








Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, MONTH 2013 19

transitions (e.g., cut, fade) while a scene, is defined as a complete, continuous chain of actions (shots) that occur at

the same place and time. The average shot and scene duration was 2.5 sec and 3.5 min, respectively. Next, labeling of

perceptual, semantic, and affective content was performed, as follows: (a) Sensory information: monomodal (audio,

visual) and multimodal (AV) saliency of the sensory content, i.e., segments that are, respectively, acoustically,

visually or audio-visually interesting. (b) Cognitive information: the combination of sensory/perceptual events and

semantics/pragmatic events. It includes the semantic information layer, i.e., segments that are conceptually important

as stand-alone sensory/semantic events, henceforth referred to as audio-visual-semantic events (AVS). (c) Affective

information: both intended emotions and experienced emotions have been annotated. More details on the affective

annotation and the associated emotion tracking task are provided in [73].

Annotation was performed by three expert viewers using ANVIL video annotation tool [74]. Movie segments that

were considered salient at the audio sensory (A), visual sensory (V), audio-visual sensory (AV), and audio-visual

sensory/semantic (AVS) level were labeled in separate annotation runs. The output of each run was a binary saliency

indicator function. Table I shows the (average) percentage of frames labeled as A, V, AV, AVS, for each of the

seven movies. To achieve a high degree of annotation uniformity for this highly subjective task, the annotators

followed guidelines from a labeler’s manual on how to perform the labeling of all individual layers. Table II shows

the average (pairwise) correlation agreement, overall satisfactory, for each annotation layer and movie. Note that

the agreement is higher for the sensory (A, V, AV) layers compared to the sensory-semantic AVS layer. However,

the ground-truth saliency indicator functions, used for evaluation purposes in Sec.IX, consist of frames that have

been labeled salient by at least two labelers. Thus, despite the lower agreement between annotators observed for

certain movies, the final saliency ground-truth was formed on the basis of consistently-labeled salient frames only.

TABLE I

AVERAGE PERCENTAGE OF FRAMES LABELED SALIENT.

Layer BMI CHI CRA DEP GLA LOR FNE Mean

A 25.4 56.3 55.0 33.4 60.9 58.3 54.6 49.1

V 30.1 46.3 37.9 32.4 39.2 43.3 36.9 38.0

AV 27.4 47.7 43.1 37.8 49.6 50.7 39.7 42.3

AVS 63.2 76.6 64.8 71.8 68.5 72.7 67.6 69.3

TABLE II

AVERAGE (PAIR-WISE) CORRELATION BETWEEN LABELERS.

Layer BMI CHI CRA DEP GLA LOR FNE Mean

A 0.54 0.48 0.46 0.49 0.51 0.52 0.42 0.49

V 0.31 0.33 0.32 0.45 0.38 0.43 0.38 0.37

AV 0.45 0.45 0.41 0.54 0.44 0.50 0.44 0.46

AVS 0.29 0.24 0.27 0.29 0.31 0.33 0.23 0.28
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IX. EVALUATION AND DISCUSSION

In this section, we present objective (quantitative) and subjective (qualitative) results for the proposed saliency

representations and video summarization algorithms. The different fusion and normalization schemes for multimodal

saliency are systematically evaluated, with respect to frame-level precision, against the annotated ground-truth and

compared to learning-based classification. The produced summaries are also qualitatively evaluated in terms of

informativeness and enjoyability.

TABLE III

FRAME-LEVEL SUMMARIZATION PRECISION FOR FEATURE (AUDIO, VISUAL) AND SALIENCY (AUDIO-VISUAL-TEXT) FUSION, EVALUATED

ON MONOMODAL (A, V), MULTIMODAL (AV) AND MULTIMODAL-SEMANTIC (AVS) GROUND-TRUTH ANNOTATIONS.

