
1

Revisiting Tropical Polynomial Division: Theory,
Algorithms, and Application to Neural Networks

Ioannis Kordonis, Petros Maragos, Life Fellow IEEE

Abstract—Tropical geometry has recently found several
applications in the analysis of neural networks with piecewise
linear activation functions. This paper presents a new look at
the problem of tropical polynomial division and its application
to the simplification of neural networks. We analyze tropical
polynomials with real coefficients, extending earlier ideas and
methods developed for polynomials with integer coefficients. We
first prove the existence of a unique quotient-remainder pair and
characterize the quotient in terms of the convex bi-conjugate
of a related function. Interestingly, the quotient of tropical
polynomials with integer coefficients does not necessarily have
integer coefficients. Furthermore, we develop a relationship of
tropical polynomial division with the computation of the convex
hull of unions of convex polyhedra and use it to derive an
exact algorithm for tropical polynomial division. An approximate
algorithm is also presented, based on an alternation between
data partition and linear programming. We also develop special
techniques to divide composite polynomials, described as sums or
maxima of simpler ones. Finally, we provide numerical results to
demonstrate the efficiency of the proposed algorithms, using the
MNIST handwritten digits, SVHN, CIFAR-10, and CIFAR-100
datasets, along with an application example in Learning Model
Predictive Control.

Index Terms— Tropical geometry, Piecewise linear neural
networks, Tropical polynomial division, Neural network
compression

I. INTRODUCTION

Tropical geometry is a relatively new research field
combining elements and ideas from polyhedral and algebraic
geometry [1]. The underlying algebraic structure is the
max-plus semiring (also known as tropical semiring), where
the usual addition is replaced by maximization and the
standard multiplication by addition. Tropical polynomials
(also known as max-polynomials) are the polynomials in the
max-plus algebra and have a central role in tropical geometry.
This work deals with the division of tropical polynomials and
presents some applications in neural network compression.

A link between tropical geometry and machine learning was
recently developed [2], [3]. An important application is the
analysis of neural networks with piecewise linear activations
(e.g., ReLU). In this front, [3], [4], [5], [6], [7], [8] use
a tropical representation of neural networks to describe the
complexity of a network structure, defined as the number of
its linear regions, or describe their decision boundaries. [9]

The authors are with the National Technical University of Athens, School
of Electrical and Computer Engineering, Greece.
Author emails: kordonis@central.ntua.gr, maragos@cs.ntua.gr.

The research project was supported by the Hellenic Foundation for Research
and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to
support Faculty Members & Researchers” (Project Number:2656, Acronym:
TROGEMAL).

presents an algorithm to extract the linear regions of deep
ReLU neural networks. Papers [10], [11], [12] deal with the
problem of tropical polynomial division and its use in the
simplification of neural networks. The analysis is, however,
restricted to polynomials with integer coefficients. Articles
[13], [14] use tropical representations of neural networks
and employs polytope approximation tools to simplify them.
Another class of networks represented in terms of tropical
algebra is morphological neural networks [15], [16], [17],
[18], [19], [20]. Other applications of tropical algebra and
geometry include the tropical modeling of classical algorithms
in probabilistic graphical models [21], [22] and piecewise
linear regression [23], [24]. Neural networks employing the
closely related log-sum-exp nonlinearity were presented in
[25], [26].

Another problem very much related to the current work is
the factorization of tropical polynomials. This problem was
first studied in [27], [28], [29], [30], for the single-variable
case, and in [31], [32] for the multivariate case. The problem
of tropical rational function simplification was studied in [33].
Another related problem is approximation in tropical algebra
(see, e.g., [34]).

Contribution: This work deals with the problem of tropical
polynomial division and its applications in simplifying neural
networks. The analysis generalizes previous works [10], [11],
[12] to include polynomials with real coefficients. We first
introduce a new notion of division and show that there
is a unique quotient-remainder pair. Furthermore, we show
that the quotient is equal to the convex bi-conjugate of the
difference between the dividend and the divisor. Then, the
quotient is characterized in terms of the closed convex hull
of the union of a finite collection of convex (unbounded)
polyhedra. This characterization leads to a simple exact
algorithm based on polyhedral geometry. We propose an
efficient approximate scheme inspired by an optimization
algorithm for convex, piecewise-linear fitting [35]. The
approximate algorithm alternates between data clustering and
linear programming. Then, we focus on developing algorithms
for dividing composite polynomials expressed as the sum of
simpler ones. The division results are then applied to simplify
neural networks with ReLU activation functions. The resulting
neural network has fewer neurons with maxout activations and
a reduced total number of parameters. Finally, we present
numerical results for the MNIST handwritten digit, SVHN,
CIFAR-10 and CIFAR-100 image classification problems. As
a baseline for comparison, we use the structured L1 pruning
without retraining. The proposed method is very competitive
in the large compression regime, that is, in the case where

petro
Text Box
Please cite as: I. Kordonis and P. Maragos, "Revisiting Tropical Polynomial Division: Theory, Algorithms, and Application to Neural Networks", IEEE Transactions on Neural Networks and Learning Systems, 2025, DOI: https://doi.org/10.1109/TNNLS.2025.3570807 .

2

there are very few parameters remaining after compression.
We also present an additional application on learning Model
Predictive Control (MPC), where tropical division is used to
approximate the optimal cost-to-go.

The rest of the paper is organized as follows: Section II
presents some preliminary algebraic and geometric material.
In Section III, we develop some theoretical tools for tropical
polynomial division. An exact division algorithm is presented
in Section IV, and an approximate algorithm in Section V.
Section VI deals with the division of composite tropical
polynomials. Finally, VII gives some numerical examples. The
proofs of the theoretical results are presented in the Appendix.

II. PRELIMINARIES, BACKGROUND AND NOTATION

Max-plus algebra is a modification of the usual algebra of
the real numbers, where the usual summation is substituted
by maximum and the usual multiplication is substituted
by summation [36], [37], [38], [39]. Particularly, max-plus
algebra is defined on the set Rmax = R ∪ {−∞} with the
binary operations “∨” and “+”. The operation “+” is the usual
addition. The operation “∨” stands for the maximum, i.e. for
x, y ∈ Rmax, it holds x ∨ y = max{x, y}. For more than
two terms we use“

∨
”, i.e.,

∨
i∈I xi = sup{xi : i ∈ I}. We

will also use the ‘∧’ notation to denote the minimum, i.e.,
x ∧ y = min{x, y}. A unified view of max-plus and several
related algebras, was developed in [40], in terms of weighted
lattices.

A tropical polynomial is a polynomial in the max-plus
algebra. Particularly, a tropical polynomial function [41], [42],
[43] is defined as p : Rn → Rmax with

p(x) =

mp∨
i=1

(aT
i x+ bi), (1)

where ai ∈ Rn and bi ∈ Rmax. In this paper, we will use the
terms tropical polynomial and tropical polynomial function
interchangeably.

For the tropical polynomial p(x), the Newton polytope is
defined as

Newt(p) = conv{a1, . . . ,amp
}, (2)

where “conv” stands for the convex hull, and extended Newton
polytope as

ENewt(p) = conv{[aT
1 b1]

T , . . . , [aT
mp

bmp]
T }. (3)

The values of the polynomial function p depend on the upper
hull of the extended Newton polytope [1] (see also [4]). A
polyhedron is subset of Rn which can be represented either
as the set of solutions of a finite collection of linear inequalities
(H−representation)

P = {x ∈ Rn : Ax ≤ b},

or in terms of a set of vertices v1, . . . ,vl ∈ Rn and a set of
rays w1, . . . ,ws ∈ Rn as

P =


l∑

j=1

λjvj +

s∑
j=1

µjwj : λj ≥ 0,

s∑
j=1

λj = 1, µj ≥ 0

 ,

(4)

H H

1
2

2

31

1 2

vv
H3

H4

vw

w

P

Fig. 1. Illustration of the Minkovski-Weil theorem. The unbounded polyhedron
P (green color in the figure) has two representations: H−reprsentation as the
intersection of halfspaces H1, . . . , H4 and V−representation generated by
vertices v1, v2, v3 and rays w1, w2.

(V−representation). The Minkowski-Weyl (resolution)
theorem states that each polyhedron admits both
representations [44]. Figure 1 illustrates the Minkowski-Weyl
resolution of an unbounded polyhedron. Furthermore,
there are several well-known algorithms for representation
conversion (e.g., [44], Ch. 9). Bounded polyhedra are called
polytopes. It is often convenient to describe polytopes in
terms of extended representations (e.g., [45]). An extension
of a polytope P ⊂ Rn is a polyhedron Q ⊂ Rn′

, with
n′ > n, along with a linear projection F : Rn′ → Rn such
that F (Q) = P .

For a function f : Rn → R ∪ {∞} the epigraph is defined
as

epi(f) = {(x, z) ∈ Rn+1 : z ≥ f(x)}.

The convex conjugate of f is a function f⋆ : Rn → R ∪
{+∞,−∞} given by (see [46])

f⋆(a) = sup{aTx− f(x) : x ∈ Rn}.

For a pair of polyhedra P1, P2 ⊂ Rn the Minkowski sum
is defined as

P1 ⊕ P2 = {x+ y : x ∈ P1, y ∈ P2}.

The following properties hold (see [4])

Newt(p1 + p2) = Newt(p1)⊕ Newt(p2),
Newt(p1 ∨ p2) = conv(Newt(p1) ∪ Newt(p2)).

Similar relations hold for the extended Newton polytopes as
well.

III. TROPICAL POLYNOMIAL DIVISION DEFINITION AND
EXISTENCE

We first define the tropical polynomial division.
Definition 1: Let p, d be tropical polynomials. We define

the quotient and the remainder of the division of p by d.
(a) A tropical polynomial q is the quotient if

p(x) ≥ q(x) + d(x), for all x ∈ Rn, (5)

and q is the maximum polynomial satisfying this
inequality. Particularly, for any tropical polynomial q̃,

3

such that p(x) ≥ q̃(x) + d(x), for all x ∈ Rn, it holds
q̃(x) ≤ q(x), for all x ∈ Rn.

