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Conditions for Positivity of an Energy Operator

Alan C. Bovik and Petros Maragos

Abstract—We present necessary and sufficient conditions such that the
output from the Teager-Kaiser energy operator [5(t) = ds(t)/dt]

T [s(t)] = $2() — s(t)3(t) m

for continuous-time signals s(t) and the output from the corresponding
discrete-time energy operator

T, [s(n)] = s2(n) — s(n + 1)s(n — 1) @

be non-negative everywhere.

1. INTRODUCTION

The nonlinear signal operators in (1) and (2) were developed by
Teager [1] in his work on speech modeling and were introduced
recently by Kaiser [2], [3]. These operators have been shown to
be effective for AM and FM demodulation in several useful classes
of signals, such as speech and image signals [4]-[10]. ¥. owes its
energy-tracking capability to the fact that when it is applied to the
output signal from a simple harmonic oscillator, it tracks the energy
of the source generating the signal. A more general and particularly
useful property of the energy operators (1), (2) are their behavior
when applied to AM-FM signals of the form

s(t) = a(t) cos [6(¢)] 3
in the continuous case, and

s(n) = a(n) cos[¢(n)] @
in the discrete case. Here we have

Tels(t)] = a* (8w (2) ®)
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the squared product of the amplitude a(t) and the time-varying
instantaneous frequency w;(t) = o (t). Similarly in the discrete case

T,y[s(n)] = a*(n) sin? [Qi(n)] 6)

where Q;(n) = d¢(n)/dn.

The approximations (5) and (6) hold quite well under very useful
conditions expressed in terms of the smoothness or bandlimitedness
of the amplitude modulation functions and the instantaneous fre-
quencies. Detailed analyses are presented in [4]-[9], which show
that the relative error is quite small for realistic signals in speech
and other communications applications. These observations have led
to the development of energy separation algorithms [5], [7], which
attempt to separate the amplitude and frequency modulations in the
products (5), (6) as distinct useful pieces of information.

The positivity of the energy operator output is a desired property
for at least three fundamental reasons: (1) the interpretation of
the output as some (normalized) physical energy; (2) the positive
nature of the approximations in (5) and (6) needed for AM and/or
FM demodulation [4], [6]; (3) the fact that the energy separation
algorithms [5], [7] operate under this positivity assumption. In [6], [7]
several sufficient conditions have been developed for the positivity
of the energy operators. For example, ¥.[s(¢)] > 0 if the signal
s(t) is any finite product of cosines, real exponentials, and linear
trends. Alternatively, ¥.[s(¢) O if s(¢) is an AM-FM signal and the
amounts of amplitude/frequency modulation are not excessively large
and the bandwidths of the amplitude/frequency modulating signals are
reasonably smaller than the carrier frequency.

In the current paper, we explore general conditions on the arbitrary
signal s such that ¥.(s) or ¥4(s) be non-negative over the entire
domain of analysis. Some of these conditions are necessary and
sufficient and have an interesting geometric meaning, since they are
expressed in terms of the concavity of the logarithm of the signal
magnitude. We treat the continuous and discrete cases separately.

II. CONTINUOUS CASE

Henceforth, we suppose that the signal s: D — R has finite second
derivatives everywhere (and hence is continuous) on some arbitrary
set D C R. Lemma 1 is a simple, easily-tested sufficient condition
for non-negativity of ¥.(s). Lemma 2 is used to prove Theorem 1,
although it also supplies interesting conditions for the non-negativity
of the operator ¥, for the special case of nonzero signals.

Lemma 1: At any ¢t € D, ¥ [s(¢t)] > 0 if any of the following
conditions hold:

@ s(t) = 0. (b) ) = 0. (c) s(t) > 0 and 3(t) < 0.
(d) s{t) < 0 and 5(t) > 0.

Proof: If any of (a)}«{d) is true, then s()5(t) < 0 = ¥ [s(t)] >
0. ¢

Thus, if I C D is some interval whose endpoints are either
zeroes or inflection points of s(t), then ¥.[s] > 0Vt € I if
either s is positive and concave or if s is negative and convex in
the interior of I. The next lemma gives necessary and sufficient
conditions for everywhere nonzero signals, which are only slightly
more complicated.

Lemma 2: Suppose that s(t) # 0Vt € D. Then the following
three statements are equivalent:

(a) T.[s(t)] > OVt € D. (b) log[s*(t)] is concave on D.
(c) log |s(t)| is concave on D.

Proof: Let g(t) = log[s*(t)]. Then (a) & (b) since g(t) is
concave on D & § < 0Vt € D & 2(s(t)s(t) — #2(t)/s(t)) <
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0Vt € D & ¥ [s(t)] > 0Vt € D. Furthermore, (b) < (c) since
g(t) = 2log |s(t)]. ¢
By Lemma 1(a), if s(to) = O for some to € D, then ¥.[s(t0)] > 0.
Therefore, we can use the zeroes of a signal as boundary points
separating intervals over which the signal is of one sign; on these
intervals, Lemma 2 applies. This forms the basis of the more general
Theorem 1. In proving the main theorem, we will use the following
notations for the subsets of D over which s(¢) is nonzero or zero

Dy = {t € D: s(t) # 0}
Dz ={t € D: s(t) = 0}.