Fusion Level Audio Feature Visual Feature AVT Saliency AVT Saliency

Annotation Layer Audio (A) Visual (V) AudioVisual (AV) AV-Semantic (AVS)

Summarization Percent Summarization Percent Summarization Percent Summarization Percent

Algorithm 20% 33% 50% 20% 33% 50% 20% 33% 50% 20% 33% 50%

Norm Fusion Frame-Level Summarization Precision Scores

GL-N LE-F 62.7 60.7 57.6 42.8 39.7 37.0 40.5 38.7 38.5 74.8 72.5 72.1

GL-N MI-F 89.2 79.2 69.2 49.6 45.5 40.8 79.5 69.9 58.9 91.2 87.9 83.2

GL-N MA-F 44.8 47.4 48.6 40.0 37.9 35.5 37.4 36.9 38.0 69.0 69.2 69.2

GL-N VA-GL-F 85.8 75.6 65.7 42.7 40.1 37.5 64.7 56.2 49.9 83.0 79.1 76.1

GL-N VA-SC-F 82.7 72.1 64.2 43.1 39.9 37.6 66.0 59.8 53.8 84.6 81.4 78.0

GL-N VA-SH-F 87.6 79.0 68.3 41.4 39.5 37.4 79.3 68.6 58.0 90.2 85.9 81.8

SC-N LE-F 60.1 59.5 57.3 38.8 38.2 36.2 41.0 39.5 40.0 75.9 73.4 72.7

SC-N MI-F 74.6 69.6 64.3 43.0 40.6 39.1 63.4 58.2 53.6 85.2 82.3 79.5

SC-N VA-GL-F 68.5 64.3 59.7 38.8 38.0 36.2 51.5 48.0 44.7 77.5 76.2 74.3

SC-N VA-SC-F 68.7 62.0 58.1 38.3 38.1 36.1 50.6 48.9 46.2 76.9 75.9 73.9

SH-N LE-F 67.3 63.2 58.8 41.1 39.8 38.2 40.4 40.3 40.9 74.6 74.3 73.2

SH-N MI-F 64.0 61.9 59.2 43.1 41.6 40.1 49.6 49.2 47.6 75.6 75.6 74.8

SH-N VA-GL-F 67.3 63.3 58.8 41.5 40.2 38.3 43.5 43.8 43.2 75.0 74.8 74.1

SH-N VA-SC-F 67.4 63.5 59.3 42.1 40.2 38.5 43.5 43.1 42.7 74.8 74.6 73.7

A. Objective Evaluation of Fusion Schemes

We evaluate three normalization schemes, i.e., global (GL-N), scene-level (SC-N), shot-level (SH-N), and six

fusion schemes, i.e., linear (LE-F), min (MI-F), max (MA-F), inverse variance (VA-GL-F, VA-SC-F, VA-SH-F),

using the annotations of the movie database as ground-truth. Normalization and fusion schemes are evaluated on

three different tasks: a) intramodal fusion of audio features into an audio saliency curve (audio feature fusion),

evaluated on audio saliency ground-truth (A-A); b) intramodal fusion of visual features into a visual saliency curve

(visual feature fusion), evaluated on visual saliency ground-truth (V-V); c) intermodal fusion of audio, visual and
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Fig. 4. Frame-level summarization precision scores for (a) audio feature fusion, (b) video feature fusion, (c),(d) multimodal (audio-visual-text)

saliency fusion. Multimodal fusion is evaluated on (c) audio-visual human annotation and (d) audio-visual-semantic human annotation.

text curves (AVT) into multimodal saliency, evaluated on ground-truth of audio-visual (AVT-AV) and audio-visual-

semantic (AVT-AVS) annotations.

Results are presented in terms of frame-level precision scores for all tasks. Specifically, the automatically-

computed binary indicator functions on the output of the summarization algorithm (Sec. VII) are compared to

the annotated database ground-truth. Precision, i.e., the percentage of correctly detected salient frames given the

ground-truth labeling to salient/non-salient frames (precision = correctly detected / all detected), best characterizes

the frame-level performance on these salient event detection tasks. Note that for the intramodal experiments (audio

feature and visual feature fusion) the saliency indicator and associated summaries are produced using only the

corresponding modality features (audio and visual respectively). Various percents of summarization are considered,

corresponding to different levels of decision thresholds on the computed saliency curves.

Frame precision scores for intra- and intermodal fusion are presented in Table III for summaries that include 20%,

33% and 50% of the original number of frames, and for the tasks of audio feature fusion, visual feature fusion and

audio-visual-text saliency fusion. All possible combinations among normalization and fusion schemes are evaluated.
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Best results in each task are shown in bold. There are two clear trends across tasks and evaluation settings: a) global

normalization (GL-N) significantly outperforms shot-level and scene-level normalization schemes, and b) nonlinear

minimum fusion (MI-F) and inverse variance weighting (VA-GL-F, VA-SC-F, VA-SH-F) outperform uniform linear

combination (LE-F) and max fusion (MA-F). For the remainder of this paper, we focus only on the best performing

normalization (GL-N) and fusion (MI-F, VA-GL-F, VA-SC-F, VA-SH-F) schemes. Linear fusion (LE-F) results are

also reported as baseline.

In Fig. 4, frame precision results are shown as a function of summarization percentage (ranging from 5% to

70%). Results are shown for global normalization and the best performing schemes for the inter- and intramodal

fusion tasks (same as in Table III). For audio feature fusion, in Fig. 4(a), MI-F performs best, while LE-F performs

significantly worse compared to the rest. All inverse variance schemes perform well, with VA-SH-F being the best

(performing close to MI-F). For visual feature fusion, in Fig. 4(b), MI-F significantly outperforms the similarly

performing inverse variance and linear fusion schemes. Note the low absolute precision scores achieved for the visual

task (compared to audio detection precision). Results for multimodal saliency fusion are shown in Fig. 4(c),(d) on

AV and AVS annotation, respectively. Relative scheme performance is consistent in both: MI-F performs best,

followed closely by VA-SH-F, while linear fusion performs very poorly. Note that (absolute) precision scores are

higher in Fig. 4(d) compared to (c), i.e., including content semantics in the evaluation improves saliency precision.

Although detection relies on low-level features, semantic information might be sipping through from text saliency.

Overall, the VA-SH-F and MI-F schemes work very well for both intra- and intermodal fusion. Nonlinear min

(MI-F) works notably well for single modality fusion (e.g., visual), especially for shorter summaries.

Finally, we examine the relative performance of single (A, V) and multiple modalities (AV, AVT) on a common

annotation layer, i.e., audio-visual-semantics (AVS), with frame-level precision results presented in Fig. 6. Clearly,

the audio features provide the best stand-alone performance, significantly higher than the visual ones. Fusing the

audio-visual-text curves improves average precision, especially for longer summaries, using six out of seven movies

(shown here for all seven).

B. Machine Learning

As a proof-of-concept, we consider a data-driven, machine learning approach to monomodal and multimodal

frame selection, where classifiers are trained using the frame-wise audio (A) and visual (V) features, or pooled

feature vectors for audiovisual (AV) and audio-visual-text (AVT). The purpose of this baseline is two-fold: a) to

validate the efficiency of the proposed saliency features, irrespective of the fusion scheme, b) to serve as a supervised

learning-based benchmark for summarization via frame selection.

Specifically, we employ the raw feature vectors of each modality along with their first and second time derivatives

computed over three and five frames respectively. Nearest neighbor classifiers (NNR-k)1 are trained per individual

or multiple modalities on the annotated saliency ground-truth (A, V, AV, AVS) for a two-class classification problem

1Similar results can be obtained using Gaussian mixture models or Support Vector Machine classifiers.
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Fig. 5. Frame-level NNR-k classification precision using different (features-annotation) salient class labeling for audio (A-A), visual (V-V),

audiovisual (AV-AV, AV-AVS), audio-visual-text (AVT-AVS).

(salient-nonsalient frames). Each classifier output is thus an indicator function of salient frames, that can be used

to form learning-based summaries. In order to select the frames that most likely correspond to event candidates for

a summary, results are reported using a median-filtered version on the raw classifier output with window of length

2M+1. To obtain results for variable compression rates, a confidence score is defined for each classification result,

i.e., each frame. We set that to be the fraction of the k nearest neighbors with labels in class 1 (salient events); this

roughly corresponds to the posterior probability of event class for that frame; for details see [75].

Frame precision results are shown in Fig. 5, for saliency classification from audio on audio (A-A), visual on

visual (V-V), audiovisual on audio-visual-semantics (AV-AVS) and audio-visual-text (AVT-AVS). A seven-fold cross-

validation was used in a leave-one-movie-out manner, i.e., NNR-k models are trained on six movies and tested

on the seventh. The parameters were empirically set to k = 250 neighbors for NNR and M = 2 sec for median

filtering, by optimizing for audio classification accuracy scores. In general, the precision scores achieved using the

classifiers are better than those from the bottom-up saliency approach for the monomodal saliency (A) and (V) and

the multimodal audiovisual (AV) schemes, on the expense of the need for training and parameter-validation (k and

M ). However, results from the fused, multimodal AVT curve (Fig. 6) are better than classification on the pooled

audio-visual-text feature vector.

C. Subjective Evaluation of Summaries

Summaries obtained for c = 0.2 (5 times faster than real time) were subjectively evaluated by 11 naive and 3

expert subjects in terms of informativeness and enjoyability on a 0−100% scale similarly to [10], [13] for six out of

seven movies of the database. In total, five automatically produced summaries were used with global normalization

(GL-N) and the following fusion schemes: LE-F (baseline method), inverse variance (VA-GL-F, VA-SC-F, VA-SC-

F) and min fusion (MI-F). In addition, an “expert” summary, manually created by a movie production professional,
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Fig. 6. Frame-level summarization precision scores for audio saliency (A-AVS), visual saliency (V-AVS) and audio-visual-text saliency curve

(AVT-AVS) using GL-N MI-F, all evaluated on audio-visual-semantic annotation.

was included in the evaluation. The 14 subjects that participated in the study viewed the original thirty-minute clip,

for each of the movies, followed by the six summaries (six-minute each) in random order.

To better normalize the ratings the following scale was communicated to the subjects: poor between 0 − 40%,

fair 40− 60%, good 60− 75%, very good 75− 90% and excellent 90− 100%. Average subjective informativeness

and enjoyability ratings for the five fusion schemes and the expert summary are shown in Table IV for each of the

six movies, along with objective scores (frame-level accuracy evaluated on AVS annotation) shown for comparison.

Expert summaries achieved very high subjective ratings, up to 95% for both informativeness and enjoyability.

Automatic summaries also received high scores, up to 80%, but the performance gap between manually and

automatically created summaries is large. This is expected since professionally created summaries contain no artifacts

such as abrupt changes in the audio and visual stream and use high-level information (semantics/pragmatics) to

select the relevant sub-clips. High marks for expert summaries might also be attributed to subject bias: professional

skims were clearly a class apart from the automatically created summaries and subjects might have over-emphasized

this difference.

The best performing fusion scheme across all six movies for subjective informativeness ratings is MI-F, followed

by VA-SH-F and LE-F. The results are consistent with objective evaluation results with the exception of LE-F that

gets surprisingly high subjective ratings (this could be due to the good performance of LE-F for the visual stream

that is perceptually important). Note that performance is movie dependent, i.e., VA-SC-F and VA-GL-F also score

well for certain movies. The high (absolute) informativeness scores for fantasy/epic and animated films (LOR,

GLA, FNE) may be due to sharp scene changes, crisp narration, high-intensity color motifs and audio effects.

Low informativeness for CRA and CHI summaries could be due to the long dialogue segments and music scenes,

respectively, that are hard to automatically summarize.

Subjective enjoyability scores are higher for VA-SH-F and VA-SC-F fusion. Among the global fusion schemes
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TABLE IV

SUBJECTIVE EVALUATION OF AVT SUMMARIES AT (×5) RATE AND FRAME PRECISION ON AVS ANNOTATION SHOWN FOR COMPARISON.