(b) A tropical polynomial r is the remainder of the division
of p by d with quotient q if

p(x) = (q(x) + d(x)) ∨ r(x), for all x ∈ Rn, (6)

and r is the minimum tropical polynomial satisfying this
equality. Particularly, for any tropical polynomial r̃, such
that p(x) = (q(x)+ d(x))∨ r̃(x), it holds r̃(x) ≥ r(x),
for all x ∈ Rn.

Observe that the set of tropical polynomials q satisfying (5)
is closed under the pointwise maximum. That is, assume that
q1, q2 are tropical polynomials such that p(x) ≥ d(x)+q1(x)
and p(x) ≥ d(x)+q2(x), then it holds p(x) ≥ d(x)+(q1(x)∨
q2(x)). This property motivates us to determine the monomials

qa,bM (x) = aTx+ b,

that satisfy (5). For each monomial coefficient a, define the
maximum value of b that satisfy p(x) ≥ d(x) + qa,bM (x) as

l(a) = sup{b : qa,bM (x) + d(x) ≤ p(x), for all x ∈ Rn}. (7)

Note that l(a) can be written as

l(a) = sup{b : b ≤ p(x)− d(x)− aTx, for all x ∈ Rn}
= inf

x∈Rn
{p(x)− d(x)− aTx}.

Denoting by f(x) the difference p(x)− d(x), we have

l(a) = −f⋆(x),

where f⋆ is the convex conjugate of f . A candidate for the
quotient is

q(x) = sup
a∈Rn

{aTx+ l(a)}.

Note that q is the bi-conjugate of f . Indeed

q(x) = sup
a∈Rn

{aTx− f⋆(a)} = f⋆⋆(x). (8)

The following proposition shows that q(x) is indeed the
quotient of the division.

Proposition 1: For any pair of tropical polynomials p, d
there is a quotient-remainder pair. The quotient is given by
(8). Furthermore, the polynomial functions of the quotient and
remainder are unique.
Proof See Appendix A.

Remark 1: The use of the convex conjugate is closely
related to the slope transform [47], [48], [49]. The slope
transform was used to derive an analog of frequency response
of max-plus and more generally morhological systems.

Example 1 (Tropical Polynomial Division in 1D): Let
p(x) = max(−2x − 1, 1, x + 1, 3x − 3) and d(x) =
max(x, 2x− 1). Equivalently, the polynomial functions p and
d are written as

p(x) =


−2x− 1, if x ≤ −1

1, if − 1 < x ≤ 0

x+ 1, if 0 < x ≤ 2

3x− 3, if x ≥ 2

,

-2 0 2
x

-4

-2

0

2

4

6
p(x)
d(x)

-2 0 2
x

0

2

4

6

8

f(x)
q(x)

-2 0 2
x

-2

0

2

4

6

p(x)
d(x)+q(x)
r(x)

Fig. 2. This figure refers to Example 1. The left plot presents the dividend p
and the divisor d. The middle plot their difference f and the quotient q. The
right part shows the dividend p, its approximation d+ q and the remainder
r.

d(x) =

{
x, if x ≤ 1

2x− 1, if x > 1
.

Thus,

f(x) = p(x)− d(x) =



−3x− 1, if x ≤ −1

1− x, if − 1 < x ≤ 0

1, if 0 < x ≤ 1

−x+ 2, if 1 < x ≤ 2

x− 2, if x ≥ 2

The plots of p, d and f are given in Figure 2. The difference
f is not convex since the slopes −3,−1, 0,−1, 1 are not
increasing. The quotient q is given as the convex bi-conjugate
of f , that is the largest convex function which is less than
or equal to f , for all x. Thus, the quotient is given q(x) =
max(−3x+1, 1−x,−0.5x+1, x−2). The sum d(x)+q(x) is
equal to p(x), for all x, except x ∈ (0, 2). Thus, r(x) = x+1,
that is, the form of p(x), for x ∈ (0, 2).

We call the division nontrivial if q(x) > −∞ and effective
if r(x) ̸= p(x), for some x ∈ Rn. It is easy to see that an
effective division is also nontrivial. As shown in the previous
example, these notions are not equivalent.

Proposition 2: Assume that p and d are tropical
polynomials. If the division of p by d has quotient q and
remainder r. Then:

(a) The division of r by d is not effective.
(b) The division of p by q has quotient d and remainder r.

Proof See Appendix B.
Remark 2: For the Euclidean division of a positive integer

p by a positive integer d with quotient q and remainder r,
the notion of nontrivial division corresponds to q ̸= 0 and
effective division to r < p. For the division of positive integers,
we observe that these notions are equivalent. Furthermore, the
converse of (a) is true. Particularly, if for some q̄, r̄ ∈ N, it
holds p = dq̄ + r̄ and the division of r by d is not effective,
then q̄ is the quotient and r̄ the remainder.

On the other hand, for tropical polynomials, the converse
of (a) is not true. Particularly, it is possible that for a pair of
tropical polynomials p, d there is another pair q, r such that (6)
is satisfied, the division of r by d is not effective (or even is
trivial), but q, r is not a quotient-remainder pair. For example
consider p(x) = max(3x,−3x), d(x) = max(2x,−2x) and

4

q(x) = max(0, x), r(x) = max(0,−3x). It is easy to see that
the division of r by d is trivial.

Consider the set

C = {c ∈ Rn : Newt(cTx+ d(x)) ⊂ Newt(p(x))}. (9)

This set appears also [10], [11], [12] for the case of discrete
coefficients. It is not difficult to see that C is a convex
polytope. The following proposition shows that the division
is non-trivial if and only if C ̸= 0.

Proposition 3: Let C be the set defined in (9). Then,
(a) C is equal to the domain of function l(·) (given by (7)).

That is,

C = dom(l(a)) = {a ∈ Rn : l(a) > −∞}.

(b) The division is non-trivial if and only if C ̸= ∅
(c) It the quotient has the form q(x) =

∨mq

i=1(â
T
i x + b̂i),

then âi ∈ C, for all i.
Proof See Appendix C.

Corollary 1: Assume that the division of a tropical
polynomial p(x) =

∨mp

i=1(a
T
i x + bi) by another tropical

polynomial d(x) =
∨md

i=1(ã
T
i x+ b̃i) is nontrivial. Then

(i) It holds

span{ã1, . . . , ãmd
} ⊂ span{a1, . . . ,amp}.

(ii) The quotient q(x) =
∨mq

i=1(â
T
i x+ b̂i) is such that

span{â1, . . . , âmq
} ⊂ span{a1, . . . ,amp

}.

Proof: See Appendix D.
Remark 3: Corollary 1 can be used to simplify the division

of two tropical polynomials. Particularly, assume that

span{ã1, . . . , ãmd
} ⊂ span{a1, . . . ,amp} ⊊ Rd.

If Q is a matrix the columns of which represent an
orthonormal basis of the subspace span{a1, . . . ,amp

}, then
ai can be expressed in terms of a reduced dimension vector
ar
i as ai = Qar

i , and ãi similarly in terms of ãr
i as

ãi = Qãr
i . Then, the division of polynomials p and d can be

expressed in terms of reduced dimension polynomials pr, dr

as p(x) = pr(QTx) = pr(x̃), d = dr(QTx) = dr(x̃), where
the dimension of x̃ is equal to the rank of Q.

This observation is certainly useful when the number of
terms of the dividend mp is less than the space dimension d.
It will be also used in Section VI-B.

IV. AN EXACT ALGORITHM FOR TROPICAL DIVISION

We now present an algorithm to compute the quotient
and remainder of a division. The algorithm uses polyhedral
computations. Particularly, we use (8), and its equivalent in
terms of the epigraphs (see (30) in the appendix) to compute
q.

The input of the algorithm is a pair of tropical polynomials

p(x) =

mp∨
i=1

(aT
i x+ bi), d(x) =

md∨
j=1

(ãT
j x+ b̃j).

The first step is to compute a partition of Rn in polyhedra
on which f(x) = p(x) − d(x) is linear. To do so, for each

i, j, consider the polyhedron on which the terms i, j attain the
maximum in p and d respectively.

Pi,j = {x ∈ Rn : aT
i x+ bi ≥ aT

i′x+ bi′ ,

ãT
j x+ b̃j ≥ ãT

j′x+ b̃j′ , i
′ = 1, . . . ,mp, j

′ = 1, . . . ,md}.

Polyhedron Pi,j can be compactly written in terms of a matrix
Ai,j and a vector bi,j as

Pi,j = {x ∈ Rn : Ai,jx ≥ bi,j}.

Note that some Pi,j’s can be empty.
The second step is to compute the polyhedra that represent

the epigraph of f(x) = p(x) − d(x) for each Pi,j . The
epigraphs are given by:

Ei,j = {(x, z) ∈ Rn+1 : Ai,jx ≥ bi,j ,

z ≥ (ai − ãj)
Tx+ bi − b̃j}.

For each polyhedron Ei,j , we compute the corresponding
V−representation, consisting of a set of vertices Vi,j and a
set of rays Ri,j , satisfying (4). Note that the epigraph of f is
given by ∪i,jEi,j .

The epigraph of the quotient q is given by the closed convex
hull of the epigraph of f (see (30) in the appendix). Next, we
consider the union of vertices V = ∪i,jVi,j , and rays R =
∪i,jRi,j , and consider the polyhedron E generated by V and
R (as in (4)). Due to Proposition 1, E is the epigraph of the
quotient q(x). Then, compute the H−representation of E

E = {(x, z) ∈ Rn+1 : [AE,x aE,z][xT z]T ≥ bE}, (10)

for appropriate matrix AE,x and vectors aE,z, bE . Assume
that E ̸= Rn. We will prove in Proposition 4 that the
components of aE,z are positive. Thus,

E =

{
(x, z) ∈ Rn+1 : z ≥ − 1

[aE,z]l
[AE,x]lx+

+[bE]l/[a
E,z]l, l = 1, . . . , L

}
,

where L is the number of rows of AE,x. Therefore,

q(x) =

L∨
l=1

(
− 1

[aE,z]l
[AE,x]lx+ [bE]l/[a

E,z]l

)
. (11)

The procedure is illustrated in Figure 3.
Having computed the quotient, we formulate the sum

p̃(x) = d(x) + q(x). For each Pi,j we choose a point xi,j in
its relative interior, for example

xi,j =
1

|Vi,j |
∑

v∈Vi,j

v +
∑

w∈Ri,j

w. (12)

Let I be the set of indices i such that there is an index j
satisfying p(xi,j) > p̃(xi,j). Then,

r(x) =
∨
i∈I

(aT
i x+ bi). (13)

The computation of the quotient and the remainder is
summarized in Algorithm 1.

Proposition 4: If E ̸= Rn, then the output of the algorithm
is indeed the quotient and the remainder of the division. If

5

2

4

6

8

R2

E

V

P

R

P P P P

V

V

V

1 1

2

41

2 31

2

2

3

3

4

4 5

3R
V V

V

2

4

6

8

f(x)

E E E E4 5

E

1 R
3R

1

Fig. 3. Illustration of the algorithm applied to Example 1. Function f(x) =
p(x) − d(x) is linear on each of the subsets P1, . . . , P5. The epigraphs
are generated as follows: E1 by vertex V1 and rays R1 and R2, epigraph
E2 by vertices V1, V2 and ray R2, epigraph E3 by vertices V2, V3 and ray
R2, epigraph E4 by vertices V3, V4 and ray R2, and finally epigraph E5

by vertex V4 and rays R2, R3. Their closed convex hull E is generated by
vertices V1, V2, V4 and rays R1, R3. The quotient q(x) is computed by the
H−representation of E.

Algorithm 1 Exact Polynomial Division
0: Input: Tropical Polynomials p(x) and d(x)
1: Compute a partition of Rn into polyhedra Pi,j , i =
1, . . . ,mp, j = 1, . . . ,md, and their interior points xi,j

according to (12)
2: Compute the epigraphs Ei,j

3: For each epigraph, compute the resolution into a set of
vertices Vi,j and a set of rays Ri,j , using a representation
conversion algorithm

4: Compute the H−representation of the polyhedron
generated by the union of the set of vertices V = ∪i,jVi,j ,
and the union of the set of rays R = ∪i,jRi,j , in the form
(10)

5: If L > 0 then q(x) is given by (11). Otherwise, q(x) =
−∞.

6: Compute the set of indices i such that there is a j with
p(xi,j) − d(xi,j) − q(xi,j) > 0. Compute r(x) according
to (13)

7: Return q(x), r(x)

E = Rn, then the quotient is q(x) = −∞, for all x ∈ Rn and
the remainder is equal to the dividend, i.e., r = p.
Proof See Appendix E.

Remark 4: The exact algorithm, as presented, is
computationally heavy. A particular bottleneck in its
implementation is the calculation of the vertices and rays
of each polyhedron, a problem known in the literature as
‘vertex enumeration.’ The worst-case complexity of vertex
enumeration is exponential in the dimension d of the
underlying space ([50]). Therefore, we expect that the
algorithm will be usable only for small examples.

An alternative method would be to represent the convex hull
using Balas’ theorem [51]. This would provide a description
of the convex hull involving a greater number of variables.
Next, we could apply Fourier-Motzkin elimination to reduce
the problem to the original dimensionality. While the first
step does not have exponential complexity, the worst-case

2x+2y

-x-y

-x

 5x

4x-y

 x+2y

0 0
3x

1.5x+1.5y

0

f(x,y) q(x) 0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

Newt(d+q)
Newt(p)
Newt(d)

Newton Polygons

Fig. 4. The linear regions of f(x, y) and q(x, y). The two functions coincide
on the bold half-lines. The figure also illustrates the Newton polygons of
p(x, y), d(x, y), and d(x, y) + q(x, y).

complexity of the second step is exponential.
Example 2: Let us divide the tropical polynomial p(x, y) =

max(0, 3x+3y, 6x), by d(x, y) = max(x, x+y, 2x+y), using
Algorithm 1. The quotient is

q(x, y) = max(1.5x+ 1.5y, 3x, 0),

and d(x)+q(x) is given by max(x, x+y, 2.5x+2.5y, 3.5x+
2.5y, 5x+ y, 4x).

The linearity regions of f(x, y) and q(x) are shown
in Figure 4. Furthermore, Figure 4 illustrates the Newton
polygons for p, d and d+ q.

V. APPROXIMATE ALGORITHMS FOR TROPICAL DIVISION

We now present an approximate algorithm for computing
the quotient of a tropical division, assuming that the quotient
has a predefined maximum number of terms m̃q . The
algorithm mimics the procedure developed in [35].

The quotient has the form q(x) =
∨mq

i=1(â
T
i x + b̂i). From

the proof of Proposition 1 we know that q(x) is the maximum
tropical polynomial function, all the terms of which satisfy
âT
i x+ b̂i ≤ f(x), for all x ∈ Rn. We will utilize this property

to formulate an optimization problem on a set of sample
points x1, . . . ,xN ∈ Rn. Given the set of sample points
and the corresponding set of the values of function f(·), i.e.,
f(x1), . . . , f(xN), the optimization problem is formulated as:

maximize
âi,b̂i,i=1,...,m̃q

N∑
j=1

m̃q∨
i=1

(âT
i xj + b̂i)

subject to âT
i xj + b̂i ≤ f(xj), ∀i, j

âi ∈ C, i = 1, . . . , m̃q

, (14)

where C is the set defined in (9). Since C is a polytope, the last
constraint in (16) can be written as a set of linear inequalities.
The details are presented in subsection V-A.

The algorithm alternates between two phases. Phase 1
partitions the data. Particularly, assuming a set of solutions
(âi, bi), i = 1, . . . , m̃q , we partition the samples xj into sets
I1, . . . , Im̃q

with j ∈ Ii, if

âT
i xj + b̂i ≥ âT

i′xj + b̂i′ , for all i′. (15)

6

Phase 2, solves the linear optimization problem:

maximize
âi,bi,i=1,...,m̃q

m̃q∑
i=1

∑
j∈Ii

âT
i xj + b̂i

subject to âT
i xj + b̂i ≤ f(xj), ∀i, j

âi ∈ C, i = 1, . . . , m̃q

. (16)

We then simplify (16) in two ways. First, it may contain
redundant inequalities. To remove the redundant inequalities
we compute the lower convex hull of the set {(xj , f(xj)) :
j = 1, . . . , N} with respect to its last component, and denote
by J the set of indices j, for which (xj , f(xj) belongs to the
lower convex hull.

Second, problem (16) decomposes into a set of m̃q linear
programs

maximize
âi,bi

sTi âi +Nib̂i

subject to [(xj)
T 1]

[
âi

b̂i

]
≤ f(xj), j ∈ J

âi ∈ C

, (17)

where si =
∑

j∈Ii
xj , Ni = |Ii|.

The computations are summarized in Algorithm 2.

Algorithm 2 Approximate Polynomial Division
0: Input: Tropical Polynomials p(x), d(x), the degree of the

approximate quotient m̃q , the number of sample points N ,
the maximum number of iterations

1: Compute the inequalities corresponding to set C using the
formulas in Appendix V-A

2: Sample the points xj , for j = 1, . . . , N , and compute the
values of f(xj) = p(xj)− d(xj)

3: Compute the lower convex hull of the set {(xj , f(xj)) :
j = 1, . . . , N}, and use the samples belonging to it to
formulate the first constraint in (16)

4: Initialize the partition I1, . . . , Im̃q

5: Solve Problems (17), for all i
6: Compute the partitions Ii that satisfy (15)
7: If the number of iterations has not exceeded the maximum

number of iterations go to Step 5
8: Return q̂(x) =

∨m̃q

i=1 â
T
i x+ b̂i,

We then examine the quality of approximation of p(x) by
d(x) + qt(x) on the sample set given by

e(t) =

N∑
j=1

[p(xj)− d(xj)− qt(xj)], (18)

where qt is the quotient computed after t steps of the
algorithm. The following proposition shows that the quality
of approximation improves as the number of steps increases.

Proposition 5: The quantity e(t) is nonnegative and
non-increasing with respect to t.
Proof See Appendix F.

Remark 5: In practice some issues with Algorithm 1 may
arise. Some of the classes Ii may end up empty. In this case,
we may split another existing class randomly. Furthermore,

we expect the algorithm to converge to a local optimum. We
may use a multiple start method to avoid bad local optima.

Remark 6: Let us comment about the relationship between
Algorithm 2 and [35]. Inspired by [35], Algorithm 2 partitions
the data in several clusters. The major difference is that in
Algorithm 2 we use the sharper lower linear approximation
of each class of data subject to the constraint that this
approximation does not exceed any sample point of any
class. Thus, instead of alternating between clustering and
linear regression, we alternate between clustering and linear
programming.

Another related work is [52] which studies the problem of
computing a convex under-approximation for a given dataset
by a piecewise linear function. The algorithm uses an iterative
linear programming technique and has two phases. At phase
one of each iteration, it considers a subset of the data set and
minimizes the maximum approximation error for this subset,
using a piecewise linear function with a number of terms equal
to the iteration count. At phase two, it adds to this subset the
data point that maximizes the approximation error. Then, it
moves to the next iteration.

