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Abstract—Multimodal streams of sensory information are
naturally parsed and integrated by humans using signal-level
feature extraction and higher level cognitive processes. Detection
of attention-invoking audiovisual segments is formulated in this
work on the basis of saliency models for the audio, visual, and
textual information conveyed in a video stream. Aural or auditory
saliency is assessed by cues that quantify multifrequency wave-
form modulations, extracted through nonlinear operators and
energy tracking. Visual saliency is measured through a spatiotem-
poral attention model driven by intensity, color, and orientation.
Textual or linguistic saliency is extracted from part-of-speech
tagging on the subtitles information available with most movie
distributions. The individual saliency streams, obtained from
modality-depended cues, are integrated in a multimodal saliency
curve, modeling the time-varying perceptual importance of the
composite video stream and signifying prevailing sensory events.
The multimodal saliency representation forms the basis of a
generic, bottom-up video summarization algorithm. Different
fusion schemes are evaluated on a movie database of multimodal
saliency annotations with comparative results provided across
modalities. The produced summaries, based on low-level features
and content-independent fusion and selection, are of subjectively
high aesthetic and informative quality.

Index Terms—Attention, audio saliency, fusion, movie sum-
marization, multimodal saliency, multistream processing, text
saliency, video summarization, visual saliency.
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I. INTRODUCTION

A TTENTIONAL selection and information abstraction
are cognitive mechanisms employed by humans and

animals for parsing, structuring, and organizing perceptual
stimuli. These mechanisms are grounded in most of the normal
conscious or nonconscious activities such as guided search,
communication and interaction, awareness and alert states,
sensory grouping, memory, decision making, action taking, and
visual and auditory scene analysis [1]–[3]. They are functionally
correlated to modulations of neuronal activity and the product
of a combination of bottom-up (sensory) and top-down (cogni-
tive) processing. Attention is the process of focusing cognitive
resources on prevailing properties, cues, temporal segments,
or individual streams of sensory information. Abstraction
refers to the reduction of information representations through
simplification and selection. Both processes have been the
common ground and subject of neurophysiological, cognitive,
behavioral, and computational studies. In this work, we pro-
pose computational models for multimodal stream abstraction
and attentional selection, based on the saliency of individual
features for aural, visual, and linguistic representations.
Attention may be of two modes, top-down task-driven and

bottom-up stimulus-driven, that control the gating of the pro-
cessed information (input filtering) and the selective access to
neural mechanisms (capacity limitation), for example, working
memory [2]–[5]. Bottom-up attention or saliency is based on the
sensory cues of a stimulus captured by its signal-level proper-
ties, like spatial, temporal, and spectral contrast, complexity, or
scale [6]–[8]. Similar to competitive selection, saliency can be
attributed to the feature level, the stream level, or the modality
level. For example, a frequency tonemay be acoustically salient,
a voice can be perceivable among environmental sounds, and
an audiovisual scene can be biased towards any of the two sig-
nals. Feature saliency is the property of a feature to dominate
the signal representation while preserving information about the
stimulus. Stream saliency is the property of a temporal segment
to stand-out or ‘pop-out’ with respect to its surroundings in a
time-evolving scene. Modality saliency is the importance of in-
dividual sensory or data modalities (e.g., aural, visual, or lin-
guistic) across time (intramodality) or perceptual scene (cross-
or intermodality). Salient feature selection is done based ei-
ther on their representational strength or their appropriateness
for a given application. Here, we develop a hierarchical, mul-
timodal saliency representation where audio, visual, and text
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cues compete at feature, stream, and modality levels for the for-
mation of salient multimodal events. Events in video streams
are temporal segments of traceable activity or change in scene
properties, for example actions, periodic motions, highlights,
or facial expressions. Neurophysiological studies with narrative
media like movies suggest that event segmentation is automatic
during active perception and occurs both at feature-level and at
higher-level concept changes [9]. For a video stream with au-
diovisual content, perceptually salient events can be detected
by tracking intramodal changes on the individual sources of au-
ditory and visual stimuli, or crossmodal changes for coupled
events, i.e., changes that span multiple modalities. Attention to-
wards such salient events is triggered by changes or contrast in
object appearance (texture and shape), motion activity and scene
properties (visual events), changes in audio sources, textures or
tempo (aural events), and the relevant—when available—tran-
scribed dialogues or spoken narrations (textual events).
Computational models of single- and multimodal saliency

[10]–[13] have been applied to emerging multimedia applica-
tions such as automatic video abstraction, summarization, in-
dexing, and browsing [14], [15]. Summarization refers to pro-
ducing a shorter, in duration, version of a video that contains
essential information for content understanding, without sacri-
ficing much of the original’s informative, functional, or aesthet-
ical purpose. A summary can function as a video preview or
an overview, thus aiding in quickly accessing whether the con-
tent is important, interesting, or enjoyable. Automatic summa-
rization can be broadly classified into two types [14]–[16]: key-
frame selection, yielding a static, small set of important video
frames, and video skimming (loosely referred to as video sum-
marization here), giving a dynamic short clip that contains sub-
segments of the original stream. Since content coverage in the
final summaries is important, most summarization techniques
employ prior information on the structure of the underlying
source data. In the case of scripted, structured video, for ex-
ample films, the hierarchical segregation in shots and scenes is
explicitly utilized [11], [17].
Movies provide the substrate of video content that poses

challenging research problems and at the same time introduce
the potential for a range of commercial and interdisciplinary ap-
plications. Movie data are multimodal, conveying audio, visual,
and text information (in the form of screenplay and subtitles),
scripted, structured, and generated through professional and
artistic filming and editing. Besides the sensory-level, movies
are rich in semantics, either in the form of conceptual units
(i.e., themes, concepts, and stories) or in the form of structured
content (e.g., frames, shots, or scenes). Additionally, direction
and montage effects are introduced on purpose in order to
induce emotional or attentional responses to the viewer. In this
work, we aim to elicit higher level semantic or affective content
from sensory-level saliency representations.
Contributions and Overview: We propose multimodal

saliency representations of audiovisual streams, in which signal
(audio and visual) and semantic (linguistic/textual) cues are
integrated hierarchically. Each modality is independently ana-
lyzed in individual saliency representations: spectro-temporal
for the audio channel (Section III), spatio-temporal for the
visual channel (Section IV), and syntactic for the transcribed
subtitle text (Section V). A multimodal saliency score per video
frame is obtained by combining features within each modality

and saliencies across modalities using linear and nonlinear
fusion schemes (Section VI), and weighted integration where
the weights can be: 1) constant across time; 2) stream-variance
depended, associated to feature/modality uncertainty; and 3)
dynamically adaptive, in local, structure-depended windows
(e.g., movie scene and shot boundaries). Based on the con-
jecture that temporal variation of saliency is correlated to the
time-varying attentional capacity of the underlying streams,
a video summarization algorithm is formulated on the basis
of salient segments (Section VII) and applied on structured,
multimodal movie data. The algorithm is content-indepen-
dent and scalable, ranging from short movie clips to entire
movies, and can be generalized to other types of audiovisual
data. Summarization precision results, as a function of skim
duration and fusion scheme, are presented on a new database
of Academy-Awarded films, annotated with respect to salient,
semantic, and aesthetic content (Section VIII). The quality of
the produced summaries is additionally evaluated using subjec-
tive user ratings related to content aesthetics (enjoyability) and
coverage (informativeness) (Section IX).

II. BACKGROUND/RELATED WORK

Video summarization: Summaries of video data may be
static or dynamic; personalized, domain-dependent or generic;
interactive or unsupervised; based on objects, events or per-
ceptual features, such as user attention. An extensive survey
on methods and taxonomies from the vast literature on video
abstraction and summarization can be found in [18] and de-
tailed field overviews in [15], [16]. Early works on automatic
skimming were primarily based on extracting low-level, visual
features, such as color or motion [19], often complemented
by mid-level cues. Representative key-frames were selected
using supervised and unsupervised classification [20], [21], sin-
gular value decomposition [22] or probabilistic inference [23].
Summarization has been also approached in a semi-automatic
manner, following video-editing principles, through semantics
mining, manual editing and abstraction effects [24].
Attempts to incorporate multimodal and/or perceptual fea-

tures have led to the design and implementation of various
systems that take into account more than the visual stream of a
video [25]. IBM’s CueVideo system [26] automatically extracts
a number of low- and mid-level visual and audio features
and clusters the visually similar shots. The Informedia project
[27] and its offsprings combined speech and image processing
with natural language understanding to automatically index
video for intelligent search and retrieval [28]. Gaining insight
from viewer behavior, user attention models were developed
to guide the search for salient video segments [12]. Besides
visual saliency, additional cues (e.g., motion, face, camera, and
audio attention) have been sought in order to capture salient
information, detect important video segments, and compose a
summary [10]. Attention values were also coupled with scene
and shot detection, for example, through partitions on graphs
modeling video structure [11].
Visual attention and image saliency: Visual saliency and

its computational representations (i.e., image saliency maps)
have been the subject of efforts to model computationally the
neural basis of biological attention [6], [7]. Bottom-up models,
in which image regions are selected based on their distinctive
physical feature properties, or saliency, arguably have been the
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most popular. This is supported by observations that saliency is
related to a region’s visual conspicuity and can predict gaze and
fixation allocation [29]. In most cases, the objective is the notion
of a centralized spatial saliency map, where each image location
is assigned a stimulus conspicuity or saliency value [7]. In an
evaluation study of image saliency methods [30], a soft distinc-
tion is drawn in biologically inspired, purely computational and
statistical/information-theoretical approaches.
Cues for visual saliency have been sought in low-level (i.e.,

intensity, color, texture, motion orientation, or size distribu-
tions) and mid-level features (i.e., edges, shapes, and contours)
and in some approaches high-level object or scene parsing [7],
[31], [32]. An in-depth review on the elementary visual cues
that can infuse saliency and guide the visual search is given
in [33]. Besides spatial contrast, a number of methods rely
on frequency or phase-selective tuning of the saliency map
[34], [35]. In addition, several information-theoretic measures
of saliency have been based on the distributions of features
within and across local image patches and neighborhoods.
Such measures include entropy [36], self-information [37],
mutual-information [38] and spatial Bayesian surprise [39].
The equivalent of a saliency map for image sequences is a

spatiotemporal map [35]. To capture the dynamics of visual
scenes, a video sequence is represented as a solid in the 3-D
space. Saliency volumes are then computed through feature
competition at voxel level and optimization with inter- and
intra-feature constraints [40], [41].
Aural attention and audio saliency: The equivalent

bottom-up component of auditory attention is due to temporal
and spectral cues of the acoustical stimuli [3], [42], [43].
These are related to primitive sound features such as loudness,
frequency, direction, and their temporal or spatial contrast
in an acoustic scene [5], [43], which are also involved in
higher level processing, e.g., parsing and recognition, of the
acoustical stream. For example, auditory speech separation
employs timber, pitch, and spatial location [43], while speaker
identification relies also on accent and intonation [3].
Following the distinction in [3], attention to acoustical

streams may be spatial, towards different sources that need
to be localized [42], [44] or featural, nonspatial, towards
distinctive acoustical features within each stream [10], [45],
depending on the demands of the auditory task. The former
implies the construction of spatial saliency maps, the latter the
formation of temporal saliency streams. In addition, featural
salient segments signify the temporal boundaries of audio
events [46]. Models of auditory attention have been previously
used to simulate psychophysical tasks and applied to audio
analysis systems, such as grouping and stream segregation
[42], sound source localization, auditory scene analysis [8],
soundscape design [44], prominent syllable and word detection
[45], change or event detection, and video summarization.
Building on the analogies of early visual and auditory

processing, bottom-up, auditory saliency maps of an acoustic
scene were developed inspired by the visual paradigm [8].
The auditory spectral representation is processed as an image,
by extracting multiscale features (intensity, frequency and
temporal contrast, orientation). Pyramidal decompositions in
isotropic and oriented bands give rise to feature maps that are
subsequently combined across-scales to an integrated saliency
map [44], [45]. Saliency maps can be reduced to a saliency

stream by across-frequency integration or maximization. In
addition, top-down, biased selection has been included in
auditory attention models in the form of task-dependent control
mechanisms [45] or attentional switching [44].
For the case of speech signals, salient features have been

sought to micro-modulations in the envelope and phase vari-
ations of fundamental, nonstationary AM-FM components.
These variations were employed for extracting various modula-
tion-inspired representations like formant tracks and bandwidth
[47], dominant components [48] and coefficients of energy-fre-
quency distributions [49].
Text saliency: The saliency of language and text has been

studied extensively for a wide range of applications, most no-
tably text summarization. The various features proposed for es-
timating saliency include: word frequency, term frequency-in-
verse document frequency (tf-idf) [50], part-of-speech tags [51],
discourse structure [52], ontological relationships [53], and lex-
ical centrality in semantic graphs [54]. In recent, closed-loop
approaches, models of saliency are trained from annotated text
corpora using machine-learning algorithms [55]–[57].

III. AUDIO ANALYSIS

We approach saliency computation in an audio stream as a
problem of assigning a measure of interest to audio frames,
based on spectro-temporal cues. Applying the amplitude modu-
lation—frequency modulation (AM-FM) speech model [58] to
generic audio signals, where multiple sources are added linearly
(temporal overlap) or concatenated (auditory streaming) [59],
audio features are extracted through signal instantaneous ampli-
tude and frequency. The importance of amplitude and frequency
changes for aural saliency and auditory scene analysis has moti-
vated a variety of studies where subject responses are measured
with respect to tones of modulated frequency or loudness [3],
[5], [8]. Amplitude and frequency modulations are also related
to temporal acoustic micro-properties of sounds that are useful
for auditory grouping [59] and recognition of audio sources and
events. In the proposed model, saliency is quantified through
the parameters of elementary AM-FM components, separated
in time and frequency. An abstracted representation is obtained
by tracking the components with maximal energy contribution
across frequency and time.
The input audio is processed as a sequence of signal frames,

with the window length defining the scale of the representation,
e.g., instantaneous (sample-wise) or set to match the associated
visual modality rate (frame-wise). Frames are decomposed to
a set of frequency bands; each band is modeled by an AM-FM
signal and further decomposed to instantaneous energy, ampli-
tude, and frequency signals. We are modeling salient structure
in the signal level, as opposed to the context level in previous
approaches [10], thus approaching saliency in a more generic,
context-independent way.

A. Audio Modeling

In this work, an audio source is either the physical signal-pro-
ducing medium or a specific semantic part of the audio stream
(i.e., speech, music, sound effects, natural and artificial sounds,
or background/enviromental noise). A signal from such a source
is modeled by a linear mixture of nonstationary sinusoids
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modulated in frequency and amplitude, i.e., a multicomponent
AM-FM signal

(1)

where and are the instantaneous amplitude and phase sig-
nals of component . In the most general case, we
assume a fixed tessellation in subcomponents. Each signal

is a real-valued amplitude- and frequency-modulated si-
nusoid of the form with time-varying en-
velope and instantaneous frequency . Am-
plitude accounts for subtle envelope variations in , while the
frequency accounts for small-scale instanta-
neous deviations from a carrier frequency .
For a complex-valued sinusoid , de-

modulation in amplitude and frequency can be approximated via
and [47].

For real signals, this involves construction of the analytic
signal through the Hilbert transform, which requires a longer
time window and results in errors related to approximating the
quadrature signal. An approach of comparable modeling error,
but reduced complexity and improved temporal resolution is
based on the Teager–Kaiser energy operator

(2)

and the energy separation algorithm (ESA) [47], [58], [60]. Ap-
plied to , gives with negligible ap-
proximation error, under realistic constraints [58]

, i.e., the instantaneous energy of a source of oscilla-
tions of amplitude and frequency . This energy is sep-
arated to its amplitude and frequency components by the energy
separation algorithm using on the signal and its first deriva-
tive. Signal is thus described by the set of amplitude, fre-
quency, and energy signals .
For a multicomponent AM-FM of the form (1), the model

requires separation of in a set of narrowband signals
for the energy separation constraints to hold. A global and

a priori separation is achieved by bandpass filtering through
a linearly-spaced set of frequency-tuned filters. Gabor filters
have optimum time–frequency localization and their complex
responses come in quadrature pairs

(3)

where determines the temporal support and filter bandwidth
and the central frequency. Assuming that a component in-
stantaneously dominates a filter’s response ,
its model parameters can be estimated by demodulating the
output directly [60]. This results in a -dimensional
time-varying representation of the audio signal

(4)

If we additionally require that a single component dom-
inates locally the signal spectrum, we obtain a represen-
tation in terms of the dominant modulation component

by maximizing an energy cri-
terion over the -dimensional component space [48] as

(5)

A criterion related to component saliency is the short-term
energy operator response of the bandpassed signals, estimated
over local windows as

(6)

where is a Gaussian window of time scale . The domi-
nant component’s local energy, amplitude, and frequency yield
a reduced 3-D time-varying signal representation

(7)

B. