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Evolution Equations for
Continuous-Scale Morphological Filtering

Roger W. Brockett, Fellow, IEEE, and Petros Maragos, Senior Member, IEEE

Abstract—Multiscale signal analysis has recently emerged as a
useful framework for many computer vision and signal processing
tasks. Morphological filters can be used to develop nonlinear
multiscale operations that have certain advantages over linear
multiscale approaches in that they preserve important signal
features such as edges. In this paper, we discuss several nonlinear
partial differential equations that model the scale evolution asso-
ciated with continuous-space multiscale morphelogical erosions,
dilations, openings, and closings. These equations relate the rate
of change of the multiscale signal ensemble as scale increases to a
nonlinear operator acting on the space of signals. The nonlinear
operator is characterized by the shape and dimensionality of
the structuring element used by the morphological operators,
generally taking the form of a nonlinear function of certain
partial differential operators.

I. INTRODUCTION

OTH in computer vision and video data compression,

important problems such as feature detection, motion
detection, and multiband frequency analysis often require
analyzing the image signals at multiple spatial scales or res-
olutions. Motivations include the already successful scenarios
of

1) detecting events (e.g., edges, peaks, motion displace-
ments) at large scales and then refining their location
or value at smaller scales [19], [31], [6], [22]

ii) subband image coding [32]

iii) solving estimation problems for multiresolution sto-
chastic processes [30].

Recently, such problems have been addressed using multiscale
signal analysis. In most of the work in this area, the multiscale
versions of an image have been obtained by acting on the
image with a linear smoothing filter whose impulse response
is a Gaussian with variance proportional to scale. There is,
however, a variety of nonlinear smoothing filters, including
the morphological openings and closings [20], [24], [15] and
the anisotropic and nonlinear diffusion schemes in [21] and
[13], that can provide a multiscale image ensemble and have
the advantage over the linear Gaussian smoothers in that they
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do not blur or shift image edges. This attractive property of
morphological smoothers is illustrated in Fig. 1.

In this paper, we study multiscale morphological operators.
Multiscale openings and closings (also known as ‘granulome-
tries’) of binary images were first developed by Matheron
[20] in his theory of size distributions. They have been used
extensively in image analysis applications of mathematical
morphology to biology and petrography [24]. They have also
been applied as general nonlinear smoothers for multiscale
shape description and representation via shape-size histograms
and skeleton transforms [15], [17]. Scale-space zero-crossing
maps of multiscale openings of 1-D boundary curvature func-
tions were shown in [7] to possess a causality property similar
to that of Gaussian scale-space maps in [31], {1], and [33]. In
addition, openings and closings were used for signal smoothing
and reconstruction in multiresolution morphology [9]. Further,
multiscale openings and closings can be used to generate a
class of efficient nonlinear smoothing filters, called ‘alternating
sequential filters,” which smooth progressively from the small-
est scale possible up to a maximum scale by using alternating
compositions of openings and closings [27], [16], [25], [23],
[26]. The use of morphological operators for multiscale signal
analysis is not limited to operations of a smoothing type. For
instance, in fractal image analysis, nonlinear operators such as
the morphological erosion and dilation can provide multiscale
distributions of the shrink-expand type from which the fractal
dimension can be computed [18].

Thus far, most of the multiscale image filtering implementa-
tions have been discrete. However, due to the current interest
in analog VLSI and neural networks, there is renewed interest
in analog computation, e.g., see [3]. For computer vision tasks,
Witkin [31] proposed a continuous (in scale s and signal
argument ) multiscale signal ensemble

Yz, s) = f(z) * Gs(z) €))]

where an original signal f is convolved with a Gaussian
function

Go(a) 1 x2) 1 ( 72 ) @)
x) = exp| —— | = —=exp| ——
° Vdrs PAUT%s oV2n 202
whose standard deviation ¢ = +/2s is proportional to the
square root of the scale parameter s. This Gaussian scale space
has been studied extensively in the computer vision literature,

e.g., see [11], [1], [33], [10]. It is well known (e.g., in [11])
that the Gaussian multiscale function v can be generated from
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Fig. 1.
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: (3)

(a) Original image f (220 x 256 pixels). Linear smoothings (b, ¢, d) via convolution of f with a Gaussian of standard deviation; (b) o = 2.25;

(¢) ¢ = 4.25; (d) ¢ = 6.25. Morphological smoothings (e, f, ¢) via opening of f by an octagon of (e) size = 2; (f) size = 4; (g) size = 6. (The
unit-size octagon is a discrete disk of radius \/5; the n-size octagon is an n-fold dilation of the unit octagon with itself and has a width of 4n + 1 pixels.)
Morphological smoothings (. i, j) via radial opening of f, i.., by taking the maximum of four openings of f by four linear segments oriented at 0, 45,
90, and 135° and each of size (in number of pixels) equal to (h) size = 9; (i) size = 17; (j) size = 25.

the diffusion equation

oy 0%y
Js ~ oa2 )

starting from the initial condition v(z,0) = f(«). This partial
differential equation (PDE) represents a continuous dynamical
system that generates this multiscale convolution of f. In [21]
and [13], there are nonlinear versions of this idea.

This paper is an enlarged version of our work in [4].
Our main contribution is to develop nonlinear PDE’s mod-
eling multiscale morphological operators of the shrink-expand
type (erosions/dilations) and of the smoothing type (open-
ings/closings). Given a signal f(z), we generally define its
multiscale morphological transformation as a space-scale func-
tion t(z, s), which at each scale s represents the transforma-
tion of f(x) by a structuring element of size s > 0. The
nonlinear PDE’s we developed can be viewed as dynamical
systems that, starting from the initial condition ¥ (z, 0) = f(x),
generate the multiscale function ¢(z, s) as output. They can

also be viewed as describing the scale evolution of these
multiscale operators, meaning that they provide the rule by
which the rate of change of ¢(z,s) in scale direction s is
related to the rates of change in spatial directions z. Our
motivations in this work have been the wide applicability
of multiscale morphological filtering as well as the potential
applications of continuous dynamical systems. In addition, the
theory of morphological operators had thus far been based on
set and lattice theory. A novel by-product of our work is now
the ability to use calculus-based tools to analyze them, which
might make easier to connect them with physical applications.

The basic ingredients of multiscale morphology are mui-
tiscale erosions and dilations. For example, morphological
openings and closings are compositions of erosions and di-
lations. Hence, the biggest part of our analysis (Section II)
focuses on deriving the nonlinear PDEs modeling the scale
evolution of a variety of multiscale erosions and dilations.
These PDE’s are nonlinear functions of first-order partial
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differential operators, and their form varies according to the
shape and dimensionality of the structuring element. This
part of our work can be viewed as describing a nonlinear
scale-space based on min-max operators rather than being an
extension of multiscale Gaussian convolutions. As multiscale
dilations and erosions propagate, they can create a kind of
shock-wave phenomenon; thus, it is not too surprising that
they are related to Burger’s 1-D equation [5], [12]. In [29],
the solution to Burger’s equation is interpreted as a multiscale
dilation. The work in ch. 8 of [29] is related to ours, as will be
discussed later. In Section III, we present a PDE for multiscale
opening and closing, which involves both differential and
difference operators. Finally, we conclude in Section IV with
some brief discussion on
i)  infinitesimal generators of multiscale operators
i) modeling multiscale analog rank-order filters (e.g.,
analog medians [8)], [14]), which are closely related
to morphological filters
iii) how to extend the work in this paper to a hybrid linear
and nonlinear multiscale scheme.

II. MULTISCALE DILATIONS AND EROSIONS

Henceforth, let f : RY — R be a function represent-
ing some d-dimensional signal d = 1,2,3,.. ., and let the
‘structuring function’ g : B — R represent some structuring
element with compact support B C RY. The morphological
dilation f ® g and erosion f © g of f by g are defined [24],
[27], [17] by

(fog)(z) 2 sup{f(z —v) + g(v) :v € B}, zeR?
(feg)(z) 2 inf{f(z+v)—g(v):ve B}, zeR™L

To define multiscale dilations and erosions, we consider dilat-
ing and eroding f by a multiscale version g, : sB — R of
the structuring function g, where

sBé{sb:bEB}, s>0 “
gs(2) 2 sg(z/s), 5>0 )

and s is_the continuous scale parameter. If s = 0, then
sB = {0}, and go(0) = 0. The function gs has the same
shape as g, but both its domain and range are scaled by a
factor s. Specifically, let

Ulg) 2 {(z,a) e R*x R :a < g(z)} (6)

be the ‘umbra’ of g (this is also called ‘hypograph’ in convex
analysis). Then

Ulgs) = sU(g) Q)

and thus, the support of g, is the set B scaled by s. The
multiscale dilation and erosion of f by g at scale s are defined
as the functions

0w.3) 2 (F ©9.)(@) = sup {f(x =) + sg(v/s)} (8)

€(2,5) 2 (f©.9.)(@) = inf {f(w+7v) ~ sg(v/s)}. ©)
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Note that

6(x,0) = e(x,0) = f(z). (10)

Further, if f and g are continuous, the multiscale functions &
and ¢ remain continuous at all 2 and s.

If g: B — {0} is constant and equal to zero, it is usually
called a flat structuring function, and the dilation and erosion
by gs become the following moving sup and inf of the input
signal inside the moving window set sB:

(f & sB)(x) 2 sup{f(x —v):v € sB}
(f ©sB)(x) 2 inf{f(z +v) : v € sB}.

an
(12)

We refer to the above operations as multiscale dila-
tions/erosions by a structuring set (B) because the function
g carries the same information with its support set B.
Morphological operators that use structuring sets are simpler to
analyze and implement than their counterparts that use nonflat
structuring functions, and they have found more applications.
Hence, we dedicate a significant part of this paper to their
analysis.

Our primary goal in this paper is to attempt to make sense
out of the following evolution:

(?6(1, 5) = lim 8z, s+71) = 6(z,s)
ds rl0

for 6 and to interpret its solution in morphological terms.
Toward this goal, we henceforth constrain g to be nonnegative
and concave (i.e., have a convex umbra); hence, B is convex
as well. Since B is compact and convex, it is well known
from [20] and [24] that the set collection {sB : s > 0} forms
a one-parameter semigroup with respect to the set dilation
operation. Specifically

sB@&rB=(s+r)B

(13)

r

(14)

where the set dilation ¢ is defined as the Minkowski set
addition

X0Y2{z+y:zeX,yeY), X,YCRL (15

Further, dilations and erosions satisfy the following laws [24]:

(fog)eh=fd(gdh) (16)
(feg)oh=Ffo(gah). a7

Hence, if D,(f) = f @ sB and &.(f) = f S sB denote the
multiscale operators, we have

Ds(Dr(f)> = Ds+r(f)
gs(gr(f)) = £s+r(f)-

Thus, the multiscale dilation and erosion by a compact convex
structuring set have a semigroup structure. For multiscale
dilations/erosions by functions, note that U(g,s) & U(g,) =
U(gs+r) because of the convexity of U(g); hence, g, ®
9r = gs+r. Therefore, the corresponding multiscale operators
defined by Dy(f) = f @ g, and £,(f) = f © g. also satisfy
(18) and (19) and thus have a semigroup structure. A more
general discussion of semigroup structures of morphological
operators can be found in [25].

18)
19)
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From the semigroup structure
tions/erosions, it follows that

of multiscale dila-

(20)
21

8z, s+ 1) =6(x,s) P g-(x)
e(e, s +1) =e(x,5) © g-(z).

Therefore, the evolution (13) for the multiscale dilation and
its corresponding law for the multiscale erosion become

06(1 s) = lim sup,e,p{é(z — v, 5) +rg(v/r)} - é(a, )
s 710 -

(22)
H_e(l s) = lim infverp{e(@ +v,s) —rg(v/r)} —e(z,5)
s 10 -

(23)

Next, we discuss multiscale versions of dilations and ero-
sions by 1-D and 2-D sets and functions and develop PDE’s
that model their multiscale evolution. These results will in-
volve relating the right sides of (22) and (23) to nonlinear
functions of 96/0x and 9e/dz.

A. Dilations/Erosions by 1-D Sets

Given a differentiable function f : R — R, let B =
assume a flat ¢ : B — {0}, and let

o(x,s) = (f@sB)(x), e(z,8)=(fosB)x).

Fig. 2 shows examples of such scale-space functions € and §é.
The following result is the observation that § and e satisfy
a rather simple but nonlinear partial differential equation at
points where the data are smooth.

Theorem 1: If the partial derivatives 96/0z and 9¢/0x
exist at some point x and scale s, then

[_17 1]

a6 a6
g(% ) = 5(37-,5) (24)
0 17)
gz(:n,.s) = - gi—(z,s) . 25)

Proof: Using a first-order Taylor’s formula and denoting
b, = 06/0x, we have

8z +v,8) — 6(x,s) = b,v + |v]o(v)

where o(v) — 0 as v — 0. Thus, since we will consider v
in [—7,7], by ignoring the term with o(v) in the limit r | O,
we can write (22) as

aé bpv v < Og|r aé
"‘(L 5) = 1111 sup{dzv : Jul < 7} = lim‘ zlr =|—
10 r 710 T or
which proves (24). The proof is similar for € by replacing sup
with inf. O

Thus, assuming that the partial derivatives 06/0z and
Oe/Ox are continuous, these two nonlinear PDE’s can generate
the 1-D multiscale dilations and erosions starting from the
initial conditions 6(x,0) = &(z,0) = f(z). However, even
if f is differentiable, as the scale s increases, the multiscale
erosions/dilations can create discontinuities in their derivatives
0/0x; then these derivatives and the generator PDE’s have to
be interpreted correctly at such points according to the specific
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Fig. 2. Multiscale (a) erosion, (b) dilation, and (c) opening of a 1-D signal
f(x), which is the last 200-sample part of the original signal in Fig. 3 by a
structuring set B = {—1.0,1} for scales s = 0.1,.... 30.

case. To solve this problem, we can replace the conventional
derivatives with ‘morphological derivatives.” Specifically, we
define the morphological sup-derivative’ M of a 1-D real
continuous function f at a point z as follows:

A sup{flz+v):|v|<r} -
M(7)(z) 2 tim !

fla)

(26)

Note that the average dilation-erosion symmetric derivative
[M(f) + M(—/)]/2 is equal to Beucher’s morphological
gradient [2], [24]. By using a similar type of proof as in

'Note that the dual inf-derivative lim, o[f(2) — inf{f(z + v) : |v|
< r}]/r is equal to M(—f)(z).
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Theorem 1, the following relationships can be proven between
the morphological and standard derivatives: Let f:R— Rbe
continuous, and let its right derivative f'(z+) = lim, Lol f(z+
r)— f(@)]/r and its left derivative f'(x—) exist at some point
z. Then, it can be shown that

M(f)(z) = max[0, f'(z+), — f'(x—)] 27
fllat) = f'a~) = f'(&) = M(f)(z) = |f'(z)]. (28)

Thus, if df(z)/dz exists, then M(f)(z) is equal to the
magnitude of the standard derivative. If, however, df /dz does
not exist at , then the M derivative still gives a valid answer
related to the magnitudes of the left and right derivatives at x.

Hence, a more general form of the dilation PDE results from
replacing the |96/0z| in (24) with M,(6), where M, is the
partial sup-derivative in the z direction, i.e.

Mo (8)(z, 8) 2 iy SSRLB@ H09) Jol S ) = 6wy s).

rl0 r
(29)

Similarly, a more general form of the erosion PDE results from
replacing the [0g/dz| in (25) with M, (—e¢). Thus, the PDEs
in (24) and (25) are special cases (when 06/0z and Oe/Ox
are continuous) of the following more general PDE’s:

a6
Oe
Yt —M,(—¢). (€20

These general forms allow the dilation and erosion PDE’s
to still hold even if discontinuities are created in the partial
derivatives 9¢/0x and de /O as the scale increases, provided
that the equations evolve in such a way as to give solutions
that are piecewise differentiable with left and right limits at
each point.