)
®)

Clearly, since s is continuous on D, Dy is an open set;! therefore,

D may be written as a countable union of disjoint open intervals I

Dy = L’;I Ii. )

These observations are used to set conditions on more general signals
s(t) that may have zeroes on D, as Theorem 1 states next.

Theorem 1: let s: D — R be twice finite differentiable on D
and Dy = {t € D: s(t) # 0}. Then the following statements are
equivalent:

(a) T [s(t)] > 0Vt € D. (b) log[s*(t)] is concave on every
open subinterval of Dy. (c) log | s(t)| is concave on every open
subinterval of Dx.

Proof: Assume that the sets Dz and Dy are nonempty; else
either Lemma 1 or Lemma 2 apply directly. By Lemma 1(a) we
need only consider points in the open set Dx = UixIx where the
open intervals Ir = (ax,bx) are disjoint. Hence, any open interval
B C Dy also satisfies B C I,, for some m. By Lemma 2,
¥ [s(t)] > 0Vt € B & log[s®(¢)] is concave on B & log |s(t)]
is concave on B. Since this is true for every B C I, and any
I.. C Dy we have that (a) & (b) < (c). ¢

The following corollary is really just a restatement of Theorem 1,
hence requires no proof. Although the statement of the corollary is a
little less precise than Theorem 1, it is also somewhat more intuitive.

Corollary 1: Let s: D — R be twice finite differentiable on D.
Then the following statements are equivalent:

(@) T [s(t)] > 0Vt € D. (b) log[s*(¢)] is concave between
every two consecutive zeroes of s(t). (c¢) log |s(t)| is concave
between every two consecutive zeroes of s(t).

The simplest cases satisfying the above conditions are the linear
signals s(t) = at + b where ¥ [s(t)] = a?, the sinusiodal signals
s(t) = Asin (wt+¢) with ¥ [s(t)] = (Aw)?, and the real exponen-
tials s(t) = e”* with ¥.[s(¢)] = 0. More generally, oscillatory signals
s(t) will everywhere have non-negative ¥.(s) regardless of their
average frequency of oscillation, provided that the signal amplitude
is sufficiently “smooth” between every two consecutive zeroes. Here
“smoothness” is expressed in terms of logarithmic concavity: the rate
of change of the slope of the logarithmic signal must not change its
sign between consecutive zeros.

III. DISCRETE CASE

There are results for the discrete Teager-Kaiser energy operator
Wy[s(n)] that are quite similar to the continuous case; however,
there are also important differences that arise from the discrete
approximations used. We assume that the discrete signal s: J — R
is defined on the integer interval J = /a,b/ C Z, where —oo <
a < b < oc. We denote

s'(n)=s(n—1)—2s(n)+s(n+1) (10)

!For any to € D, the continuity of s => 3 an open interval Io CDxN
containing to = D is an open set.
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and say that s(n) is concave on J if s"(n) < 0Vn € J, and
s(n) is convex on J if s"(n) > 0Vn € J. If J is either finite
or one-sided infinite, we shall make the simplifying assumption that
s(a—1) = s(b+1) = 0, in order to handle the forward and backward
differences used in defining s”(n).
Lemma 3: If s(no) = 0 for some no € J, then ¥4[s(no=+1)] > 0.
Proof: Wy[s(nox1)] = s*(nox1)—s(no+1+1)s(no—1%
1) = s%(no £1) > 0. ¢
Lemma 4: Atany n € J, ¥4[s(n)] > 0 if either of the following
two conditions holds:
(@ s(n) > 0 and s'(n) < 0Vn € J. (b) s(n) < 0 and
s'(n) > 0Vn € J.
Proof: Note that for any signal s(n) and at each n

[s(n = 1)+ s(n + 1)J?
4

> s(n—1)s(n+1). (1)
If (a) is true, then 0 > s(n — 1) — 2s(n) + s(n+ 1), or
s(n) > sin—1)+sn+1) o 12

B 2z
Squaring (12) and substituting into (11) yields the desired result. If
(b) is true, the inequality in (12) is reversed; squaring still yields the
desired result. ¢

Thus, if a signal s is everywhere of one sign, then it suffices
that s be either non-negative and concave or nonpositive and convex
in order that ¥,4(s) be non-negative. The next lemma is likewise
analogous to Lemma 2 of the continuous case.

Lemma 5: Suppose that either s(n) > 0Vn € J or s(n) <
0Vn € J. Then the following three statements are equivalent:

(a) yf[s(n)] > 0Vn € J. (b) log [s*(n)] is concave on J.
(c) log |s(n)]| is concave on J.

Proof: Let g(n) = log[s?(n)]. Then (a) ¢ (b) since g (n) is
concaveond & ¢"(n) <0Vn € J & log|s(n—1)|—2log|s(n)|+
log|s(n+1)| <0Vn €3 & log[(s(n—1)s(n+1)/s*(n))] <0 &
Ty[s(n)] > 0Vn € J. (b) & (c) since log [s*(n)] = 21og |s(n)]. ¢

The final result supplies the most general necessary and sufficient
condition on a discrete-time signal s(n) such that ¥4(s) be non-
negative. The conditions in the statement of Theorem 2 are more
complicated than in the continuous case, because of the peculiar
behavior of the energy operator near the zeroes of a signal. As before
we denote the sets

In ={n €J: s(n) #0}
Jz ={n € J: s(n) =0}.