A. The Linear Constraints for Set C

We next compute a set of linear inequalities describing set
C. Let the extreme points of Newt(p) be ae,1, . . . ,ae,k. Then,
â ∈ C if and only if â+Newt(d(x)) ⊂ Newt(p(x)). That is,

â+ ãj ∈ conv{ae,1, . . . ,ae,k},

for all j. Equivalently if there are auxiliary variables λj,l, such
that

â+ ãj =

k∑
l=1

ae,lλj,l, λj,l ≥ 0,

k∑
l=1

λj,l = 1

for all j = 1, . . . ,md, l = 1, . . . , k.
Problem (17) becomes:

maximize
âi,bi,λ

sTi âi +Nib̂i

subject to [xT
j 1]

[
âi

b̂i

]
≤ f(xj), j ∈ J

âi + ãj =

k∑
l=1

ae,lλj,l,

λj,l ≥ 0
k∑

l=1

λj,l = 1

. (19)

Remark 7: In the case where we divide by a monomial,
i.e., a polynomial with only a single linear term, the second
constraint of (19) simplifies to

âi = −ã+

k∑
l=1

ae,lλl,

where we omit the j subscript of λ, since it can take only
a single value. Thus, we can eliminate the âi variable and
use only the λ variables. Then, we end up with a Linear
Programming problem with mp variables and N + mp +

7

1 constraints. Note that this formulation will be used for
simplifying neural networks in Section VII.

If N is in the order of magnitude of mp, the linear
programming problem can be solved with accuracy ε in
O(m3.5

p log(1/ε)) steps with interior point methods (e.g. [53]).
There are md such problems, thus the complexity of Phase 2
of the algorithm is O(md ·m3.5

p log(1/ε)). Numerical results
show that iteration between Phase 1 and Phase 2 converges in
a few iterations.

VI. DIVISION FOR COMPOSITE POLYNOMIALS

In this section, we present some analytical results and some
algorithms for dividing tropical polynomials that are sums or
maxima of simpler ones.

A. General Properties

We will use Q(p, d) and R(p, d) to denote the quotient and
remainder of the division of a tropical polynomial p by another
tropical polynomial d.

Proposition 6: The following inequalities hold

Q(p1 + p2, d) ≥ Q(p1, d) +Q(p2, d) + d, (20)
Q(p1 ∨ p2, d) ≥ Q(p1, d) ∨Q(p2, d), (21)
Q(p, d1 + d2) ≥ Q(p, d1) +Q(p, d2)− p, (22)
Q(p, d1 ∨ d2) ≥ Q(p, d1) ∧Q(p, d2). (23)

Furthermore, if R(p1, d) = R(p2, d) = −∞, then
(20),(21),(22) hold as equalities. Finally, if s is a monomial,
i.e., it has the form s(x) = aTx+ b, then

Q(p+ s, d) = Q(p, d) + s = Q(p, d− s), (24)

Proof See Appendix G.
Remark 8: Assume that polynomial d is fixed. Inequality

(21) implies that function Q(·, d) is nondecreasing. If d(x) ≥
0, for all x ∈ Rn, then function Q(·, d) is also super-additive.

In the following we call a tropical polynomial described
as a summation of other tropical polynomials as composite.
Furthermore, we refer to a tropical polynomial in the form 1
as simple1.

B. Dividing a Composite Polynomial by a Simple

In the following we propose algorithms to approximately
divide a composite polynomial p(x) =

∑N
ν=1 p

ν(x) or
p(x) =

∨N
ν=1 p

ν(x) by another polynomial d(x). The
computation of the value of the composite polynomial p(x) is
trivial, provided the values of the simpler polynomials pν(x).
Thus, the only difficulty in order to apply Algorithm 2 is the
computation of the Newton polytope Newt(p).

It is convenient to consider the Newton polytopes Newt(pν)
in terms of an extended description. Particularly, assume
matrices Aν ,F ν , and vectors βν of appropriate dimensions,
such that

Newt(pν) = {a ∈ Rn : a = F ναν ,Aναν ≤ βν}. (25)

1These notions refer to the representation of the tropical polynomials, and
not to whether or not they can be written as a sum of other polynomials. That
is, it is possible that a tropical polynomial with a simple representation (in
the form (1)), can be factorized and written in a composite form.

For p(x) =
∑N

ν=1 p
ν(x), the Newton polytope is given by

Newt(p) = {F 1α1+· · ·+FNαN : Aναν ≤ βν , ν = 1, . . . , N},

which corresponds to the Minkowski sum Newt(p1) ⊕ · · · ⊕
Newt(pN). For p(x) =

∨N
ν=1 p

ν(x), the Newton polytope is
given by

Newt(p) ={F 1α1 + · · ·+ FNαN : ∃λν ≥ 0, ν = 1, . . . , N,

Aναν ≤ βνλ
ν ,

N∑
ν=1

λν = 1}.

C. Neural Networks As Differences of Composite Polynomials

We then present some examples of neural networks
represented as the difference of two composite tropical
polynomials.

Example 3 (Single hidden layer ReLU network): This
example follows [10]. Consider a neural network with n
inputs, a single hidden layer with mp neurons and ReLU
activation functions, and a single linear output neuron. The
output of the ν-th neuron of the hidden layer is:

zν = max(wT
ν x+ βν , 0)

The output y can be written as

y =

N1∑
ν=1

w2+
ν zν −

N∑
ν=N1+1

w2−
ν zν + β2,

where N1 +N2 = N , and N1, N2 are the number of neurons
that have positive weight and negative weights respectively.
Without loss of generality, we assume that the neurons are
ordered such that the weights of the first neurons to be positive
and the weights of the last negative. The output of the neural
network can be expressed as the difference of two tropical
polynomials p1(x), p2(x), plus a constant term. Each of these
tropical polynomials is written as the sum of simpler ones

p1(x) =

N1∑
ν=1

max(w2+
ν wT

ν x+ w2+
ν βν , 0)

=

N1∑
ν=1

max((aν
1)

Tx+ bν , 0)

p2(x) =

N∑
ν=N1+1

max(w2−
ν wT

ν x+ w2−
ν βν , 0)

=

N∑
ν=N1+1

max((aν
2)

Tx+ bν , 0)

Note that p1, p2, expressed in their canonical form (1), can
have a large number of terms, corresponding to linear regions
of tropical polynomial functions p1, p2 (for an enumeration of
the linear regions see [3], [4]).

The Newton polytope of the simple tropical polynomial
max((aν

1)
Tx + bν , 0) is the line segment [0,aν

1] in the
d-dimensional space. This polytope is equivalently described
in the form (25) as Newt(pν) = {ανaν

1 : 0 ≤ αν ≤ 1}. Thus,
the Newton polytope of p1 is given by

Newt(p1) = {α1a1
1 + · · ·+α1an1

1 : 0 ≤ αν ≤ 1},

8

which is a zonotope (see also [4]).
The constraint âi ∈ C of problem (17) becomes

âi + ãj =

n∑
l=1

alλj,l, 0 ≤ λj,l ≤ 1.

Finally, note that if the number of neurons of the hidden
layer N1, N2 is smaller than the input dimension n, then the
tropical polynomials p1, p2 can be expressed in dimensions
N1, N2.

Example 4 (Multi-class to binary classification with a ReLU
network): Assume a neural network with a single ReLU hidden
layer with N units and a softmax output layer with K units
trained to classify samples to K classes. The equations are the
following

z1ν = max((w1
ν)

Tx+ b1ν , 0), z2k = (w2
k)

Tz1, yk =
ez

2
k∑

k′ e
z2
k′

We then assume, that for a given set of samples, we know that
the correct class is either i1 or i2. The neural network can be
simply reduced for binary classification, substituting the last
layer with a single neuron with sigmoid activation with output
given by

y = σ((w2
i1 −w2

i2)
Tz2 + β2),

where σ(·) is the sigmoid activation function,, i.e. σ(z) =
1/(1− e−z). Note that this transformation corresponds to the
application of Bayes’ rule with prior probability of 1/2 for
classes i1, i2, and likelihoods given by the output of the initial
neural network.

The output of the new network can be represented as a
difference of two tropical polynomials as in the previous
example.

Example 5 (Representing a multi-class network as a vector
of tropical polynomials): Consider a neural network with
a single-hidden layer having ReLU activations and a linear
output layer with K neurons, followed by softmax. Each
output (before the softmax) z2k can be expressed as a difference
of two tropical polynomials plus a constant term

z2k = p+k (x)− p−k (x) + bk.

The output is given by

yk =
ez

2
k∑

k′ e
z2
k′
.

Let us add to each of z2k’s the sum of all negative polynomials.
We get the tropical polynomials

z̃2k = p+k (x) +
∑
k′ ̸=k

p−k′(x) + bk. (26)

Then, it is easy to see that

yk =
ez̃

2
k∑

k′ e
z̃2
k′
.

Finally, denoting by z1i , i = 1, ...M the output of the hidden
layer before the ReLU, then z̃2k can be written in the form

z̃2k =

M∑
i=1

w̄k,i max(z1i , 0), (27)

for appropriate non-negative constants w̄k,i.
Remark 9: In the tropical framework, the difference of

two polynomials is considered as a tropical rational function.
The addition of all the negative polynomials (denominators)
corresponds to making the tropical fractions have the same
denominator.

D. Dividing a Vector of Composite Polynomials

In this subsection, we propose a simplified algorithm
for dividing a vector of tropical polynomials by the zero
polynomial. The motivation comes from Example 5. Consider
a set of tropical polynomials in the form (27).

We then describe a simplified version of the the linear
optimization part of Algorithm 2. Consider a set of sample
points z1(1), . . . ,z1(N). Observe that, with this formulation,
both constraints (17) are satisfied by any âk, such that its i−th
component âi,k satisfies 0 ≤ âi,k ≤ w̄i,k and b̂k = 0. Then,
the solution of (17), for the l− th term of the division of the
k−th polynomial is approximated by the optimal solution of

maximize
âl

k

sTl,kâ
l
k

subject to 0 ≤ âli,k ≤ w̄i,k, i = 1, . . . ,M
. (28)

The solution of (28) is given by:

âli,k =

{
w̄i,k if si,l,k > 0

0 otherwise

VII. NUMERICAL RESULTS

This section, presents some numerical examples for the
tropical division algorithm. First, we present some simple
examples to build some intuition for the behaviour of
Algorithm 2. Then, some applications of tropical division to
the compression of neural networks are presented. We focus
on MNIST handwritten and CIFAR-10 datasets.

