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Graph-Driven Diffusion and Random Walk
Schemes for Image Segmentation
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Abstract— We propose graph-driven approaches to image
segmentation by developing diffusion processes defined on arbi-
trary graphs. We formulate a solution to the image segmentation
problem modeled as the result of infectious wavefronts prop-
agating on an image-driven graph, where pixels correspond to
nodes of an arbitrary graph. By relating the popular susceptible-
infected-recovered epidemic propagation model to the Random
Walker algorithm, we develop the normalized random walker
and a lazy random walker variant. The underlying iterative
solutions of these methods are derived as the result of infec-
tions transmitted on this arbitrary graph. The main idea is
to incorporate a degree-aware term into the original Random
Walker algorithm in order to account for the node centrality of
every neighboring node and to weigh the contribution of every
neighbor to the underlying diffusion process. Our lazy random
walk variant models the tendency of patients or nodes to resist
changes in their infection status. We also show how previous
work can be naturally extended to take advantage of this degree-
aware term, which enables the design of other novel methods.
Through an extensive experimental analysis, we demonstrate
the reliability of our approach, its small computational burden
and the dimensionality reduction capabilities of graph-driven
approaches. Without applying any regular grid constraint, the
proposed graph clustering scheme allows us to consider pixel-
level, node-level approaches, and multidimensional input data
by naturally integrating the importance of each node to the final
clustering or segmentation solution. A software release containing
implementations of this paper and supplementary material can
be found at: http://cvsp.cs.ntua.gr/research/GraphClustering/.

Index Terms— Graph clustering, random walker, SIR epidemic
propagation model, diffusion modeling, image segmentation.

I. INTRODUCTION

IMAGE segmentation is a process of dividing a digital
image into smaller parts that provide meaningful insights

about the objects and the structures in a scene. Segmenta-
tion provides useful information for many other higher level
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processes such as object detection or image retrieval. The
traditional image segmentation literature is abundant in pixel-
based methods, where every pixel is assigned to a particular
label to create pixel segments. There are many categories
of algorithms that are used in image segmentation such as
edge-based [1], model-based [2], perception-based [3], region
growing [4] methods etc. Some approaches do not assume
user information (unsupervised), whereas others rely on it
(interactive) by incorporating it as a hard or a soft constraint.

In this paper, we will focus on interactive image segmen-
tation via graph-based clustering and segmentation. The main
idea behind interactive segmentation is that the user marks a
set of points (seeds) that he thinks belong to different objects.
Then, this information is provided to a supervised algorithm
that seeks to produce segmentation results that adhere well to
these seeds. Some of the most influential interactive segmenta-
tion methods are based on graph cuts [5], normalized cuts [6]
and the Random Walker (RW) algorithm [7], which is the
focus of this work. In the RW setting, the user marks some
pixels in the image. Then, assuming that a random walker
starts from each unlabeled pixel, calculate the probability
that these random walkers will first reach the already labeled
pixels. At each pixel, the label with the greatest probability is
picked as its final label yielding the final interactive segmen-
tation result.

An important property of the RW algorithm is its connection
to anisotropic diffusion [8], [9]. In particular, the RW algo-
rithm shares the same energy functional as anisotropic diffu-
sion and yields a steady state solution, whereas anisotropic
diffusion provides a flow-based solution. By steady state
solution we mean that the final solution takes a non-iterative
closed form which usually is the solution of an appropriately
defined linear system. This observation has been exploited to
create alternatives to the RW approach. In order to handle
natural images with complex textures, the Random Walker
with restart (RWR) algorithm was introduced in [10]. In the
RWR setting, the restarting probability c indicates that the
random walker will return to the starting node (pixel) with
a probability of c or walk out to an adjacent pixel with
probability 1 − c. Ham et al. [9] further extended the RWR to
incorporate non-local information and structure.

In [11], a “lazy” random walk variant (LRW) was pro-
posed and used for superpixel segmentation. A lazy random
walker stays at the current node with probability 1 − α and
travels to some adjacent node with probability α. The LRW
uses the normalized graph Laplacian and uses the notion of
commute times instead of the first reach probability, like RW.
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While the RW starts from the pixels to the seed points,
the LRW algorithm computes the commute time from the
seed points to other pixels. In [12], partially absorbing ran-
dom walks (PARW) were used for video supervoxels. These
approaches are typically called graph-based since they use a
regular grid as the image representation domain.

One limiting property of the RW is that each segment
has to be connected to a seed. In order to incorporate
prior information into the RW approach and eliminate this
constraint, Grady [13] proposed the use of an augmented
graph where the additional nodes were connected to the
original image’s nodes. In a similar fashion, the recent work
of Dong et al. [14], [15] proposed a unifying sub-Markov
random walk approach (subRW). The subRW framework can
be thought of as an extension of LRW, RWR and PARW
where additional nodes are added in the base (original) image
graph providing different kinds of image information. Other
works have used spectral segmentation techniques based on the
graph Laplacian [16]–[18]. For example, the Laplacian Coor-
dinates (LC) method [16] considers an extended neighborhood
at every pixel thereby improving the diffusive properties
of this approach. An interactive segmentation approach was
suggested in [19] that uses constrained Laplacian optimization
along with an acceleration step that significantly reduces
the computational time. A constrained version of RW that
is suitable for multiple user inputs and that demonstrates
improved results over RW was proposed in [20] while [21]
used an error-tolerant graph cut energy function. In [22], the
Power Watershed framework was developed to unify RW with
shortest path optimization and graph cuts. In [23], a self-
diffusion operator was introduced both for image segmentation
and graph clustering and was related to random walks, but the
authors did not focus on interactive image segmentation.

The common ground between all those approaches is that
the base image graph is usually a regular image grid. While a
regular grid can be an attractive option for devising different
RW variants or for adding additional nodes (as in subRW),
the regularity constraint on the image graph can be limiting
for the following reasons. First, the developed algorithms
rely on the simple image grid and do not consider other
possible sources of information. Further, these approaches
cannot be directly extended to other types of visual data such
as point clouds or video sequences. This is not the case for
arbitrary graphs which capture additional properties of the
problem.

We believe that improved algorithms on image-driven
graphs should not consider only simple 4- or 8-neighborhoods.
Instead, we propose a set of RW approaches where pixels no
longer have a one to one correspondence to nodes. It may
occur that a single pixel is also a node, but most often a
node represents a set of pixels in a small homogeneous region.
In order to study interactions between the different nodes, we
found it instructive and highly intuitive to relate our work
to epidemic propagation models since the transmission of
infections is also a kind of interaction between entities. Such
models can be a source of inspiration when devising new
RW algorithms, which are related to diffusion. Therefore, our
first step is to relate a popular epidemic propagation model

called the Susceptible - Infected - Recovered (SIR) model to
the RW by analyzing the transmission processes that occur
between the nodes of an arbitrary graph.

We then take a step further by observing that the importance
of a node with respect to the whole graph is a rich source
of information. From a more abstract point of view, we can
think of the node importance as the number of neighbors some
node (or a human) has i.e. we can associate node importance
to the notion of node centrality as with social graphs [24].
We incorporate this information into different diffusion
schemes and interpret their steady state solutions as the
final image (or graph) segmentation result. We introduce the
Normalized Random Walker (NRW) and the Normalized Lazy
Random Walker (NLRW) as those steady states. The term
normalized refers to the fact that the underlying smoothness
functional relates each node’s degree with the degrees of its
neighbors.