B. Dilations/Erosions by 2-D Sets

Given a differentiable function f : R? — R, we can find
similar PDE’s (as in Section II-A) for its multiscale dilations
and erosions

6(z,y,8) = (f & sB)(z,y)
6(Ivy:3) = (fe SB)(xvy)

by a 2-D convex compact structuring set B. The only dif-
ference now is that the shape of B affects the form of the
PDE. The following theorem summarizes the results for three
different shapes of B, i.e., a unit diamond, a unit disk, and
a unit square.

Theorem 2: If the partial derivatives along the z and Y
directions of ¢ and e exist and are continuous at some point
(z,y) and scale s, then:

If B={(v,u):|v]+ |ul <1} (diamond)

a6 a6 | |08

&(Iayvs) - max{ E 3 %\} (32)
If B = {(v,u) : v? +u? < 1} (disk)

a6 as|® |os|?

E(m,y,s)_ % a—y . (33)
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If B = {(v,u) : |v],|u|l < 1} (square)
a6 ) a6

The multiscale erosions ¢ satisfy equations identical to these
above except that one must multiply the right-hand sides by -1.

Proof: Using a first-order Taylor’s formula and denoting
b, = 06/0y, we have
8(a+v, y+u,5)—=8(2,,5) = S0-+6,u-+|(v, w)lo([| (v, ) )
where o([|(wu, v)[|) — 0 as ||(v,u)|| — 0. Thus, by ignoring in
the limit the term with o(), we can write (22) as

96 sup{6,v + 8,u : (v,u) € rB}

— = lim
ds  rlo r

Because the function §,v + &,u is linear in « and v, over the
compact domain r5, it assumes its maximum value on the
boundary of rB. In addition, in view of the symmetry of B
with respect to the x,y axes, we have

sup  {6;v + 8yu} = max {|6.|v+ |6, [b(v)}
(v,u)erB 0<v<r

where the boundary function b : [0,7] — [0, 7] is defined by

T — v, if B = diamond
V72 — o2, if B = disk

T, if B = square

b(v) =

Hence

7 - max(|0z|,|6,]), B = diamond

sup {6,v + Gyu} = /6% + 82, B =disk
(v,u)erB
r([6z] + [8y]). B = square
from which (32)—(34) directly follow. Similar analysis applies
to ¢, replacing sup with inf; we omit the details. a

Thus, if 06/0x, 86 /0y and de/dx, O /By remain continu-
ous for all scales s, we can use the previous PDE’s to generate
the multiscale ensembles § and ¢, starting from the initial
condition

6(z,y,0) = e(z,y,0) = f(z,y)

Otherwise, if the one-sided z,y partial derivatives of § and
€ exist everywhere, then we can use generalized forms of
these PDE’s where the standard derivatives are replaced by
morphological sup-and inf-derivatives, as in the 1-D case
described by (29)-(31).

C. Dilations/Erosions by Functions

Let f : R — R be a differentiable function, and let
g : [-1,1] — R be a continuous nonnegative and concave
structuring function. Then, it is possible to find PDE’s for the
multiscale dilations and erosions

8z, 5) = (f @ ga)(x), e(x,8) = (f ©g5)(x)

which are more general than those in Section II-A. We present
results for three different shapes of g, where the graph of g
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AMPLITUDE

SAMPLE

(@)
Fig. 3.

0 100 200 300 400 500

SAMPLE

(b)

One-dimensional sampled signal (solid line) and its erosions (two lower dashed lines) and dilations (two upper dashed lines) by gs at scales s =20,

40, where g is a three-sample sequence: (a) Triangular g : g(0) = 0.01, g(—1) = ¢g(1) = 0; (b) flat rectangular g : g(—1) = g(0) = g(1) = 0 (from [18]).

is the top boundary of one of the three planar sets used in
Section II-B scaled by g(0) > 0, that is, g is defined as

g(z) = g(0)sup{y : (z,y) € B}

where B is the unit diamond, disk, or square.