A. Numerical Examples for Algorithm 2

As a first example, we present the application of Algorithm
2 to the tropical polynomial division of Example 2. We
choose 200 sample points distributed according to the normal
distribution with unit variance N (0, I2). The algorithm
converges in two steps and gives an approximate solution2.

q̂(x, y) =max(1.5038x+ 1.4962y + 0.0182,

0.0003x+ 0.0288, 3x+ 0.0241),

which is very close to the actual quotient (see Example 2).
Running again the algorithm with larger sample sizes we
conclude that increasing the number of sample points reduces
the error.

As a second example we divide a random tropical
polynomial with mp = 128 terms in n = 3 dimensions with
another having md = 2 terms. First, we run Algorithm 2,
for m̃q = 5, with multiple initial partitions. The evolution
of the error for the several runs is shown in Figure 5. The

2The code for the numerical experiments is available online at
https://github.com/jkordonis/TropicalML

9

2 3 4 5 6 7 8 9 10

Iterations

0

0.2

0.4

0.6

0.8

1.0

1.2

A
p
p
ro

xi
m

at
io

n
 e

rr
or

 e

Fig. 5. The total error e for executions of Algorithm 2, for different initial
partitions.

0 5 10 15

Number of terms of the approximate quotient

0

0.5

1.0

1.5

A
p
p
ro

xi
m

at
io

n
 e

rr
or

 e

Fig. 6. The total error e for divisions having different number of terms for
the approximate quotient

results illustrate the need for a multi-start method. Indeed,
for different random initial partitions the algorithm converges
to different local minima. The quality of the approximation e
after 10 steps of the algorithm is given in Figure 6 for a varying
number of terms m̃q . This result shows that we may derive a
good approximation of the division using a small number of
terms (e.g. 8).

B. MNIST Dataset

This example considers the MNIST handwritten digits data
set. It consists of 60000 training examples and 10000 test
examples of 28 × 28 gray scale images, that represent digits
0−9. We start with a single hidden layer neural network with
100 hidden units with ReLU activations and 10 softmax output
units. The network is trained in the original training data set
using standard techniques (Adam optimizer on cross-entropy
loss, batch size of 128). We then design a smaller network
discriminating between digits 3 and 5. The input space has
28 · 28 = 784 dimensions.

We first use the technique described in Example 4 to reduce
the output layer of the original network to a single neuron.
Then, using the technique described in Example 3, we express
the output (before the sigmoid) as the difference of two
tropical polynomials. These polynomials are expressed as the
summation of 100 terms in the form max(αν

l x, 0), where
l = 1, 2. We then apply a reduced QR decomposition to the
matrices A1 = [α1

1 . . . , α100
1] and A2 = [α1

2 . . . , α100
2],

writing them as A1 = Q1A
r
1 and A2 = Q2A

r
2. The Ar

l

matrices have as columns αr,ν
l , i.e., an expression of the

vectors αν
l in the subspace of their span. For each polynomial

the input has been transformed as xl = QT
l x (recall Remark

3).
We divide each of these polynomials with the zero

polynomial d = 0, applying the Algorithm 2, with the
modification of Section VI-B, and using as sample points the
first 200 training points. The outcome of this computation is
the approximate quotients q1 and q2, in the form ql(xl) =∨m̃q

i=1(â
l
ixl+ b̂li). Then, the output of the original network can

be approximated as

yappr = σ(q1(Q
T
1 x)− q2(Q

T
2 x) + β2)

The computation of the approximate output corresponds
to a neural network an input layer, a hidden layer with two
maxout units, a linear layer with a single unit (computing the
difference of the two maxout units) and an output layer with
a single sigmoid unit.

Table I presents the error rate on the test set of the original
neural network, as well as the computed maxout networks,
where each maxout unit has 3, 5, and 10 terms respectively.
It also presents the percentage of parameters that remain
after the compression. As baselines for comparison, we use
structured L1 pruning without retraining and structured SNIP
(see e.g. [54], [55]). The first method deletes the neurons
having weights with small L1 norm, and the second computes
the sensitivity of the total loss with respect to the presence
of each neuron. We compare reduced neural networks with
the same number of parameters. We present two results, the
binary comparison of digits 3 and 5 and an average of the
45 = 10 · 9/2 different binary comparisons.

Network. Orig. 2 cl. m̃q = 10 m̃q = 5 m̃q = 3
Err. L1 Avg. 0.35± 0.25% 14.4±8.87% 26.95 ± 12.24% 34.61± 12.5%

Err. Div. Avg. 0.35± 0.25% 0.66±0.50% 0.83± 0.70% 1.12±1.21%
Err. L1 3-5 1.05% 16.61% 25.08% 36.44%

Err. Div. 3-5 1.05% 1.57% 2.00% 2.47%
Err. SNIP. 3-5 1.05% 4.63% 16.04% 25.87%

Param. 77001 15381 7691 4615
% of Param.
Remaining 100% 20% 10% 6%

TABLE I
Results for the MNIST dataset. Error rate of the original network and the

reduced networks. Err. Div. represents the error rate for the reduced
networks obtained using the tropical division algorithm and Err. L1 the

error rate of with the L1 structured pruning algorithm. The error rates for
the 3-5 binary comparison and the average over the 45 binary comparisons

are presented.

Remark 10: It is worth noting substituting xl into ql, we
get

q1(Q
T
1 x) =

m̃q∨
i=1

(âl
iQ

T
l x+ b̂li).

Thus we do not need to store Q1, Q2 but only the vectors
â1
iQ

T
l , and the scalars b̂li, β

2, for l = 1, 2 and i = 1, . . . ,mq .
Remark 11: Let us note that for computing the reduced

networks, we used only the first 200 samples of the training
data.

C. CIFAR-10 Dataset-Binary

This example concerns CIFAR-10 dataset which contains
small (32×32) color images. The training set consists of 50000

10

images of 10 classes (5000 samples for each class) and the
test set of 10000 images (1000 samples per class). We first
train a VGG-like network [56], having three blocks consisting
of two convolution layers with ReLU activation followed by a
2×2 max-pooling layer with padding, a dense layer with 1024
neurons, and an output layer with 10 neurons. The convolution
layers in the first, second, and third block have 32, 64, and 128
filters, respectively. The network was trained using standard
techniques (Adam optimizer for the cross-entropy loss, batch
normalization and dropout (0.2) for regularization and data
augmentation (shift and horizontal flip)). Let us note that the
input of the dense layer has dimension 4 · 4 · 128 = 2048.

We then design a simplified neural network discriminating
between pairs of classes (e.g., “Automobile” and “Truck”).
To do so, we approximate the dense layer with 1024 neurons
using the techniques of the previous section. Particularly, using
the technique of Example 4 we describe the output of the
neural network as the difference of two tropical polynomials
in 2048 dimensions. These polynomials are then divided
by the zero polynomial applying the Algorithm 2, with the
modification of Section VI-B, and using as sample points the
first 200 training points.

Table II presents the error rate on the test set when there are
3, and 5 maxout units on the dense layer. Three tests results
are presented: on pairs Automobile-Truck (A-T), Cat-Dog
(C-D) and the average of the 45=9 · 10/2 possible binary
comparisons. The results obtained with the tropical division
algorithm are compared with the L1 structured pruning. Table
II also presents the number of parameters of the dense layer
of the networks. We observe that the dense layer can be
compressed to less than 1% of its original size with minimum
performance loss.

Network Orig. 2 classes m̃q = 5 m̃q = 3
Err. L1 A-T 4.04% 25.8% 46.45%

Err. Div. A-T 4.05% 4.6% 4.4%
Err. L1 C-D 13.7% 49.3% 50%

Err. Div. C-D 13.7% 15.4% 16.85%
Err. L1 Avg. 2.74±2.57% 43.45±10.57% 43.62±10.61%

Err. Div. Avg. 2.74±2.57% 3.85±3.16% 4.06±3.37%
Param. 2.1 · 106 2 · 104 1.2 · 104

% of Param.
Remaining 100% 0.95% 0.57%

TABLE II
Results for the CIFAR-10 dataset. Error rate of the original network, the

reduced maxout networks and the reduced networks obtained using the L1
structured pruning algorithm. We present the Automobile vs Truck case, the

Cat vs Dog case, and the average of the 45 = 10 · 9/2 different binary
comparisons. The results are indexed using A-T, C-D, and Avg.

Remark 12: The proposed scheme is very competitive for
the large compression regime, that is, in the case where there
are very few parameters remaining. Furthermore, it can be
performed assuming access to a small portion of the training
data (500 out of 60000).

D. CIFAR-10 Multiclass

We then compress the multi-class neural network trained
in the previous subsection for the CIFAR-10 dataset. As the
input to the compression algorithm, we consider the output of

2

28

4

4

128

2048

3

Convol.
part

Input

Tropical
Polyn. 1

Tropical
Polyn. m

..
.

3-term
maxout

28

F
C

L
a
y
e
r

Flatten

O
u
t
p
u
t

L
a
y
e
r

3-term
maxout

Fig. 7. The structure of the proposed reduced network. Each pink box consists
of linear neurons obtained by successive implementations of the division
algorithm.

the convolutional part of the neural network with dimension
2048.

We first represent the logits (the output before the softmax)
as a vector of tropical polynomials using (26) in Example 5.
We then simplify each of the tropical polynomials using the
simplified algorithm of Section VI-D and a random sample
of 500 training points. The results are summarized in Table
III. Additionally, we present an improved prediction scheme,
where the K × m̃q values (âl

k)
Tz1, with k = 1, . . . ,K and

l = 1, . . . , m̃q are fed to a small single hidden layer ReLU
neural network with 100 units. We refer to this small neural
network as head.