Previous methods such as subRW and RWR do not take
into account this information. Further, LRW also uses the
normalized graph Laplacian (like NRW) but the choice of
the normalized Laplacian was “to be more consistent with the
eigenvalues of adjacency matrices in spectral geometry and in
stochastic process” [11]. Here, we discuss the effect of using
the normalized Laplacian in great detail from both theoretical
and practical perspectives. In addition, the proposed NRW and
NLRW schemes decompose the Laplacian matrix (which is
different from the one used in RW) into four sub-matrices and
then convert those into a linear system. This idea originates
from the original RW work and is conceptually different from
the LRW that solves the inverse of the normalized Laplacian
matrix to calculate the commute time.

In our previous work [25], we carried out preliminary
studies on using NRW to improve the original RW algorithm.
Going beyond our previous efforts, we further develop NRW
and NLRW by studying both iterative and steady state solu-
tions. We also demonstrate how to incorporate the node cen-
trality term in other RW variants, such as subRW and RWR,
which demonstrates that our approach is applicable in the
design of other RW variants. Further, we carry out both
pixel- and graph-based experiments and an extensive statistical
analysis on many different datasets for the node-based case.
The versatility of the proposed framework allows us to treat
any 2D image as an arbitrary entity with irregular image
patches. Therefore, it can be used not only for interactive
image segmentation but also on other types of visual data such
as video and point clouds.

The remainder of this paper is organized as follows.
Section II provides an analysis of the SIR model. Then, in
Section III, we briefly discuss the original RW algorithm and
its main properties and drawbacks. A unification of the SIR
model with the RW algorithm is presented in Section IV
and Section V describes the NRW algorithm. In Section VI
we analyze and extend the diffusion process related to
the NRW and develop NLRW as its steady state solution.
Section VII describes our full graph-based approach and
Section VIII demonstrates the connections of NRW to subRW
and RWR and ways to extend them. Section IX provides
extensive results of our method compared to other seeded



BAMPIS et al.: GRAPH-DRIVEN DIFFUSION AND RANDOM WALK SCHEMES FOR IMAGE SEGMENTATION 37

Fig. 1. SIR [27] regular grid around (x, y).

image segmentation methods. Finally, Section X demonstrates
an application to visual point cloud and Section XI gives
conclusions.

II. SUSCEPTIBLE INFECTED RECOVERED (SIR) MODEL

The SIR model [26], [27] is a well-studied epidemic prop-
agation model in the field of mathematical epidemiology. The
standard SIR (Kermack-McKendrick) model [26] considers a
community of people belonging in 3 states: the susceptible (S),
the infected (I) and the recovered (R). The model assumes that
a recovered person can never be infected again and is described
by the following three equations:

d S

dt
= −kSI,

d I

dt
= kSI − 1

τ
I,

d R

dt
= 1

τ
I (1)

where k is the rate of infection transmission and τ is the
recovery time, i.e. the time it takes for a person to recover
after being infected. The functions S(t), I (t), R(t) denote
the number of individuals in each state respectively over
time t . The model further assumes that the total number C of
individuals does not change, i.e. S(t) + I (t) + R(t) = C ∀t .
Postnikov and Sokolov [27] modified the SIR model by
introducing spatial dependency on a continuum. Given a
community of immobile individuals, the infection mechanism
is assumed to be through contact with direct neighbors.
As depicted in Fig. 1, all nodes form a regular grid with a
constant spacing a between them. Then, I (x, y, t) denotes the
probability that the node at (x, y) in the 2D regular grid will
be infected at time t (S(x, y, t) and R(x, y, t) are similarly
defined). The change over time �I (x, y, t) of the probability
of being infected at (x, y) is modeled as:

�I (x, y, t) = k

4
S(x, y)

[
I (x + a, y, t) + I (x − a, y, t)

+ I (x, y + a, t) + I (x, y − a, t)
]
�t (2)

Therefore, the contact mechanism assumes an average infec-
tion state over the 4-node neighborhood and an infection flow
proportionate to k

4 over all orientations provided that the node
is susceptible to the infection. In addition, it is proportionate
to the change in time.

III. RANDOM WALKER ALGORITHM

The diffusive nature of the SIR model in (2) may
be used for image segmentation via random walk theory.
In [7], Grady proposed the Random Walker (RW) algorithm

for image segmentation, where the user inputs a set of seeds,
each corresponding to one of M possible segmentation labels.
This set of marked pixels is then used as the initial state
towards extracting the desired object boundaries. The final
segmentation is interpreted as the most probable label at
each node, i.e. which type of seed is the most probable final
destination for a random walker who starts his trip from
every unmarked node. However, direct solution of the random
walker’s probabilities with respect to all unmarked nodes is
computationally intractable [7]. Instead, one may solve the
relevant Dirichlet problem (also known as the combinatorial
Dirichlet integral for graph applications) [28], [29] and then
apply the RW algorithm. We now briefly describe the RW
algorithm. Let L be the unnormalized graph Laplacian [7]:

L = D − W = [li j ] =

⎧
⎪⎨

⎪⎩

di , if i = j

−wi j , if j ∼ i

0, else

(3)

where N is the number of pixels in the image, W = [wi j ]
is the weight matrix, D = diag(d1, . . . , dN ) is the degree
matrix, di = ∑

j∼i
wi j is the degree of node i and ∼ denotes that

pixels or nodes i and j are adjacent. To construct the weights,
a gaussian kernel was proposed using pixel luminances (or
colors) gi at each pixel i , i.e. wi j = exp(−‖gi − g j‖2/σ 2)
where σ is a scale-related parameter of the algorithm. Then
we minimize

J (x) = 1

2

∑

i∼ j

wi j

(
xi − x j

)2 = 1

2
x�Lx (4)

given the constraints (seed locations) encoded in x = [xi ]
which are the random walker’s probabilities for one of the M
different seed types (e.g. for M = 2 we have a set of seeds
for the background and a set of seeds for the foreground of
the image). Then, at every unmarked node, we choose the
label that corresponds to the maximum probability i.e. we find
the largest of the M different xi values (one for each seed
type). The RW algorithm outputs the labels assigned to every
pixel. Meanwhile, the random walker’s probabilities have three
important properties:

1) they sum to one across all possible labels
2) they are between zero and one
3) they are equal to a linear combination of all the values

in the neighborhood i.e. xi = 1
di

∑

i∼ j
wi j x j

Properties 1 and 2 reflect the underlying probabilistic inter-
pretation of the random walker and properties 2 and 3 are
combinatorial analogues of properties of continuous harmonic
functions [7]. In fact, it is well known that the RW solution can
be regarded as the steady state solution of the heat equation:
du
dt = ∇2u. This equation models the heat flowing from “hot”
to “cold” areas in a graph [7], [30]. Similarly, it can be viewed
as a label propagation approach for graph-based learning
models [31]. Note that we are minimizing the functional J (x)
for each of the M seed types thus it is required to solve a set
of M systems of linear equations [7]. However, if one uses
property 1 of the generated probabilities, then M − 1 systems
of linear equations need to be solved.
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Fig. 2. RW is sensitive to the number and location of the seeds.

As in most seeded segmentation methods, the RW algorithm
is sensitive to the initial seed location, number and quality,
e.g. the results may be adversely affected if the human factor
introduces incorrect initial seeds due to lack of expertise or
concentration (see Fig. 2). In [20], the authors proposed an
improved way of picking the seeds that delivers improved
results compared to the RW algorithm. Parameter tuning is
also an important aspect, since prior knowledge of σ is usually
unavailable and can vary from image to image. Searching
for an optimal σ iteratively or by an explicit formula as
in [32] digests precious computational time. In the experi-
mental section we study the robustness of our proposed NRW
method against the RW algorithm and other methods, while
varying the parameter σ , for different locations and number
of seeds.

IV. UNIFICATION OF THE SIR WITH THE

RANDOM WALKER ALGORITHM

Next, we derive the RW solution as the steady state solution
of the SIR diffusion. Our ultimate goal is to model graph
clustering as the steady state of different infections whose
status increases at already infected nodes and propagates
to uninfected ones through the contact spread mechanism
of the SIR. Consider every image pixel to be equally sus-
ceptible to infections/labels diffused by the SIR model, i.e.
S(x, y, t) = 1 ∀x, y, t . Also assume that there are no individ-
uals in the recovery state, i.e. let τ → ∞. We also normalize
the time steps so that �t = 1. Then, the SIR model becomes:

�I (x, y, t)

= k

4

[
I (x + a, y, t) + I (x − a, y, t) + I (x, y + a, t)

+ I (x, y − a, t)
] = I (x, y, t + 1) − I (x, y, t)

Then, given an initial infection state, the infection probability
at (x, y, t) is updated, i.e.

I (x, y, t + 1) = I (x, y, t) + k

4

[
I (x + a, y, t)

+ I (x − a, y, t) + I (x, y + a, t) + I (x, y − a, t)
]

(5)

Define the initial state as follows: suppose there exists a set
P = {sk} of breakout points located at sk = (xk, yk) related
to some infection. We rewrite I (xi , yi , t) as Ii,t to denote
the infection probability at time t of pixel/node i located at
(xi , yi ). Similar to other seeded segmentation methods, con-
sider these points to have reference values for their infection
status, i.e. Ii,t = 1 ∀t for some infection or label and zero
everywhere else. Accordingly, all other points are initially at

a healthy state for all infections, i.e. Ii,0 = 0 ∀i ∈ No \ P ,
where No = [1, . . . , N] and N is the number of nodes.

Next, reformulate (5) to express the increase in infection in
terms of the contact mechanism. A real life analog could be
that friendships among members of a community share more
experiences and are more prone to be infected by someone
they spend more time with. To model node similarity we
use weights wi j , where i , j denote two pixels/nodes in the
image/graph. Constructing the weight matrix W is important
for the final segmentation: higher wi j means higher similarity
between nodes i and j thus a stronger connection between
them. We use a gaussian kernel with parameters σg , σh :

wi j =

⎧
⎪⎨

⎪⎩

exp

[

−‖gi − g j‖2
2

σ 2
g

− ‖hi − h j ‖2
2

σ 2
h

]

, if j ∼ i

0, else

(6)

where gi is the image feature vector (e.g. a 3D RGB vector)
associated with pixel/node i , and hi is the location of
pixel/node i . Color features are often used in RW variants
and filterbank features have been used in [33] for texture
segmentation. Consider replacing k with wi j , denote by di

the degree of node i and reformulate (5) to obtain the steady
state (t → ∞) at some node i :

�Ii,t = I (xi , yi , t + 1) − I (xi , yi , t) =
∑

j ∼ i

wi j

di
I j,t

�Ii,t →0
t→∞
⇒

∑

j ∼ i

wi j

di
I j,t = 0 (7)

where di is the degree of node i . For wi j > 0 and I j,t ≥ 0
(7) is not applicable, i.e. it implies I j,t = 0 ∀ j, t . Therefore,
we reformulate the SIR by assuming the following local mean
field model [27]:

Ii,t+1 = Ii,t +
∑

j ∼ i

wi j (I j,t − Ii,t ), (8)

where by node i becomes more infected as time passes. Note
that the amount of neighbor influence is proportional to the
difference between each pair’s infection status. When node i
and j are similarly affected, then j ceases to affect i . The
contact mechanism is symmetric: i has the same effect on j ,
hence the weight matrix W is symmetric. This formulation
can also be interpreted through the use of the derivative
∂ j Ii,t = √

wi j (I j,t − Ii,t ) along edge ei j [32] (see Appendix).
Note that (8) holds for all propagating infections evolving
as �Ii,t = Ii,t+1 − Ii,t . When a steady state is reached,
then:

�Ii,t∞ =
∑

j ∼ i

wi j (I j,t∞ − Ii,t∞) = 0

⇒ Ii,t∞ =
∑

j ∼ i

wi j

di
I j,t∞ (9)

where t∞ means that t → ∞. Therefore, the steady state cor-
responds to cessation of evolution (updating) of the infection
status at all nodes and for all infections. Also, Ii,t∞ satisfies
the previous (harmonic) properties 2 and 3 [7], [30]:
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Fig. 3. A has 2 connections, B has 7 and C has 3, colors denote independent
neighborhoods.

1) 0 ≤ Ii,t∞ ≤ 1 at all nodes and infections
2) Ii,t∞ is equal to the weighted average of its neighboring

nodes (the mean-value theorem)
Our reformulation of the SIR model may now be interpreted in
terms of the RW algorithm: if one considers labels as different
infections and the probabilities xi as Ii,t∞ in (9), then the
steady state of the extended SIR model is identical to the
solution provided by the RW algorithm. Note that the weighted
average property of the reformulated SIR is equivalent to the
third property of the RW by simple inspection. Motivated by
this natural connection, we further develop the Random Walker
algorithm in new and different ways by using arbitrary graph
structures and node networks. In our SIR reformulation, we
did not take into account the dynamics of the susceptible and
recovered compartments. For image segmentation tasks, it is
more useful to consider the interactions between pixels/nodes
thus we designed the SIR such that each node is infected by all
types of infections and the final segmentation result (which is
the desired output for RW) is expressed as finding the infection
that dominated over each node in the end i.e. when the steady
state of the SIR diffusion process is reached.

V. NORMALIZED RANDOM WALKER (NRW)

By analyzing (8), it may be observed that the nodal degree
is not accounted for when computing the edge derivative.
However, this would not be natural in a realistic disease prop-
agation: the number of neighbors each person has influences
the local infection profile. Suppose that A has 2 friends,
B and C (see Fig. 3). Also, suppose that both of them are
“equal” friends of A, but B has more friends than C. Then,
B will more heavily influence A’s infection profile. In other
words, the probability of a node’s infection is related to its
degree and that of its neighbors. We thus incorporate degree
terms to satisfy this observation. Denote the normalized graph
Laplacian [34] by L̃ = D− 1

2 (D − W)D− 1
2 = [l̃i j ], where

l̃i j =

⎧
⎪⎪⎨

⎪⎪⎩

1, if i = j

− wi j√
did j

, if j ∼ i

0, else

(10)

and W, D are the weight and degree matrix respectively. Also,
define the normalized derivative [32] over edge ei j as ∂ j Ii,t =√

wi j√
di

( I j,t√
d j

− Ii,t√
di

)
. Our new iterative scheme is then written

as (see Appendix):

Ii,t+1 = Ii,t +
∑

j ∼ i

wi j√
di

(
I j,t√

d j
− Ii,t√

di

)
(11)

Proposition 1: The iterative scheme (11) can be
re-written as:

�It = −L̃It (12)

where �It and It are N × 1 vectors and N is the number of
graph nodes or image pixels:

�It = (�I1,t . . .�IN,t )
�, It = (I1,t . . . IN,t )

� (13)

Also, the steady state solution of (11) minimizes:

Jn(x) = 1

2

∑

j∼i

wi j

( xi√
di

− x j√
d j

)2
(14)

which is a normalized version of J (x) in (4). As shown in the
Appendix (proof of Proposition 1), minimizing Jn(x) requires
solving an appropriately defined linear system of equations.

Proposition 2: The steady state at node i is:

Ii,t∞ = 1√
di

∑

j ∼ i

wi j√
d j

I j,t∞ . (15)

Proposition 3: Ii,t∞ violates the maximum principle of
the RW, hence M systems of linear equations must be solved,
one for each label (or infection type). We derive the proofs of
Proposition 2 and 3 in the Appendix.

VI. NORMALIZED LAZY RANDOM WALKER (NLRW)

Neither RW nor NRW consider the resistance of nodes to
changes. For example, an infected patient may attempt to
reduce his chances of getting sicker by changing his daily
habits, by using medications etc. We seek to incorporate this
behavior by extending (11). Similar to [11], we introduce a
free parameter α ∈ [0, 1] which expresses the probability of
the random walker making a self-loop. We then propose the
following iterative scheme:

Ii,t+1 = Ii,t − αdi

1 − α + αdi
Ii,t + α

∑

j ∼ i

wi j√
di

I j,t√
d j

(16)

Let W
′ = [w′

i j ] denote the weight matrix of the lazy random
walk:

w
′
i j =

⎧
⎪⎨

⎪⎩

1 − α, if i = j

αwi j , if j ∼ i

0, else.

(17)

Then D
′ = diag(d

′
1, . . . , d

′
n), where d

′
i = 1 − α + αdi . Similar

to Proposition 2, the steady state of (16) corresponds to

Ii,t∞ = 1 − α + αdi

di

1√
di

∑

j ∼ i

wi j√
d j

I j,t∞ (18)

= d
′
i

di

1√
di

∑

j ∼ i

wi j√
d j

I j,t∞ (19)
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Fig. 4. Columns 1 - 5: Transmission of M = 2 infections, timesteps (left to right): 1, 2, 5, 50 and 5000. Column 6: Steady states, rows 1 - 3: RW, NRW
and NLRW. Blue nodes: Infection 1. Red nodes: Infection 2. Black nodes are not yet infected, while seeds denoted by green and yellow denote infection 1
and infection 2 respectively.

Note that (19) degenerates to the NRW solution when α = 1.
When α = 0 the node remains in the previous state since
the probability of a self-loop is one. We call the steady
state solution of (16) NLRW to avoid confusion with the
LRW method [11]. As with RW and NRW, the NLRW algo-
rithm updates the infection probability function Ii,t such that
�It = −LIt at every unseeded node and for every infection.
In the case of NLRW, the graph Laplacian is denoted by
L

′ = [l ′
i j ] and is given by:

l
′
i j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αdi

1 − α + αdi
, if i = j

− αwi j√
di
√

d j
, if j ∼ i

0, else.

(20)

Note that using L
′ = D

′ − W
′

for NLRW is not useful, since
in that case L

′ = αL which produces the same solution as (8).
We verified this observation empirically. Our NLRW scheme
is different from LRW since it does not use the notion of
commute times [11], it is not constrained to a pixel-based
framework and it is strongly related to the NRW scheme.
Fig. 4 shows the evolution of the underlying diffusion schemes
for RW, NRW and NLRW.

VII. GRAPH-BASED NORMALIZED RANDOM WALKER

Next, we present a NRW model for arbitrary graphs. Let
G = (V , E) denote an image-driven graph consisting of a set
of vertices (nodes) υ ∈ V and a set of edges e ∈ E ⊆ V × V .
In addition, an edge ei j denotes an edge spanning two vertices
υi and υ j . In order to represent node similarity, we define
non-negative weights wi j between nodes i and j and the
degree di as before. Also assume that G is connected and

Fig. 5. Region Adjacency Graph (RAG) based on watershed.

undirected (wi j = w j i ). Instead of applying our algorithm on
a pixel level (regular grid), we extend it to a Region Adjacency
Graph (RAG) [35]. Then we can use any over-segmentation
technique (such as a watershed transformation [36] or
SLIC [37]) to obtain a set of n regions R1, R2, ..., Rn rep-
resented by a node i located at the spatial mean hi of Ri

and whose feature vector is gi , i.e. the mean feature vector
over all pixels in Ri (see Fig. 5). Consequently, the problem
dimensionality can be greatly reduced. We prefer a node-
level approach, since it better approximates real-life situations,
where the number of friends or neighbors of each person
is free of spatial regularity. From an image segmentation
perspective, the degree of each node will more accurately
depict the relationship between adjacent image regions, thus
capturing local image structures more efficiently.

A drawback of RAG is that it is necessary to inter-
pret the initial seeds in terms of their corresponding nodes.
A good approximation can be obtained by assigning each
seed’s label to the node closest to the seed’s pixel, by assuming
that the user will not input any seeds very close to an object’s
boundary, i.e., within a few pixels, thus training the human
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Fig. 6. From left to right: CT image + seeds, image-driven graph, graph clustering in 3 classes using the RW algorithm, corresponding pixel-level RW and
pixel-level NRW using the graph clustering solution.

user is not necessary. A more accurate (but slower) approach
would be to assign the seed’s label to the region or node the
pixel belongs to. Also, to transform the nodal solution into a
spatial one, assign the label of node i to all pixels in region Ri .
Finally, boundary pixels are handled by assigning each to
the most common label present around its eight neighbors.
Fig. 6 shows the previously described steps.

Using an arbitrary number of neighbors can be advantageous
for NRW. Intuitively, NRW exploits the node degree informa-
tion which is less informative when the number of neighbors is
restricted to 4 or 8. Given the fundamental property that real-
world images are locally correlated, this implies a very strong
advantage for NRW in its node-based approach. Also, the use
of the normalized graph Laplacian aligns with the theoretical
merits described in [38].

