
that, when searching for sparse vectors with small �∞ error, it
is beneficial to consider large normorder p to find xp,ε before
adding to it the half of its �∞ approximation error. Finally,
in Fig. 1 (right) we also show the �∞ error of the SMMAE
estimate of b, and, as the theory predicts, it is exactly half of
its corresponding xp,ε vector.

5 Application in Neural Network Pruning

Recently, there has been a renewed interest in Morpholog-
ical Neural Networks [7,12,28,33] which consist of neural
networks with layers performing morphological operations
(dilations or erosions). While they are theoretically appeal-
ing because of the success that morphological operations
had in traditional computer vision tasks and the universal
approximation property that these networks possess, they
have also shown an ability to be pruned and produce inter-
pretable models [7,10,39]. Herein, we propose a way to do
this systematically, by formulating the pruning problem as a
system of max-plus equations and leveraging the theory of
the previous section.

Let a morphological network be a multi-layered network
that contains layers of linear transformations followed by
max-plus operations. The authors of [39] call this sequence of
layers as aMax-plus block. If x ∈ R

d represents the input and

123



Journal of Mathematical Imaging and Vision

Fig. 1 Effect of norm on the
support and the �∞ error of the
solution. We report median
values, while the shaded regions
denote one standard deviation
across 100 different random
pairs of A,b matrices. Left:
Cardinality of support as a
function of the selected norm
order p. Right: �∞
approximation error as a
function of p. It shows the error
of (1) solutions of (23) (SGLE),
and (2) the optimal max
absolute error estimates defined
in (46) (SMMAE)

(a) (b)

Fig. 2 Morphological neural networks

k is the output’s dimension, then a simple network of 1 Max-
plus block (see Fig. 2) performs the following operations:

z = Wx,

y = A � z,
(52)

where W ∈ R
n×d and A ∈ R

k×n
max . Suppose now that

this network has been trained successfully, possibly with a
redundant number n of neurons and we wish to maintain its
accuracy while minimizing its size. For each training sample
(x(i), y(i)), it holds ỹ(i) = A � z(i), where ỹ(i) is the net-
work’s prediction. We keep now fixed the prediction (that
we wish to maintain) and the matrix A and we find a sparse
approximate solution of this equation with respect to vector
z(i). Observe that if a value of z equals −∞, then equiva-
lently we can set the corresponding column of A to -∞, thus
pruning thewhole unit. Of course, this naive techniquewould
prune units that are important for other training samples. We

propose overcoming this by finding sparse solutions for each
sample, counting howmany times each index j ∈ {1, . . . , n}
has been found inside the support set of a solution and then
keeping only the k most frequent values.

The proposed method enables one to fully prune neurons
from any layer that performs a max-plus operation, without
harming its performance, and produce compact, interpretable
networks. We support the above analysis by providing an
experiment on MNIST and FashionMNIST datasets. Both
datasets are balanced and contain 10 different classes.

Example 3 We train 2 networks for each dataset, contain-
ing 1 max-plus block with 64 and 128 neurons, respectively,
inside the hidden layer, for 20 epochs with Stochastic Gra-
dient Descent optimizing the Cross Entropy Loss.

After the training, we pick at random 10000 samples from
the training dataset (which account to 17%of thewhole train-
ing data), we perform a forward pass over the network for
eachoneof them toobtain predictions and then runAlgorithm
1 with p = 20 and ε = 220, so that we acquire sparse vectors
z (and their support sets). Then, we simply find the 10 (same
as the number of classes) most frequent indices inside the
support sets of the solutions, keep the units that correspond
to those indices and prune the rest of them.As shown in Table
1, all of the pruned networks record the same test accuracy
as the full models, while having 54 and 118 less neurons,
respectively. Note that trying to train from scratch networks
with n = 10, under the same training setting, produces sig-
nificantly worse results (around 60% for both datasets for 5
different random seeds).
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Table 1 Test set accuracy before and after pruning

MNIST FashionMNIST

64 128 64 128

Full model 92.21 92.17 79.27 83.37

Pruned (n = 10) 92.21 92.17 79.27 83.37

6 Conclusions and FutureWork

In this work, we performed a few steps toward a complete
theory of sparsity in a specific class of nonlinear spaces,
called complete weighted lattices. We introduced the con-
cept of sparsity, explained how one can find sparse solutions
to equations of this kind and discussed the computational
aspects of it. Then, we focused on the case of max-plus alge-
bra, a specific subcase of such a space. We posed generalized
optimization problems for the computation of sparse approx-
imate solutions of max-plus matrix equations and proposed
methods for solving them.We briefly presented then how this
sparsity framework might be utilized in the pruning of a spe-
cial class of Neural Networks. It is a subject of future work to
expand the general sparse framework to cover sparse approx-
imate solutions to any weighted lattice, study other notions
of approximations such as the range semi-metric, investigate
the applications of sparsity in more areas of applications, and
perform further experiments on the proposed pruning tech-
nique in deeper networks or more general, max-min neural
networks [37].
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