Network Original m̂q = 7 m̂q = 5 m̂q = 3
Error L1 14.18% 45% 57.3% 71.7%

Error Div. 14.18% 41±1.8 % 40.1 ± 1.7% 42.5 ± 2%
Err. Div. Improved 14.18% 26.6± 0.3 % 26.4 ± 0.3% 28.1 ± 0.1%

Param. 2.1 · 106 1.4 · 105 105 6.6 · 104
% of Param.
Remaining 100% 7.32% 5.24% 3.16%

TABLE III
Results for the compression on the CIFAR-10 dataset. Average error rates
for multiple executions. Comparison of the original division algorithm, the

improved division algorithm and the L1 pruning. The number of parameters
include also the parameters of the head.

Note that the additional parameters for the improved
prediction are very few. Indeed for the case of m̂q = 3, 5, 7
we have 4110, 6110 and 8110 parameters respectively.

We observe again that the division algorithm works well on
the large compression regime. Furthermore, in this example
there is no improvement when we use more terms in the
quotient polynomials. This is probably due to stacking in local
optima.

We then exploit the good behaviour of the binary
classification algorithm and apply it to the multi-class problem.
To do so, we use a subset of the tropical polynomials
obtained for binary classification. In each binary comparison,
the division algorithm gives two tropical polynomials and the
9× 10/2 = 45 binary comparisons give a total of 90 tropical
polynomials. The value of a subset of the tropical polynomials
is fed to a single hidden layer network with ReLU activations,
as described in Figure 7.

11

Fig. 8. The error rate of the compressed neural networks obtained using
the multiple division algorithm. The blue and yellow lines use divisions with
m̃q = 3 and m̃q = 5, respectively. The horizontal axis represents the
percentage of the remaining parameters. Finally, the green line corresponds
to using random vectors instead of the quotients.

Figure 8 presents the error of the compressed networks
obtained using the multiple binary division algorithm of the
previous paragraph. To produce these results we used a random
set of m tropical polynomials with m = 10, 20, 40, 60.

We observe that the proposed method works better
than L1-structured pruning, when the number of remaining
parameters is small.

Remark 13: Note that in all the examples, the tropical
division compression algorithms used only a small subset
of the training data. This can be useful when simplifying a
network where only parts of the training dataset are available.

E. SVHN Dataset
In this section, we consider the SVHN (street view home

number) dataset consisting of 32 × 32 colored images. The
training set has 73257 images and the test set of 26032 images,
and there are 10 classes. For this dataset, we train a VGG-like
convolutional neural network similar to the one described in
the previous section. The training was done with standard
methods (Adam with learning rate 0.001, dropout 0.5, for 15
epochs).

We then run the multiple binary division algorithm of the
previous paragraph. The results are presented in Figure 9.a.

F. CIFAR-100 Dataset
In this section, we consider CIFAR-100 dataset which

consists of 60000 small colored images. The training set has

Fig. 9. The error rate of the compressed neural networks obtained using the
multiple division algorithm. The horizontal axis represents the percentage of
the remaining parameters. The blue line corresponds to L1 structured pruning,
and the orange line to the multiple binary division technique. Part a) presents
the results for the SVHN dataset and part b) the results for CIFAR-100.

50000 samples of 100 classes (500 samples per class) and
10000 test images. We train a convolutional neural network
consisting of two initial convolutional layers with 64 and
128 filters, respectively. This is followed by a residual block
with two convolutional layers, each containing 128 filters.
The network then continues with two additional convolutional
layers with 256 and 512 filters, respectively. A second residual
block follows, consisting of two convolutional layers with
512 filters. The network includes also a fully connected
linear layer with 512 neurons and an output layer. The vast
majority of the parameters of this network are in the last
residual block having 512 kernels in each layer. The network
is trained using standard techniques (Adam optimizer with
weight decay, cross-entropy loss, batch normalization and
dropout 0.2 for regularization and data augmentation (random
crop and horizontal flipping)).

We then use the multiple binary division technique,
described in the previous subsection, to simplify the network.
The results are presented in Figure 9.b. Again the proposed
method is competitive in the large compression regime.

G. Application to Learning Model Predictive Control

In this section, we present an application of tropical division
in Learning Model Predictive Control (LMPC) [57], [58], [59],
(see also [60]). Let us first describe briefly the usual MPC
scheme. Consider a linear system

xt+1 = Axt +But,

and the optimization of a long-horizon objective

J(x0) =

T∑
t=0

g(xt,ut),

where g is a convex function. At each time step k, MPC
measures the state xk and solves a short-horizon optimization
problem

minimize J̃(xk) = q(xk|k+Ts
) +

Ts+k−1∑
t=k

g(xk|t,uk|t)

subject to xk|t+1 = Axk|t +Buk|t

xk|k = xk

,

(29)

12

Fig. 10. The normalized cost for four different initial conditions, as learning
progresses.

where Ts is a smaller horizon. Then, it applies the first
computed input uk = uk|k to the system and proceeds to
measure the next state xk+1. The process starts then again
from step k + 1.

The LMPC approach learns a function q(xk|k+Ts
) that

approximates the minimum cost-to-go function, defined as
the minimum value of

∑T
t=Ts+k g(xk|t,uk|t). To do so, it

employs an iterative scheme. It starts with an initial estimate
q0(x) of the optimal cost-to-go. Starting from several values of
the initial state xj

0, with j = 1, . . . , N , it evaluates the realized
costs J1, . . . , JN , under the MPC policy. This creates a dataset
for estimating the cost-to-go. This dataset is used to generate
an update q1(x) of the estimate of the optimal cost-to-go. The
process is repeated several times until convergence.

It can be shown that under the aforementioned assumptions,
the optimal cost-to-go is a convex function. We then present
an example, where Algorithm 2 is used to approximate the
optimal cost-to-go function.

Example 6: Assume that the state evolution matrices are

A =

[
0.75 0.5
0.4 0.9

]
,B =

[
0
0.5

]
,

and the cost is given by

g(x, u) = u2 + ∥x∥+ ∥x∥3.

The time horizon Ts is 2 and the original horizon T is 50.
For each iteration we compute the cost-to-go of 50 random
initial conditions under the MPC control scheme, using the
old value of q. Then, we run Algorithm 2 (dropping the last
constraint of (17)) using m̃q = 4 terms, to update the estimate
of q, and iterate. Figure 10 shows the total cost under the
MPC controller as learning progresses, for four different initial
conditions.

Remark 14: Since we use tropical division, that is we seek
for the best convex under-approximation of the data, there is
no need to discard the samples of previous iterations when we
try to learn the minimum cost-to-go.

Remark 15: The optimization (29) should run online, and
thus the use of a simple form for q is important.

VIII. CONCLUSION

This work proposed a new framework for tropical
polynomial division and its application to neural networks.
We showed the existence of a unique quotient-remainder pair
and characterized the quotient as the convex bi-conjugate
of the difference of the dividend from the divisor. This
characterization led to an exact algorithm based on polyhedral
geometry. We also proposed an approximate algorithm
based on the alternation between clustering and linear
programming. We then focused on dividing composite tropical
polynomials and proposed a modified algorithm. Finally, we
applied tropical polynomial division techniques to simplify
neural networks with ReLU activations. The resulting neural
networks have a maxout activation layer. The results are
promising and compare favorably with a simple baseline (L1
pruning).

There are several directions for future research. First,
we may combine L1 regularization to the problem (19) to
induce sparse solutions and improve further neural network
compression. Another direction is to study compression
problems for neural networks with many outputs, using a
single division. A possible tool in this direction is the Cayley
trick [61], [62]. Another direction for future research is to
explore simplifying transformer architectures (e.g. [63]) using
concepts from tropical division Finally, the study of alternative
optimization algorithms is of certain interest.

ACKNOWLEDGMENT

The authors are grateful to Dr. George Retsinas for his
valuable suggestions and comments.

APPENDIX

A. Proof of Proposition 1

It is not difficult to see that if q̃(x) =
∨mq̃

i=1(ã
T
i x + b̃i),

and q̃ satisfies (5), then q̃(x) ≤ q(x), for all x ∈ Rn. Indeed,
since

ãT
i x+ b̃i ≤ q̃(x) ≤ p(x)− d(x),

it holds b̃i ≤ l(ãi). Thus,

ãT
i x+ b̃i ≤ ãT

i x+ l(ai) ≤ q(x).

Hence, q̃(x) ≤ q(x), for all x ∈ Rn.
To prove that q is a quotient, it remains to show that it is

a tropical polynomial. The epigraph of q is the closed convex
hull of the epigraph of f [46]

epi(q) = conv(epi(f)). (30)

On the other hand, f is a piecewise linear function. Thus, its
epigraph is a union of a finite number of convex polyhedra.
Indeed if A1, . . . , Amf

its linear regions (i.e., intersections of
linear regions of p and d) then Ai, i = 1, ...,mf are convex
polyhedra and

epi(f) =
mf⋃
i=1

{(x, t) ∈ Rn+1 : x ∈ Ai, t ≥ f(x)}.

Observe that epi(q) is a convex polyhedron and q is a
piecewise linear convex function. Thus, q is a tropical

13

polynomial. From the definition it is obvious that the quotient
is unique.

Let q be the quotient and assume that for some tropical
polynomial r̃ it holds

p(x) = (q(x) + d(x)) ∨ r̃(x), for all x ∈ Rn.

Assume that for some point x0 it holds p(x0) > d(x0)+q(x0)
and that p has the linear form aT

i0
x + bi0 in a neighborhood

of x0. Then, r̃(x) = p(x) in this neighborhood. Furthermore,
since r̃ is convex, we have

r̃(x) ≥
∨
i∈I

aix+ bi = r(x),

where I = {i ∈ {1, . . . ,mp} : ∃x ∈ Rn with p(x) > d(x) +
q(x), and p(x) = aix + bi}. It is not difficult to see that r
is a remainder.