VIII. EXTENSIONS AND CONNECTIONS

WITH PREVIOUS METHODS

As discussed earlier, NRW minimizes Jn(x) which corre-
sponds to re-weighting of a smoothness term which ensures
that if nodes i and j are similar (high wi j ), then the cor-
responding probabilities xi and x j are as close as possible.
A trivial solution is to set all xi = 0. However, in the case
of NRW, minimizing Jn(x) is also constrained by the seed
information. This observation leads us to connect and extend
NRW to other RW variants such as the subRW method [14].
We only give a high-level overview of the subRW in order to
connect the ideas of NRW with many other RW variants (for
this section only we adopt the exact same notation of [14] to
avoid confusion). Consider the subRW functional:

Ōlk

= 1

2

∑

i∼ j

wi j

(
r̄ lk

im − r̄ lk
jm

)2 + 1

2

N∑

i=1

(di + λgi)ci

1 − ci

(
r̄ lk

im − blk
im

)2

+ 1

2

N∑

i=1

λuk
i

(
r̄ lk

im − 1
)2 + 1

2

K∑

t=1,t �=k

N∑

i=1

λut
i r̄

l2
k

im

where r̄im is the labeling probability of node i for the
m− seeded pixel, ci is the restarting probability of node i ,
k is the label index for label lk , λ is a constant controlling
the effect of a GMM label prior and blk

im is related to the
seed information. The first term corresponds to the smoothness
term between the labeling probabilities, the second controls the
effect of the seeded information and the last two correspond to
the GMM prior encoded in uk

i . More importantly, the subRW

is related to many other RW variants. For example, setting
λ = 0 (no GMM prior) and ci = c ∀ i yields the RWR.

Clearly, subRW uses a smoothness term that is not incor-
porating the degree-aware term of NRW. It is possible to re-
express subRW so that the relative degree between the nodes
is taken into account. Indeed, the smoothness term of NRW
may be quite useful when designing other RW variants, since
it can be naturally integrated into the smoothness term of
any optimization function. In the Appendix, we show two
examples of this integration. Integrating the degree information
is not bound to any assumptions and can be successfully
deployed in other methods as we demonstrate next.

IX. EXPERIMENTAL RESULTS

We evaluated both pixel-based and node-based approaches
to demonstrate the power of the NRW degree-aware term.

A. Pixel-Based Experiments

For the pixel-based experiments we considered the fol-
lowing methods: RW [7], LC [16], LRW [11], RWR [10],
subRW [14] and our proposed new models. For all methods
we used publicly available implementations. The most popular
dataset for validating interactive segmentation results is the
GrabCut Microsoft Research (MSRC) dataset [39], which
includes 50 images, their both ground truth segmentations,
and their tri-maps. We used four commonly used comparison
measures [16]: the Rand Index (RI), the Global Consistency
Error (GCE), the Variation of Information (VoI) and the error
rate. The RI measures how closely the resulting segmentation
and the ground truth agree by counting the number of corre-
sponding pixel pairs having the same labels. Therefore, higher
results correspond to better segmentation results. The GCE
quantifies the level of refinement between two segmentations
while the VoI captures the distance between the segmentations
in terms of their relative entropies. Lower values of both the
GCE and the VoI indicate better segmentation results. Finally,
the error rate is the percentage of misclassified pixels, thus
lower values are better.

For a fair comparison between the different approaches, we
conducted an extensive parameter search for each method. For
RW, LC and NRW it is necessary to determine σg only. For
LRW and NLRW both σg and α must be found, while for
RWR, subRW and NsubRW we must find σg and c. For the
latter two, we set λ to the default value suggested in [14].
Next, we fixed all parameters to yield the best RI value,
then computed the average of all four evaluation metrics over
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TABLE I

GRABCUT MSRC DATASET [39]: RI, GCE, VoI AND ERROR %; PIXEL-BASED RESULTS AFTER DETERMINING THE BEST SET OF PARAMETERS FOR
EACH METHOD. FOR EACH METRIC, THE FIRST ENTRY CORRESPONDS TO THE AVERAGE VALUE AND THE SECOND TO THE MEDIAN

TABLE II

LEFT: PIXEL-BASED RESULTS ON GRABCUT MSRC DATASET [39]. RIGHT: DATASET CHARACTERISTICS FOR GRAPH-BASED EXPERIMENTS.
(a) RI, GCE, VoI AND ERROR % ON GRABCUT MSRC; PIXEL-BASED RESULTS ON SEED SETS S1 AND S2 AFTER DETERMINING

THE BEST SET OF PARAMETERS FOR EACH METHOD USING THE TRIMAPS. (b) DATASET CHARACTERISTICS

all images. The search space for each parameter was: σg ∈
[10, 140], α ∈ [0.95, 0.9999], c ∈ [0.0001, 0.5]. All results
are tabulated in Table I. Clearly, RW was the worst performing
algorithm, followed by NLRW and NRW which were slightly
worse than LC; LRW is slightly better than LC but worse
than RWR, subRW and NsubRW. Among the rest of the
methods it is hard to reach any conclusions since the average
differences were similar. RWR, subRW and NsubRW yielded
the best numerical performance but these differences were not
statistically significant. Alternatively, we could have compared
RWR, subRW and NsubRW by computing the median value of
the error rate over all pairs [σg, α], giving 4.9527, 4.8782 and
4.5308 for RWR, subRW and NsubRW respectively, a slight
advantage for NsubRW.

To further examine performance in another light, we used
two other sets of seeds proposed in [40] which we call seed
set 1 (S1) and seed set 2 (S2). These seed points were more
sparse than the original seed points in the GrabCut dataset. The
second set (S2) contained more labeled points than the first
set, thus the results across all methods would likely be better
for S2. Next, fixing the parameters computed using the original
seed points from the GrabCut dataset, we tested on S1 and S2.
The quantitative results are tabulated in Table II(a), which
shows that RWR, subRW and NsubRW delivered much lower
performance than before, while NRW outperformed them. It is
likely that the parameters chosen for the trimaps were not
optimal for the seeds in S1 and S2. Further, subRW and
NsubRW gave nearly identical performance. This may be due
to the fact that for more complex RW variants (like subRW)
the degree-aware term may not always add more information.

Meanwhile, NRW is a reliable alternative since the degree-
aware term is not affected by any parameter choice. For
S1 and S2 NRW performed the best compared to all other
methods.

In Table I, we also include the average compute time
over 50 images on the GrabCut dataset. Clearly, subRW and
NsubRW are costly, due to the GMM prior computation, while
NsubRW is even more so since it computes the normalized
graph Laplacian. On the other hand, RW NRW and NLRW
are very fast owing to their simplicity. The slight increase
for both NRW and NLRW compared to RW is again due
to the computation of D− 1

2 . However, this slight increase in
compute time is outweighed by the improved segmentation
quality indicated by the segmentation quality metrics. The
LC method and LRW are more expensive since they involve
more complex computations.

Finally, we visually compared the different methods using
either the trimaps from the GrabCut dataset (row 1) or some
input scribbles (row 2 and 3) as shown in Fig. 7. Regarding
row 1, LRW performed the best, while NRW was the sec-
ond best approach. When comparing subRW and NsubRW,
NsubRW was much better, though still inferior to LRW. This
is due to the fact that for every image the best value for
subRW (and NsubRW) may vary and for this example, the
default parameters of subRW may have been suboptimal.
This visual example also suggests that while subRW and
NsubRW may perform equally well when only the best set
of parameters is considered, NsubRW is more robust against
parameter choice. This is a highly desirable property for any
segmentation method. Regarding rows 2 and 3, NRW clearly
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Fig. 7. Comparison between pixel-based methods. Row 1: σ = 60, α = 0.99, cRWR = csubRW = 10−4, cNsubRW = 10−3; Rows 2 and 3: σ = 90, α = 0.99,
cRWR = csubRW = 10−4. For each figure, the error rate (e) and the RI are reported for each method.

performed better than all other methods both in terms of RI
and the error %.