Subjective Informativeness

Movie CHI CRA DEP GLA LOR FNE Mean

Expert 91.5 90.1 83.1 87.9 88.7 92.5 89.0

LE-F 70.3 65.4 62.6 67.6 72.3 63.7 67.0

VA-GL-F 61.4 66.6 62.3 57.3 58.6 71.0 62.9

VA-SC-F 71.5 65.9 67.5 52.4 52.8 58.4 61.4

VA-SH-F 53.9 59.5 69.1 71.1 78.7 73.4 67.6

MI-F 50.9 62.9 72.6 70.8 77.4 74.1 68.1

Subjective Enjoyability

Movie CHI CRA DEP GLA LOR FNE Mean

Expert 89.0 93.2 90.1 92.1 92.3 95.6 92.1

LE-F 68.3 62.0 62.0 65.5 62.7 66.2 64.4

VA-GL-F 61.5 65.1 54.7 58.9 57.8 69.7 61.3

VA-SC-F 74.3 75.1 80.8 68.8 70.7 69.3 73.2

VA-SH-F 66.5 65.1 74.3 76.8 80.9 81.0 74.1

MI-F 55.3 69.9 71.0 66.7 74.4 78.3 69.3

Objective Accuracy (Frame Precision)

Movie CHI CRA DEP GLA LOR FNE Mean

LE-F 56.6 58.5 59.5 46.7 46.7 55.5 53.9

VA-GL-F 62.4 68.1 68.2 59.1 56.9 65.2 63.3

VA-SC-F 63.9 69.0 64.8 60.1 59.1 63.9 63.5

VA-SH-F 67.0 70.7 74.3 68.3 64.5 70.0 69.1

MI-F 67.4 70.1 73.6 69.4 65.8 69.8 69.4

MI-F performs best followed by LE-F and VA-GL-F. Global, non-adaptive fusion schemes tend to select short

segments, resulting in summaries that feel “choppy” or “fast-forward” like. VA-SC-F selects longer segments but

might miss important plot elements, thus often forming enjoyable skims that are not necessarily very informative.

An expert subject evaluated the seventh movie (BMI) in terms of both informativeness and enjoyability concluding

that MI-F and VA-SH-F are the best performing fusion schemes on both subjective qualities.

Overall, minimum and inverse variance fusion schemes perform best with respect to both informativeness and

enjoyability subjective scores. The performance in informativeness ratings of linear fusion is somewhat surprising

considering its poor detection performance. Shot- and scene-based adaptive inverse variance fusion performed best

in terms of skim enjoyability.
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X. CONCLUSION

A multimodal saliency curve integrating cues from the aural, visual and text streams of videos was proposed

based on audio, image and language processing, and hierarchical, low-level fusion. Used as an indicator func-

tion for attention-invoking salient event detection, the developed representation formed the basis for dynamic

movie summarization under a scalable, generic and content-independent algorithm. Summarization performance

was quantitatively and qualitatively evaluated on a movie database with multilayer, multimodal saliency annotation.

Subjective evaluations showed that the saliency-based video skims can have both functional and aesthetic value,

i.e., being informative and pleasing to the viewer. Among the various explored feature normalization, adaptation

and fusion schemes, global normalization (GL-N), shot-variance (VA-SH-F) and min-fusion (MI-F) schemes work

very well for both intra- and intermodal fusion. Min fusion proved well-suited for cue integration within modalities,

especially for visual features and shorter summaries. Minimum and inverse variance schemes performed best in

terms of informativeness, while adaptive shot- and scene-based inverse variance in terms of enjoyability. Extensions

of this work include: the development of mid-level fusion algorithms, both inside and across modalities, such as

learning schemes and nonlinear feature correlations; incorporation of higher-level features from movie transcript

information; and top-down modeling through movie semantics syntax, and structure for bridging the semantic gap.

Sample video skims and on-going evaluations can be found at http://cvsp.cs.ntua.gr/research.
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