B. Proof of Proposition 2

a) Let q̄ and r̄ be the quotient and the remainder of the
division of r by d. Then

r(x) = (d(x) + q̄(x)) ∨ r̄(x) (31)

Combining with

p(x) = (d(x) + q(x)) ∨ r(x),

we get

p(x) = (d(x) + q(x)) ∨ (d(x) + q̄(x)) ∨ r̄(x)

p(x) = (d(x) + q(x) ∨ q̄(x)) ∨ r̄(x). (32)

Equation (31) implies that r̄(x) ≤ r(x). This fact combined
with the fact that q(x) is the quotient of the division of p(x)
by d(x) and (32) implies that q̄(x) ∨ q(x) = q(x). Hence,
since r(x) is the remainder of the division of p(x) by d(x)
it holds r(x) ≤ r̄(x). Hence, r(x) = r̄(x), for all x ∈ Rn

b) The proof is trivial.

C. Proof of Proposition 3

Assume p(x) is given by (1) and d(x) by

d(x) =

md∨
i=1

ãix+ b̃i.

(a) We first show that C ⊂ dom(l(a)). Assume that a ∈ C.
That is a + ãi ∈ Newt(p) for all i = 1, . . . ,md. Then, there
are λ1, . . . , λmd

≥ 0 with
∑mp

i=1 λ1 = 1 such that

a+ ãi =

np∑
i=1

λiai.

Thus,

(a+ ãi)
Tx ≤

np∨
i=1

aix ≤ p(x)−
np∧
i=1

bi.

Furthermore,

ãix+ b̃i − b̃i ≥ ãix+ b̃i −
md∨
j=1

b̃j .

Combining the last two equations we have

p(x)− d(x)− aTx ≥
np∧
i=1

bi −
md∨
j=1

b̃j > −∞.

Hence, a ∈ dom(l).
Conversely assume that a ∈ dom(l) but a ̸∈ C. Then,

there is a ãi such that a+ ai ̸∈ Newt(p). Furthermore, since
Newt(p) is a convex set, there is a vector v such that (a +
ai)

Tv > aT
i v for all i = 1, . . . , np. Hence,

l(a) = inf
x∈Rn

{p(x)− d(x)− aTx}

≤ lim
λ→−∞

p(λv)− d(λv)− aT (λv) = −∞

Thus, a ̸∈ dom(l), which is a contradiction.
(b) Since

q(x) = sup
a∈Rn

{aTx− f⋆(a)}

It holds

q(x) = −∞ ⇔ l(a) = −∞, for all a ⇔ C = dom(l) = ∅

(c) If for some i it holds âi ̸∈ C, then l(âi) = −∞. That
is, for all b there is an x ∈ Rn with âT

i x+ b > f(x). This is
is particularly true for b = b̂i, and thus q(x) is not a quotient.

D. Proof of Corollary 1

The proof of the first part is immediate from Proposition 3.
To contradict, assume that the inclusion in (ii) is not true.
Then, there exists a vector x ∈ span{a1, . . . ,amp

}⊥ but
x ̸∈ span{â1, . . . , âmq

}⊥. Thus, there is an index i0 such that
âT
i0x ̸= 0. Without loss of generality assume that âT

i0x > 0
(if it is negative, use −x in the place of x). Using (i) we have
limλ→∞(q(λx) + d(λx)) = ∞, but limλ→∞ p(λx) < ∞.
Hence, there is a λ such that p(λx) < q(λx) + d(λx), which
contradicts the fact that q is the quotient.

E. Proof of Proposition 4

First we need to show that all the components of aE,z are
positive. Due to the convexity of E, either

inf{z : (x, z) ∈ E} = −∞, for all x ∈ Rn,

or
inf{z : (x, z) ∈ E} > −∞, for all x ∈ Rn.

If E = Rn+1, then there are no non-trivial constraints, i.e.,
L = 0. In the following assume that L > 0, that is there
are some nontrivial constraints, and E ̸= Rn+1. From the
definition of E, for all x ∈ Rn, it holds inf{z : (x, z) ∈
E} < ∞, and sup{z : (x, z) ∈ E} = ∞.

Note that it is not possible to have a constraint in (10) in the
form [AE,x]lx ≥ [bE]l, that is nontrivial, i.e., [AE,x]l ̸= 0T .
Indeed, if such a constraint existed, then for an x not satisfying
this constraint we would have inf{z : (x, z) ∈ E} = ∞,
which is a contradiction. On the other hand if there were a
constraint with [AE,x]lx+[aE,z]lz ≥ [bE]l, with [aE,z]l < 0
then, for all (x, z) ∈ E we would have z ≤ (−[AE,x]lx +
[bE]l)/[a

E,z]l and thus sup{z : (x, z) ∈ E} < ∞.

14

It is then easy to see that the function q given by (11) has
as epigraph the set E. Therefore, it is the quotient.

To determine the remainder it is sufficient to find all the
terms i of p(x) for which p(x) > p̃(x), for an x ∈ Rn that the
term i attains the maximum in p(x). The function p(x)− p̃(x)
is linear on Pi,j for all i, j. Therefore, since p(x) − p̃(x) ≥
0, and xi,j is in the relative interior of Pi,j we have either
p(x) − p̃(x) = 0, for all x ∈ Pi,j , or p(xi,j) > p̃(xi,j).
Hence, the procedure described in Algorithm 1 produces the
remainder.

F. Proof of Proposition 5

Observe that

p(xj)− d(xj)− qt(xj) = f(xj)− qt(xj) ≥ 0,

where the last inequality is a consequence of the first constraint
of (16). Furthermore,

e(t) =

N∑
j=1

f(xj)−
N∑
j=1

m̃q∨
i=1

(âT
i,txj + b̂i,t), (33)

where âi,t is the solution of (17) at the iteration t. Each term
of the last sum can be written as:

m̃q∨
i=1

(âT
i,txj + b̂i,t) = (âT

i′j,t,t
xj + b̂i′j,t,t),

where i′j,t is the partition that j belongs after step t, i.e., j ∈
Ii′j,t,t and I·,t is the partition obtained at Step 6 in iteration t.
Furthermore due to the optimization in (16),

N∑
j=1

âT
i′j,t,t

xj + b̂i′j,t,t ≤
N∑
j=1

âT
i′j,t,t+1xj + b̂i′j,t,t+1.

From Step 6,

N∑
j=1

âT
i′j,t,t+1xj + b̂i′j,t,t+1 ≤

N∑
j=1

âT
i′j,t+1,t+1xj + b̂i′j,t+1,t+1.

Therefore,
∑N

j=1

∨m̃q

i=1(â
T
i,txj + b̂i,t) is non-increasing, and

thus, e(t) is non-decreasing.

G. Proof of Proposition 6

We only prove (20), the proof of the other statements is
similar. The quotients Q(p1, d) and Q(p2, d) satisfy

p1(x) ≥ d(x) +Q(p1, d)(x), (34)
p2(x) ≥ d(x) +Q(p2, d)(x). (35)

Thus,

p1(x) + p2(x) ≥ d(x) + [Q(p1, d) +Q(p2, d)(x) + d(x)].

But Q(p1 + p2, d) is the maximum tropical polynomial
satisfying this inequality. Thus it is greater than or equal to
the expression in the bracket, i.e.,

Q(p1 + p2, d)(x) ≥ Q(p1, d)(x) +Q(p2, d)(x) + d(x).

REFERENCES

[1] D. Maclagan and B. Sturmfels, “Introduction to tropical geometry,”
Graduate Studies in Mathematics, vol. 161, pp. 75–91, 2009.

[2] P. Maragos, V. Charisopoulos, and E. Theodosis, “Tropical geometry
and machine learning,” Proceedings of the IEEE, vol. 109, no. 5, pp.
728–755, 2021.

[3] L. Zhang, G. Naitzat, and L.-H. Lim, “Tropical geometry of deep neural
networks,” in International Conference on Machine Learning. PMLR,
2018, pp. 5824–5832.

[4] V. Charisopoulos and P. Maragos, “A tropical approach to
neural networks with piecewise linear activations,” arXiv preprint
arXiv:1805.08749, 2018.

[5] G. Montúfar, Y. Ren, and L. Zhang, “Sharp bounds for the number of
regions of maxout networks and vertices of Minkowski sums,” arXiv
preprint arXiv:2104.08135, 2021.

[6] M. Alfarra, A. Bibi, H. Hammoud, M. Gaafar, and B. Ghanem,
“On the decision boundaries of neural networks: A tropical geometry
perspective,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022.

[7] C. Hertrich, A. Basu, M. Di Summa, and M. Skutella, “Towards lower
bounds on the depth of ReLU neural networks,” Advances in Neural
Information Processing Systems, vol. 34, pp. 3336–3348, 2021.

[8] Z. Li and C. Wang, “Achieving sharp upper bounds on the expressive
power of neural networks via tropical polynomials,” IEEE Transactions
on Neural Networks and Learning Systems, 2024.

[9] M. Trimmel, H. Petzka, and C. Sminchisescu, “TropEx: An algorithm
for extracting linear terms in deep neural networks,” in International
Conference on Learning Representations, 2020.

[10] G. Smyrnis and P. Maragos, “Tropical polynomial division and neural
networks,” arXiv preprint arXiv:1911.12922, 2019.

[11] G. Smyrnis, P. Maragos, and G. Retsinas, “Maxpolynomial division
with application to neural network simplification,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 4192–4196.

[12] G. Smyrnis and P. Maragos, “Multiclass neural network minimization via
tropical Newton polytope approximation,” in International Conference
on Machine Learning. PMLR, 2020, pp. 9068–9077.

[13] P. Misiakos, G. Smyrnis, G. Retsinas, and P. Maragos, “Neural network
approximation based on Hausdorff distance of tropical zonotopes,” in
International Conference on Learning Representations, 2021.

[14] K. Fotopoulos, P. Maragos, and P. Misiakos, “TropNNC: Structured
neural network compression using tropical geometry,” arXiv preprint
arXiv:2409.03945, 2024.

[15] G. X. Ritter and P. Sussner, “An introduction to morphological neural
networks,” in Proceedings of 13th International Conference on Pattern
Recognition, vol. 4. IEEE, 1996, pp. 709–717.

[16] G. X. Ritter and G. Urcid, “Lattice algebra approach to single-neuron
computation,” IEEE Transactions on Neural Networks, vol. 14, no. 2,
pp. 282–295, 2003.

[17] P. Sussner and E. L. Esmi, “Morphological perceptrons with competitive
learning: Lattice-theoretical framework and constructive learning
algorithm,” Information Sciences, vol. 181, no. 10, pp. 1929–1950, 2011.

[18] V. Charisopoulos and P. Maragos, “Morphological perceptrons:
geometry and training algorithms,” in International Symposium on
Mathematical Morphology and Its Applications to Signal and Image
Processing. Springer, 2017, pp. 3–15.

[19] Y. Shen, X. Zhong, and F. Y. Shih, “Deep morphological neural
networks,” arXiv preprint arXiv:1909.01532, 2019.

[20] N. Dimitriadis and P. Maragos, “Advances in morphological neural
networks: Training, pruning and enforcing shape constraints,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2021, pp. 3825–3829.

[21] E. Theodosis and P. Maragos, “Analysis of the viterbi algorithm
using tropical algebra and geometry,” in 2018 IEEE 19th International
Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), 2018, pp. 1–5.

[22] ——, “Tropical modeling of weighted transducer algorithms on graphs,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2019, pp. 8653–8657.

[23] P. Maragos and E. Theodosis, “Tropical geometry and piecewise-linear
approximation of curves and surfaces on weighted lattices,” arXiv
preprint arXiv:1912.03891, 2019.

[24] ——, “Multivariate tropical regression and piecewise-linear surface
fitting,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2020, pp. 3822–3826.

15

[25] G. C. Calafiore, S. Gaubert, and C. Possieri, “Log-sum-exp neural
networks and posynomial models for convex and log-log-convex data,”
IEEE transactions on neural networks and learning systems, vol. 31,
no. 3, pp. 827–838, 2019.

[26] ——, “A universal approximation result for difference of log-sum-exp
neural networks,” IEEE transactions on neural networks and learning
systems, vol. 31, no. 12, pp. 5603–5612, 2020.

[27] K. H. Kim and F. W. Roush, “Factorization of polynomials in one
variable over the tropical semiring,” arXiv preprint math/0501167, 2005.

[28] N. Grigg and N. Manwaring, “An elementary proof of the fundamental
theorem of tropical algebra,” arXiv preprint arXiv:0707.2591, 2007.

[29] S. Gao and A. G. Lauder, “Decomposition of polytopes and
polynomials,” Discrete & Computational Geometry, vol. 26, no. 1, pp.
89–104, 2001.

[30] H. R. Tiwary, “On the hardness of computing intersection, union and
Minkowski sum of polytopes,” Discrete & Computational Geometry,
vol. 40, no. 3, pp. 469–479, 2008.

[31] B. Lin and N. M. Tran, “Linear and rational factorization of tropical
polynomials,” arXiv preprint arXiv:1707.03332, 2017.

[32] R. A. Crowell, “The tropical division problem and the Minkowski
factorization of generalized permutahedra,” arXiv preprint
arXiv:1908.00241, 2019.

[33] N. M. Tran and J. Wang, “Minimal representations of tropical rational
signomials,” arXiv preprint arXiv:2205.05647, 2022.

[34] M. Akian, S. Gaubert, V. Niţică, and I. Singer, “Best approximation in
max-plus semimodules,” Linear Algebra and its Applications, vol. 435,
no. 12, pp. 3261–3296, 2011.

[35] A. Magnani and S. P. Boyd, “Convex piecewise-linear fitting,”
Optimization and Engineering, vol. 10, no. 1, pp. 1–17, 2009.

[36] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, “Synchronization
and linearity: an algebra for discrete event systems,” 1992.

[37] B. Heidergott, G. J. Olsder, and J. Van Der Woude, Max plus at work.
USA: Princeton Univ. Press, 2014.

[38] P. Butkovič, Max-linear systems: theory and algorithms. Springer
Science & Business Media, 2010.

[39] R. A. Cuninghame-Green, Minimax algebra. Springer Science &
Business Media, 2012, vol. 166.

[40] P. Maragos, “Dynamical systems on weighted lattices: General theory,”
Mathematics of Control, Signals, and Systems, vol. 29, no. 4, pp. 1–49,
2017.

[41] D. Maclagan and B. Sturmfels, Introduction to tropical geometry.
American Mathematical Society, 2021, vol. 161.

[42] M. Joswig, Essentials of tropical combinatorics. American
Mathematical Society, 2021, vol. 219.

[43] I. Itenberg, G. Mikhalkin, and E. I. Shustin, Tropical algebraic geometry.
Springer Science & Business Media, 2009, vol. 35.

[44] K. Fukuda, “Lecture: Polyhedral computation, spring 2016,” Dept.
Math., Inst. Theor. Comput. Sci., ETH Zurich, Zurich, Switzerland, Lect.
Notes, 2020.

[45] V. Kaibel, “Extended formulations in combinatorial optimization,” arXiv
preprint arXiv:1104.1023, 2011.

[46] R. T. Rockafellar, “Convex analysis,” in Convex analysis. Princeton
university press, 2015.

[47] P. Maragos, “Morphological systems: slope transforms and max-min
difference and differential equations,” Signal Processing, vol. 38, no. 1,
pp. 57–77, 1994.

[48] ——, “Slope transforms: theory and application to nonlinear signal
processing,” IEEE Transactions on signal processing, vol. 43, no. 4,
pp. 864–877, 1995.

[49] H. J. Heijmans and P. Maragos, “Lattice calculus of the morphological
slope transform,” Signal Processing, vol. 59, no. 1, pp. 17–42, 1997.

[50] K. Fukuda et al., “Frequently asked questions in polyhedral
computation,” ETH, Zurich, Switzerland, 2004.

[51] E. Balas, “Disjunctive programming: Properties of the convex hull of
feasible points,” Discrete Applied Mathematics, vol. 89, no. 1-3, pp.
3–44, 1998.

[52] J. Kim, L. Vandenberghe, and C.-K. K. Yang, “Convex piecewise-linear
modeling method for circuit optimization via geometric programming,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 29, no. 11, pp. 1823–1827, 2010.

[53] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[54] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the
state of neural network pruning?” Proceedings of machine learning and
systems, vol. 2, pp. 129–146, 2020.

[55] N. Lee, T. Ajanthan, and P. Torr, “SNIP: Single-shot network pruning
based on connection sensitivity,” in International Conference on
Learning Representations (ICLR), 2019.

[56] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[57] U. Rosolia and F. Borrelli, “Learning model predictive control for
iterative tasks. a data-driven control framework,” IEEE Transactions on
Automatic Control, vol. 63, no. 7, pp. 1883–1896, 2017.

[58] U. Rosolia, X. Zhang, and F. Borrelli, “Simple policy evaluation for
data-rich iterative tasks,” in 2019 American control conference (ACC).
IEEE, 2019, pp. 2855–2860.

[59] H. Xue, E. L. Zhu, J. M. Dolan, and F. Borrelli, “Learning model
predictive control with error dynamics regression for autonomous
racing,” in 2024 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2024, pp. 13 250–13 256.

[60] Y. Li, K. H. Johansson, J. Mårtensson, and D. P. Bertsekas, “Data-driven
rollout for deterministic optimal control,” in 2021 60th IEEE Conference
on Decision and Control (CDC). IEEE, 2021, pp. 2169–2176.

[61] B. Sturmfels, “On the Newton polytope of the resultant,” Journal of
Algebraic Combinatorics, vol. 3, no. 2, pp. 207–236, 1994.

[62] M. Joswig, “The Cayley trick for tropical hypersurfaces with a
view toward ricardian economics,” in Homological and Computational
Methods in Commutative Algebra. Springer, 2017, pp. 107–128.

[63] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret, “Transformers
are RNNs: Fast autoregressive transformers with linear attention,” in
International Conference on Machine Learning. PMLR, 2020, pp.
5156–5165.

Ioannis Kordonis oannis Kordonis received his
Diploma and Ph.D. in Electrical and Computer
Engineering from the National Technical University
of Athens (NTUA), Greece, in 2009 and 2015,
respectively. He held postdoctoral positions at the
University of Southern California, CentraleSupélec,
and NTUA. He is currently an Assistant Professor
at the NTUA School of ECE.

His research interests include Game Theory,
Stochastic Control Theory, and Machine Learning,
with applications in Energy and Power Systems,

Transportation Systems, and Bioengineering.

Petros Maragos received his Ph.D. degree from
Georgia Tech, Atlanta, in 1985. Then, he joined
the faculty of the Division of Applied Sciences at
Harvard University, where he worked for 8 years
as a professor of EE affiliated with the Harvard
Robotics Lab. In 1993 he joined the faculty of
the School of ECE at Georgia Tech, affiliated with
its Center for Signal & Image Processing. During
periods of 1996-98, he had a joint appointment as
director of research at the Institute of Language and
Speech Processing in Athens. Since 1999, he has

been working as a professor at the NTUA, where he is currently the director
of the Intelligent Robotics & Automation Lab. He has held visiting positions
at MIT in 2012, at UPenn in 2016, and at USC in 2023. He is a co-founder
and since 2023 the acting director of the Robotics Institute at Athena RC.
He is also a co-founder and since 2025 the director of the newly launched
Hellenic Robotics Center of Excellence. His research and teaching interests
include computer vision, speech & language, machine learning, and robotics.
He is the recipient of several awards including an NSF Presidential Young
Investigator Award, Best Paper awards from IEEE journals and Computer
Vision conferences, and the Technical Achievement award from EURASIP.
For his research contributions he was elected a Fellow of IEEE in 1995 and a
Fellow of EURASIP in 2010. He has served as IEEE Distinguished Lecturer
for 2017-18. Since 2023 he is a Life Fellow of IEEE.