B. Arbitrary Graph-Based Experiments

In the pixel-based experiments, the performance of NRW
(and NLRW) was reliable across all seed points and com-
parable to LC. We verified that node centrality information
is not always a strong source of information for pixel-based
methods, when the number of neighbors is 4 or 8. However,
our ultimate goal is to deploy NRW in a graph-based scheme
where the degree-aware term will likely contribute more.

In the node-based experiments we compared RW, LC,
NRW, LRW, NLRW and RWR, using the publicly available
implementations extended to be applicable to arbitrary graph
schemes. We did not include subRW since it is pixel-based.
We also tried the NRWR scheme mentioned in the Appendix,
which is an extension of RWR and is also related to subRW.
In all the experiments, NRWR improved upon RWR. This
also suggests that integrating degree-aware information can
improve a particular method. However, we observed that the
performance of NRWR was upper bounded by LRW i.e. fixing
1−c = α yielded the best results. Therefore, we do not report
results on NRWR.

We used six different datasets and their ground truths
(see Table II(b) for a description). The datasets used were:
Weizmann [41] one object (W1) and two objects (W2),
Semantic100 [42] (S), GrabCut MSRC [39] (G1 for the
seeds in S1 and G2 for S2), PASCAL VOC12 [43] (V) and
ECSSD [44] (E). On the Weizmann dataset with two objects
and the PASCAL VOC12 dataset, we removed a small per-
centage of the images (containing very small objects) since
the number of nodes inside them was too small. This step
did not affect the overall performance significantly for any
method. Unfortunately, most of these datasets do not contain
pre-specified seed points/pixels which would allow direct and
fair comparisons, hence we took a two-step approach. First,
the seed set S1 in the GrabCut dataset was used to find

the best set of parameters for each method. Then, given the
ground truth labels for every other dataset, we drew random
seed pixels which are included within each label. We set
a constant number of random seeds without replacement so
that they are unique within each region. These pixel seeds
were then assigned to their nearest nodes, which now become
seed nodes. To cover each labeled region accurately, we used
a different number of seeds and many iterations in each
experiment.

Next follows the node-based evaluation steps. First, the
RAG was constructed for each test image and the weight
matrix W computed using Lab colorspace features. These
color features yielded improved performance compared to
RGB values or grayscale values [25]. Then, each method was
applied using the best of parameters from S1 to produce the
final labels for each node belonging in the RAG. Next, an
appropriate metric was used to compare the labels derived
by each method and the available ground truth masks. Given
the RAG mapping, each pixel corresponds to some node
depending on which region the pixel belongs to. This allows us
to propagate pixel labels by assigning them to corresponding
nodes. Then, the reference node labels are used to compare
them with each node-level solution using the RI, GCE and VoI
metrics.

In our first experiment, we studied the performance of
each method across all datasets. Table III(a) tabulates the
average RI results for all methods and datasets using 50
iterations. This averaging step was done over iterations within
a single image and then over all images in each dataset. RWR
gave the worst performance while that of LC and RW was
similar. LRW was less competitive than in the pixel-based
experiments, performing worse than RW. Clearly, the degree-
aware term incorporated in NRW allowed the best result across
all datasets. NLRW produced results very similar to NRW.
This is likely due to the fact that the value of α giving the best
results for NLRW in G1 was 0.9995, making NLRW almost
identical to NRW.
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TABLE III

LEFT: RI FOR ALL 6 DATASETS. HIGHER VALUES OF RI ARE BETTER. EVERY METHOD USED THE PARAMETERS PRODUCING THE BEST RI FOR G1.
RIGHT: STATISTICAL ANALYSIS FOR RI ON ALL DATASETS. A VALUE OF ‘1’ INDICATES THAT THE ROW IS STATISTICALLY BETTER THAN THE

COLUMN, WHILE A VALUE OF ‘0’ INDICATES THAT THE ROW IS STATISTICALLY WORSE THAN THE COLUMN; A VALUE OF ‘-’ INDICATES

THAT THE ROW AND COLUMN ARE STATISTICALLY INDISTINGUISHABLE. EVERY SUB-ENTRY CORRESPONDS TO THE DIFFERENT

DATASETS: G1, G2, W1, W2, S, V AND E. (a) RI FOR ALL 6 DATASETS. (b) STATISTICAL ANALYSIS FOR RI

Fig. 8. RI plotted against α. Red: NLRW, Blue: LRW.

We also carried out a statistical significance analysis of
the scores in Table III(a) using an unpaired two sample
t-test ( p = 0.05). We repeated this process for all methods,
all datasets and all three evaluation metrics. The results are
tabulated in Tables III(b) and IV, which show the statistical
superiority of NRW across the different datasets. Regarding
the other methods, LC was superior to LRW and RWR but
similar to RW except on the VOC12 dataset. NLRW performed
similar to NRW given that α = 0.9995. We believe that the
power of NRW originates from the fact that it directly uses the
degree-aware term to control the underlying diffusion schemes.
In the arbitrary graph setting, the degree of the nodes captures
local similarities and the importance of each node. This is a
rich source of information that can greatly improve the graph-
segmentation results.

The lazy probability α in NLRW and LRW affects the final
clustering result. To study this, we varied α from 0.75 to 1
in steps of 0.05 and measured the RI for both algorithms.
As shown in Fig. 8, both methods delivered improved results
as α was increased. However, when α = 1 the LRW results
degraded, hence the LRW algorithm does not degenerate to
the RW algorithm when α = 1. By contrast, the behavior of
NLRW was much smoother, peaking at α = 1. In fact, when
α = 1, the NLRW degenerates to NRW since the node/patient
no longer resists changes to its infection status.

The common parameter used by all methods is σg used
in the construction of the weight matrix. We analyzed the
effect of varying this parameter on all methods to better under-
stand how well they can generalize over different parameter
choices. We varied 1

σg
over the interval [10, . . . , 200] on the

Fig. 9. RI plotted against 1
σg

for all studied graph-based methods.

Fig. 10. RI plotted against percentage of misplaced nodes in the first label
for all graph-based methods.

Fig. 11. Original images from the Semantic dataset used in the graph-based
experiments and randomly generated seeds.

Semantic100 dataset and report the average RI. As shown in
Fig. 9, NRW and NLRW consistently outperformed the other
methods for all values of σg , showing NRW to be an attractive
and reliable method. Fig. 9 shows that for large values of σg ,
the performance of NLRW exceeded that of NRW. It is likely
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TABLE IV

STATISTICAL ANALYSIS OF THE GCE AND VOI METRICS ON ALL DATASETS. EVERY METHOD USED THE PARAMETERS PRODUCING THE BEST RI
FOR G1. A VALUE OF ‘1’ INDICATES THAT THE ROW IS STATISTICALLY BETTER THAN THE COLUMN, WHILE A VALUE OF ‘0’ INDICATES THAT

THE ROW IS STATISTICALLY WORSE THAN THE COLUMN; A VALUE OF ‘-’ INDICATES THAT THE ROW AND COLUMN ARE STATISTICALLY

INDISTINGUISHABLE. EVERY SUB-ENTRY CORRESPONDS TO THE DIFFERENT DATASETS: G1, G2, W1, W2, S, V AND E

Fig. 12. Images from the Semantic dataset (seen in Fig. 11) for all methods, σg = 1
90 , 50 random seeds per class.