(13)
(14)

Theorem 2: The following statements are equivalent:

(@) T4[s(n)] > 0Vn € J. (b) log [s*(n)] is concave on every
integer subinterval of J on which s(n) is constant (nonzero) sign
and s(n — 1)s(n + 1) < 0 whenever s(n) = 0. (c) log|s(n)]|
is concave on every integer subinterval of J on which s(n) is of
constant (nonzero) sign and s(n—1)s(n+1) < 0 whenever s(n) = 0.

Proof- We assume that Jv and J 7 are nonempty; else Lemma 3
or 5 applies. Therefore, we may partition J v into integer subintervals
Z, = /ax,bi/ such that either s(n) > 0V n € Zj or s(n) < 0Vn €
Z,. Suppose that (a) is true. Then for n € Jz,¥y[s(n)] = —s(n —
1)s(n+ 1) > 0. Otherwise, n € Zx C Jn for some k. But since for
any k we have that ¥4[s(n)] > 0Vn € Z; & log [s%(n)] is concave
on Z; < logls(n)| is concave on Zi, then (a) = (b) & (c).
Finally, (b) = (a), trivially in the case n € Jz and by Lemma 5
in the case n € Zy C Jn. ¢

Again, simple examples satisfying the above conditions are the
linear signals s(n) = an +b, discrete-time sinusoidal signals s(n) =
Asin (Q2n' + ), and real exponentials s(n) = r".
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A Critical Study of a Self-Calibrating
Direction-Finding Method for Arrays

Eric K. L. Hung

Abstract—The self-calibrating direction-finding method was developed
by Friedlander and Weiss. It refines the estimates of the array element
gains and phases while it estimates the signal directions. This study shows
that the outputs of the method could be inaccurate, even if noise is absent.

1. INTRODUCTION

This is a study of the self-calibrating direction-finding method
developed by Friedlander and Weiss [1], [2] for nonlinear arrays.
The method (the F-W method) uses the outputs of an array to refine
the element gains and phases while it estimates the signal directions.
1t is based on an equation derived from the MUSIC method [3].

This study shows that the above equation does not always have
unique solutions. The output estimates of the F-W method could
therefore be inaccurate, even if noise is absent.
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II. THE METHOD

The assumptions made are those underlying the MUSIC method
plus the following:
(a) The array is nonlinear.
(b) The number of signals NV and the number of array elements
M are related by 2< N < M.

In the signal model used, an array snapshot is given by
x = (T a(6,),T a(f2),....T a(bn))s+1n (€))
where

T = diag{g: exp[j¥1], g2 exp[jee], . ... gp expljyma}}. (D)

The set {gm:m=1,2,..., M} denotes the element gains, {¢/m: m=
1,2,...,M} denotes the element phases, {#,:n = 1,2,...,N}
denotes the signal directions, a(f) is an array steering vector for
direction 6, s is the complex signal amplitudes at a reference array
element, and 7 is a noise vector. The uniqueness condition for the .
element gains and phases is {g1 = 1,1 =0}.

The method is based on the observation that each T' a(fy,) is a
vector in the signal space and is orthogonal to every vector in the
noise space so that

ufra@®,)=0u_~n, n=12,...,N, 3)

where U is an M x (M — N) matrix constructed with a set of M-N
orthonormal basis vectors for the noise subspace, and Om-nN is a
null vector with M-N components. Let

N
(U, T',6,)A Y U a6’ “)

n=1

be a cost function defined in terms of U, an arbitrary IV, and a set
of arbitrary directions {#,,:n=1,2,..., N}. From (3), the equation

c(u.I'.6,)=0 &)

has a set of solutions given by {T', {fn}}, i.e., the set comprising T’
and {6.:n =1,2,...,N}

In later discussions, the set {T', {#n}} is sometimes treated as the
location of a zero or a minimum in the cost function .

The procedure for calculating the estimates I' and {fn:n =
1,2,..., N} is described in [1] and [2]. Its important features are
as follows:

Step 1. Construct Ij, an estimate of U.

Step 2. Set k=0; set T®) =T, where T is based on nominal

values or some recent calibration information.

Step 3. Identify the N highest peaks in the MUSIC spectrum
P(or®) =+ - IO T®a@)*  ©
as {B(Hk):n =1,2,....] N}.

Find the T that minimizes C (U, T, 9%, a cost function
constructed with U and {6{"}. Denote it by T***) and
the corresponding minimum cost by Jk.

If Jk_y— Jx > =, a preset threshold, then k =k + 1;
return to Step 3. Else, identify the output estimates as
T'=T®+ and {4,} = (6V}.

For convenience, {9&"’}, say, has been used to denote {Oﬁ,k):n =
1,2,....N}.

Step 4.

Step 5.
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