Theorem 3: 1f § and ¢ are the multiscale dilations and
erosions appearing above, and if 86/8z and d¢/dx exist at
some point z and scale s, then:

If g(z) = ¢(0)(1 — |z[), |z| < 1, (triangular)

(35)

k) 06
5;(:1: s) = max{ e ,g(O)}. 36)
If g(z) = g(0)v1 — 22, |z| < 1, (circular)
35 35|
If g(z) = g(0), |z| < 1, (rectangular)
96 96
750 8) = |52 + 9(0). (38)

The multiscale erosions e satisfy equations identical to these
above except that one must multiply the right-hand sides by -1.
Proof: From (22), it follows that
86 sup{8,v +rg(v/r) : [v} < r}

— = lim
ds  rlo T

Since g is even and nonnegative over [—1,1], we have

sup {8,v + rg(v/r)}
fol<r

= Olélfé(r{|5x|’U +rg(v/r)}
7 - max(|8.], 9(0)),

= r/8l? +¢%(0),

7(|62] + 9(0)),

from which (36)—(38) directly follow. This is similar for € by
replacing sup with inf.

g = triangular
g = circular

g = rectangular

Thus, if 86/x and 8e/dx remain continuous at all (z, s).
the above PDE’s model the scale evolution of the general
dilations and erosions. Discontinuities in the derivative /0z
can be handled by using the generalized morphological deriva-
tives. Note that the PDE (24) for dilation by a set results as a
special case of any of the previous three PDE’s for dilations
by functions g by setting g(0) = 0, which makes g flat. Fig. 3
shows samples of the multiscale functions § and ¢ for a 1-D
signal f and two different g’s.

The PDE’s for 1-D dilations and erosions by functions can
be easily extended to the 2-D case. For example, in the 2-D
case, the graph of g can be defined as the (scaled by g(0,0))
upper surface of 3-D structuring sets B that are, say, a unit-
size cone, a sphere, or a cylinder. Then, the corresponding
PDE’s follow easily from the previous analysis. For example,
if B is the unit sphere, then

g(z,y) = 9(0,00/1— 22 —y?, & +y° <1 (39)
and the PDE for the multiscale dilation of f by g is
96 as|> |06
Ay 8) =4/ | = 2(0,0). (40
55 &Y 9) 7|t |3y + ¢%(0,0) (40)
If B is the unit cube, then
g(z,y) = g(0,0), |[z[,]yl <1 (41)
and the dilation PDE becomes
a6 a6 a6
i = |— — 0,0). 42
D) =| |+ 5o +o00. @)

D. Related Work

In ch. 8 of [29], Boomgaard and Smeulders have obtained
similar dilation and erosion PDE’s by following a different
approach. They studied the propagation of the boundaries
of 2-D sets (i.e., binary images) under multiscale dilation
and erosion and applied these ideas to the propagation of
the graph of signals under multiscale function dilation and
erosion. Their work has the constraint of requiring structuring
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elements with smooth boudaries, namely, they require that the
structuring sets B be strictly convex and have a boundary
possessing a unique normal at each point. Similarly, they
require that the structuring functions g be strictly concave and
have an inverse gradient function everywhere. Thus, although
their work can deal with some smooth functions g of infinite
support (e.g., a parabola) or of compact support whose graph
does not contain linear segments, it cannot directly deal with
the practically useful cases of, say in 1-D, a triangular, or
rectangular, or flat function g (and correspondingly a diamond,
or square, or horizontal segment for the set ). In contrast, our
approach also allows for structuring elements with nonsmooth,
or piecewise linear, or even discontinuous boundaries.

III. MULTISCALE OPENING AND CLOSING

Consider a signal f : R? — R and a nonnegative concave
structuring function g : B — R with a compact support B.
The multiscale morphological opening ¢ and closing ¢ of f
by ¢ are defined as

W(z,5) 2 (fog)(e) = [(f © g:) & g.) ()
$(z,8) 2 (fog.)(@) = [( & g5) © g] ().

(43)
(44)

There is a simple geometrical interpretation [16] of the action
of the opening:

(fog)(z) =

sup
g(z—y)+e< f(z)

lgle—y)+ck. @5

Thus, f o g is the upper envelope of all shifted (in argument
and amplitude) versions of g that can fit below the graph of f.
There is a similar geometrical interpretation for the closing.