Fig. 13. Effect of mislabeled pixels for 4-infections on the third image from Fig. 11: all methods produce less accurate results. The RWR algorithm delivered
more robust results. NRW was the second best method. RI values are above the graph clustering results. The seed colors corresponds to their true label.
We do not show mislabeled seeds. Some of the true labels were internally mislabeled as belonging to other regions. The effect of reduced seed quality can
be seen in the areas around the wolf. We used the suggested parameters for all methods.

that the presence of the parameter α imparts robustness to
NLRW for these values of σg . For all methods, the best
performing 1

σg
value was in the range [40, 50]. Another impor-

tant factor in seeded image segmentation methods is the seed
quality. Manual annotations can be noisy owing to the problem
ambiguity or lack of technical expertise or concentration.
We studied the effect of varying the seed quality by selecting
a fraction of points from the 1st labeled region of each image,
which were then randomly applied to another region. These
misclassified seeds reflect the low seed quality often present
in real world cases. Then, we performed 100 different trials by
varying the percentage of misclassified seeds. Fig. 10 shows
the mean RI obtained for all methods. The NRW/NLRW
algorithm results were better than those of the LC algorithm
until about 10% of the seeds were misplaced.

We next examined several exemplar results in detail. Fig. 11
shows the original images used in the experiments with the
seeded nodes superimposed as colored dots. Fig. 12 shows
the final clustering results across different methods without

any misplaced pixels. Clearly, the performance of NRW
was improved while the LRW result suffered from bleeding.
NLRW was better than NRW in the first case but worse in the
second, and RWR performed the worst in both cases. However,
RWR did not always perform the worst compared to other
methods, as shown in Fig. 13, where a number of nodes were
intentionally mislabeled. Clearly, RWR yielded the best results
overall and was able to achieve good results even when some
of the seeds were not accurate.

Graph-based approaches can yield significant computational
speed-ups since the image dimensionality is reduced to the
number of graph nodes. To demonstrate this effect, we selected
30 images from the GrabCut dataset at random and rescaled
them to different image sizes (both downscaling and upscaling
was performed to cover a wide range of image sizes). When
necessary, we cropped the images to ensure that all had the
same original size. Then, we ran all the pixel- and graph-based
approaches on each scaled image (using random seed points)
and plotted the compute times in Fig. 14. All graph-based
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Fig. 14. Time in seconds as a function of the number of pixels, left: pixel-based, right: graph-based.

Fig. 15. From left to right: 3D Point cloud captured by Kinect sensor, k-nn graph, k = 8, RW and NRW σg = 1
60 , σh = 1

10 , 5 random seeds per class.

approaches consumed considerably less time. For NRW and
NLRW, the main overhead originates from computing D− 1

2 .
The large compute time of NsubRW arises from the more
complex matrix operations needed. Also, LC was the second
slowest method for the pixel case and the slowest in the graph
case. LC involves more complex operations on the Lapla-
cian matrix. These results mostly agree with the simulations
reported in Table I. We believe that the additional overhead
of NRW is less important given its improved performance,
especially in the node-based experiments. Clearly, using the
RAG allows the modelling of more complex pixel interactions,
and also greatly reduces the problem dimension.

X. APPLICATION TO VISUAL POINT CLOUD

To demonstrate the broader promise of this framework, we
demonstrate its use on 3D point clouds. Point clouds are
now common given the broad use of depth cameras. First,
we captured a 3D scene using a Kinect sensor and further
processed it using the Point Cloud Library (PCL). We used
color and depth information as features to separate objects
from ground through a graph-based segmentation task (see
Fig. 15). This task can be trivial if one uses only spatial
constraints with a prior on where the object should be.
We created a k nearest neighbor (k-nn) graph where k = 8
and applied both the RW and the NRW algorithms using the
extracted features to construct the weight matrix using (6).
The seeds were randomly placed around the main areas
of the two objects (fridge and ground). The RW method
failed to segment the object as it was misled by the shadow.
By contrast, NRW was better able to discriminate between the
two. We directly applied NRW without modification since it is
not limited to regular image grids and can be readily deployed
on other graph-related tasks such as video segmentation [45].

XI. CONCLUDING REMARKS

Our proposed models (NRW, NLRW and NsubRW), rely
heavily on a node centrality term that drives the underlying
graph diffusion processes. This term is an important descriptor
of the local interactions that occur between nodes in an image-
driven graph. An analogy was made of these interactions as
infectious diseases propagating on a graph. NRW expresses
the steady state of these diffusion schemes. We analyzed
its properties, such as violation of the maximum principle,
and provided a theoretical bound on the node degree of
pixel-based vs. graph-based methods. We show why NRW
is more effective on arbitrary graphs. A lazy random walk
variant (NLRW) was also proposed based on the resistance
of a node to changes in its infection status. By an extensive
experimental evaluation, we showed that NRW is a robust and
promising alternative, especially on the graph-based problems,
where incorporating the network-aware term is helpful. Future
work could potentially use these ideas for other applications
where visual information is not represented in a regular way,
such as graph spatiotemporal approaches.

APPENDIX

A. Derivation of Iterative NRW Scheme

We now derive (11). Consider the divergence operator d(.)
defined in [32]:

d(i, t) = −
∑

i∼ j

√
wi j

(
f (i, j, t) − f ( j, i, t)

)

where f is a function defined on the edges of the graph (at
nodes i and j and time t) and d(i, t) is the net outflow of f
at node i and time t . Note that we have defined a dynamic
operation d(i, t) rather than d(i). Then, consider the following:

Ii,t+1 = Ii,t − d(i, t). (21)
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When the net outflow is 0, steady state is reached and
the infection at node i is no longer changing. In the orig-
inal RW setting, f (i, j, t) = √

wi j I j,t and f ( j, i, t) =√
wi j Ii,t yielding (8). In the case of NRW, normalize f

as f (i, j, t) = √
wi j

I j,t√
di
√

d j
and f ( j, i, t) = √

wi j
Ii,t√

di
√

di
.

Next, rewrite (21) by using the newly defined f (i, j, t) and
f ( j, i, t):

Ii,t+1 = Ii,t +
∑

i∼ j

√
wi j

(
f (i, j, t) − f ( j, i, t)

)

= Ii,t +
∑

i∼ j

wi j√
di

(
I j,t√

d j
− Ii,t√

di

)
(22)

which is identical to the NRW iterative scheme
in (11).

B. Proofs of the Propositions

1) Proof of Proposition 1:
Proof: Denote by vi the i th column of the graph Laplacian

L̃. Using (10) we get:

v�
i It = Ii,t −

∑

j ∼ i

wi j√
di d j

I j,t = di

di
Ii,t −

∑

j ∼ i

wi j√
did j

I j,t

=
∑

j ∼ i

wi j√
di

(
Ii,t√

di
− I j,t√

d j

)
= −�Ii,t .

Stacking the �Ii,t yields:
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which gives (12). Further, note that Jn(x) = 1
2 x�L̃x. Replace

x by the infection probabilities It . Reorder and partition L̃,
�It and It to obtain rows corresponding to un-labeled (u) and
labeled (l) nodes, i.e

L̃ =
⎛

⎝
L̃u

L̃l

⎞

⎠ , �It =
⎛

⎝
�Iu,t

�Il,t

⎞

⎠ , It =
⎛

⎝
Iu,t

Il,t

⎞

⎠ (23)

Then re-order the columns of L̃ so that:

L̃ =
(

L̃uu L̃ul

L̃lu L̃ll

)

. (24)

Since L̃ is positive semi-definite, apply a process similar to [7]
to minimize Jn(It):

L̃uuIu,t = −L̃ulIl,0. (25)

Clearly Il,t = Il,0 ∀t . Meanwhile, using (12) yields:

�It = −L̃It ⇒ �Iu,t = −L̃uIt (26)

= −L̃uuIu,t − L̃ulIl,t (27)

For t → ∞ ⇒ �Iu,t → 0 hence using (27)
yields (25). �

2) Proof of Proposition 2:
Proof: When t → t∞ then:

�Ii,t∞ = 0
(11)
⇒

∑

j ∼ i

wi j√
di

(
I j,t∞√

d j
− Ii,t∞√

di

)
= 0

⇒
∑

j ∼ i

wi j√
di

I j,t∞√
d j

=
∑

j ∼ i

wi j√
di

Ii,t∞√
di

=
∑

j ∼ i

wi j

di
Ii,t∞

= Ii,t∞
di

∑

j ∼ i

wi j = Ii,t∞ . �

3) Proof of Proposition 3:
Proof: Suppose node i has at least one neighbor j0. Then:

Ii,t∞ = 1√
di

∑

j ∼ i

wi j√
d j

I j,t∞ = 1√
di

wi j0√
d j0

I j0,t∞ + ε

for d j0 > 0, di > 0 and ε ≥ 0. Then, given some λ :
|λ| < 1, λ �= 0, pick d j0 = 1

di
w2

i j0 I 2
j0,t∞λ2 which implies

that Ii,t∞ = 1
|λ| + ε ≥ 1. Since the maximum principle is

violated, Ii,t∞ loosely represents some infection’s probability
hence the sum of Ii,t∞ is �= 1. Therefore, unlike [7], all
M systems of linear equations need now be solved. �

Proposition 4: It is possible to quantify the difference
between using a pixel-based scheme (4-neighbors) vs. using a
node-based approach where an arbitrary number of neighbors
is present. Consider the quantity E

[
|dg

i − d p
i |
]

where the

random variables dg
i and d p

i denote the degree of a node i
using the graph or pixel scheme respectively. Let image I
have pixel values ∈ [0, m − 1]. Then, E

[
|dg

i − d p
i |
]

is lower

bounded by f (m, σg)E
[
|C−4|

]
, where C is a random variable

representing the number of neighbors for every node in the
graph and f (m, σg) is a function of m and σg .

Proof: Suppose the corresponding weights w
g
i j and w

p
i j are

equal and given by (6) with σh = 0. Typically, the number C
of neighbors is independent of the similarities between nodes
based on color since node connections are based either on
distance e.g. by using a k-nearest neighbor graph (k-nn) or a
watershed topology (RAG). Hence

E
[
|dg

i − d p
i |
]

= E

[
|
∑

j∼i

w
g
i j −

4∑

j=1

w
p
i j |

]

= E

[ |C−4|∑

j=1

w
g
i j

]
= E

[
|C − 4|

]
E[wi j ]

where E[wi j ] is the expected value of the similarity between
any two connected nodes i and j . Images are spatially corre-
lated, hence adding descriptors of the image structure should
increase the similarity between any two nodes. Consider a
completely random image where gi ∼ U[0, m − 1], where
m − 1 is the maximum luminance. The absolute difference of
two iid uniform random variables gi , g j has the following pdf:

fX (x) =
⎧
⎨

⎩
− 2

(m − 1)2 x + 2

m − 1
, if x ∈ [0, m − 1]

0, else.
(28)
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Then, we obtain:

E[wi j ] =
∫ m−1

0

( 2

m − 1
− 2x

(m − 1)2

)
e
−( x

σg
)2

dx

=
e
−( m−1

σg
)2 + √

π m−1
σg

erf(m−1
σg

) − 1

(m−1
σg

)2
= f (m, σg)

where erf(z) = 2√
π

∫ z
0 e−t2

dt . For m = 256 and σg = 1
90

we obtain: E[wi j ] ≈ 7.72 ∗ 10−5. Real world images have
structural correlations and as a result E[wi j ] is lower bounded

by f (m, σg). The expected value E
[
|C − 4|

]
is not trivial

to compute, since for different graph structures there can be
different node degree distributions. The simplest case occurs
using a k-nn graph which degenerates the random variable C
to a constant k, whence E

[
|C − 4|

]
= |k − 4|. The resulting

bound is not very tight, but the experimental section demon-
strates the merits of the node-based NRW against the pixel
version.

C. Extending the SubRW Framework to Include
the Smoothness Term of NRW

This section is a high level analysis of subRW [14]
necessary to demonstrate the use of the NRW smoothness
term in more complex RW variants. We refer the reader
to [14] for details. Consider the following optimization
scheme (NsubRW):

Ōlk

= 1

2

∑

i∼ j

wi j

( r̄ lk
im√
di

− r̄ lk
jm√
d j

)2+ 1

2

N∑

i=1

(di +λgi)ci

di (1−ci)

(
r̄ lk

im −blk
im

)2

+ 1

2

N∑

i=1

λ

di
uk

i

(
r̄ lk

im − 1
)2 + 1

2

K∑

t=1,t �=k

N∑

i=1

λ

di
ut

i r̄
l2
k

im (29)

which re-expresses the subRW scheme by taking into account
di and d j . If λ = 0, ci = 0 ∀i , yielding Jn(x) which is
minimized by NRW. This shows an interesting dichotomy:
while subRW reduces to RW, NsubRW reduces to NRW for
λ = 0 and ci = 0 ∀i . Following the same process as
in [14], vectorize (29) and zero the partial derivative with
respect to r̄m

lk = [r̄ lk
im ] ∀i . It then follows that the solution of

NsubRW is given by: r̄lk
m = Ē−1((I − Dc)ūk + Dcblk

m), where
Ē = I − Da

−1DηDS, S = D− 1
2 WD− 1

2 , D is the N × N degree
matrix, W is the N × N weight matrix, N is the number of
pixels in the image, I is a N×N diagonal matrix of ones, Dc is
a N ×N diagonal matrix containing the restarting probabilities
ci , ūk is a N×1 vector related to the GMM prior, blk

m is a N×1
vector capturing the seed information, Dg is a N × N diagonal
matrix also related to the label prior and Da = D + λDg.
We can also consider schemes related to RWR:

Ōlk = 1

2

∑

i∼ j

wi j

( r̄ lk
im√
di

− r̄ lk
jm√
d j

)2 + 1

2

N∑

i=1

c

1 − c

(
r̄ lk

im − blk
im

)2

where ci = c, λ = 0 in (29). The prior process then yields:
r̄lk

m = Ē−1Dcblk
m , where Ē = I − (1 − c)S. We refer to this

scheme as NRWR. This solution is equivalent to LRW where
the lazy probability α is set to 1 − c. This demonstrates how
RWR, NRWR and LRW are related to each other. In our
graph-based experiments, the NRWR performed much better
than RWR but its performance was upper bounded by LRW,
reaching a peak value when α = 1 − c.
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