If ¢ is flat, it is known [20], [24] that the compactness
and convexity of B are sufficient to guarantee the following
monotone structure in 3 and ¢:

r<s= ¢(z,7) > ¥(x,s) and $(z,r) < ¢(z,s)V z (46)
and a semigroup structure for the multiscale operators

Os(f) = fosB and Cs(f) = f e sB, where the binary
operation of the semigroup is the maximum:

“47n
(48)

Os(or(f)) = Omax(r‘s)(f)
Cs(cr(f)) = Cmax(r,s)(f)'

It can be shown that the same algebraic structure exists for
openings/closings by concave and compact-support nonflat
g’s.

Perhaps the simplest way to generate the above multiscale
openings and closings using PDE’s would be to implement
them serially as compositions of multiscale erosions and
dilations. Specifically, v)(x, s) could be obtained by running
the erosion PDE for e(x,r) over scales r € [0,s] with
initial condition e(z,0) = f(z) and then running the dilation
PDE for &(x,7) over scales r € [0,s] with initial condition
6(z,0) = e(x,s).
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Alternatively, for 1-D openings by sets, the following
differential-difference equation models the scale evolution
of the opening. Consider a differentiable function f : R — R,
and let g : B — {0} be flat with B = [—1, 1]. As s increases,
the opening 1(z,s) = (f o sB){x) becomes smaller because
the peaks of f that have width < 2s are cut down (see Fig. 2(c)
for an example of the function ¢(z, s)). In the process, the
opening creates some flat plateaus under the peaks of f
whose length increases with s, as shown in Fig. 4. Referring
to Fig. 4, consider some (indexed by 7) peak point z = p;,
where f has a local maximum, surrounded by two valley points
i, Vi1, where f has local minima. Let r; € [p;, v;1,] and
7; — 25 € [v, p;] be the right and left end points of z intervals
of length 2s such that ¢ (r;, s) = ¢(r; — 2s,s) = f(r;). These
intervals are the supports of the flat plateaus created by the
opening. Now, let s — s + As and 1) — 1 + At Then, as
the geometry of Fig. 4 implies

R %_Aw =2As. (49)
15e(ri—2s,5) |55 (i, 9)]
Hence, by letting 9¢/0s = limas_q At/ As, we obtain
0 -2
a—l/_)(x“s) = . -1 o) —1 (50)
s %(7}' —2s,8)  + %:—(r“ s)|
if z € [r; — 28,7
and
(Z—w(z 5)=0if 2 € (v, r; — 28) U (7, v341) (51
S
where di/0x are one-sided derivatives, and
ri(s) = inf{z > p; : P(=, 8) = f(z)}. (52)

Similarly, by replacing, in the opening differential-difference
equation, the -2 with +2 and the peak with valley points, a
corresponding equation results for the multiscale closing .
Since the opening differential-difference equation acts only on
the signal’s peaks, whereas the closing differential-difference
equation acts only on the valleys, we can also combine both
rules into a single differential-difference equation that models
the evolution of the multiscale opening-closing, which is
the composition of opening and closing that smooths signals
similarly to a median [16].

Extending the above opening differential-difference equa-
tion to 2-D signals f and 2-D sets B presents several problems
because the geometry of the 2-D flat plateaus created by the
opening are not related to the geometry of the 2-D set B
as simply as in the 1-D case. Note, however, that pointwise
maxima of openings by 1-D line segments oriented in different
directions are useful for smoothing 2-D images by preserving
their line structures, as shown in Fig. 1. Hence, the derived
1-D opening differential-difference equation is also useful for
2-D filtering applications.
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—2(s+ As) —
25 ——
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vi Pq Ty Vi+1

Fig. 4. Multiscale opening at scales s and s + As.

IV. DISCUSSION

In conclusion, we have developed some new PDE’s of the
evolution type that model continuous multiscale morphological
operators, of the shrink/expand or smoothing type, as dynam-
ical systems. These PDE’s suggest new ways to view and
implement nonlinear multiscale filtering.

The analysis presented here suggests a rather natural way
to think about and classify continuous-scale signal operators.
If 7.(f) denotes the output of a multiscale operator at scale s
applied to a signal f, then 7; is said to satisfy the semigroup
property if T3[Z.-(f)] = Tr4s(f). All the multiscale erosions
and dilations discussed in this paper satisfy this property when
the scale s is the size of the compact convex structuring
element with respect to a unit-size prototype. In addition, the
linear convolution with multiscale Gaussian functions satisfies
this property when the scale s is proportional to the variance of
the Gaussian. Multiscale openings and closings, although they
do not have an additive semigroup structure, can be expressed
as compositions of operators that do satisfy this rule. Consider
next the generator of the semigroup

G- )] = lim Toe ) = T0)
r—0 T

If this limit exists in some suitable sense, it may happen
that the limit is a differential operator: linear as in the case
of Gaussian convolutions or nonlinear as in the case of
dilations/erosions. Alternatively, it may happen that it is a
combination of differential and difference operators as we have
seen in the case of opening and closing. If it is a differential
operator of first order, the differential equation is of hyperbolic
type, and 7, (f) can be expected to evolve by shifting without
smoothing. If it is second order and elliptic, one can expect
that it will smooth f via diffusion [28].

We note that there is a large class of analog nonlinear filters
that can be used as multiscale signal operators. However,
unless they satisfy a semigroup property with respect to the
scale, one cannot expect to find an infinitesimal generator in
the way we have done in this paper. We presented PDE’s for a
few important multiscale nonlinear operators, i.e., erosions and
dilations, and showed how to use them to generate openings
and closings. However, to indicate some of the problems
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encountered in other types of multiscale nonlinear filters, we
make a brief remark about analog rank-order and median
filters [8], [14], which are closely related to morphological
filters [16]. The output of a continuous-scale pth rank-order
(or percentile) operator acting on an input 1-D real-valued
differentiable function f with respect to the window [—s, s] is
defined at point z and scale s for 0 < p < 1 as

&(x,s) = v iff Length{y : f(y) > v and |y — 2| < s} = 2ps

where £(x,0) = f(z). The median filter is the special case
where p = 0.5. Fig. 5 illustrates the geometry underlying the
change & — €+ A of the multiscale function due to the scale
change s — s+ As at some point z. Referring to the notation
in Fig. 5, for small changes As and A, we have

2p(s + As) = 2ps — Z Ax; + Q(f,z,s)As (53)

where

Q(f‘!x!s) = H[f($ +8) - 5(13.9)] + H[f(l' - 3) —§(.7:,S)]

and H is the unit step function defined as H(z) = 1ifz > 0
and H(x) = 0 if 2 < 0. In the limit as As — 0, we also have

a¢=an| L (54)
for points x; such that
E(zi,8) = fz:), zi€lx—s,z+s4] (55)
Combining the equations above yields in the limit
—g—i(l,s) = Q_____(f,;v,s) 7‘_2‘? (56)
¥ | ()

Note that, in contrast to multiscale erosions and dilations, the
multiscale rank-order operators do not satisfy a semigroup rule.
Hence, the relationship given above is not as useful as the
PDE’s derived for dilations and erosions. The infinitesimal
generation rules for multiscale rank-order operators are signal
dependent (since they depend on slopes of f at specific level-
crossing points).

Finally, we have studied in this paper nonlinear PDE’s of
first order that can model multiscale morphological erosions,
dilations, and their compositions, openings, and closings. The
openings and closings are nonlinear smoothers. The classical
diffusion PDE (3) is a linear second-order PDE that models the
multiscale linear smoothing via Gaussian convolutions. Given
that both linear and nonlinear smoothers enjoy particular ad-
vantages, it would be interesting to develop hybrid multiscale
smoothing schemes that combine both characteristics. Toward
this goal, evolutionary PDE’s for smoothing 1-D signals f (z)
such as
%

9y

oz

W _
ds

a

(57)
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J:-f-s
2s ?

“__
"As

Fig. 5. Multiscale median filtering. Solid line shows the original signal f
around a point . The two horizontal dashed lines show the median values of
f over two windows of scale s and s + As centered at x.

T
As '

¥(x,0) = f()

might be interesting, where ¢ is the generated multiscale
function. The coefficients ¢ and b could be constant or varying
and their relative values determine the percent of nonlinear
versus linear smoothing. It remains to be seen whether or
not, for specific applications of multiscale smoothing, one can
identify coefficients that will lead to useful signal processing
techniques.
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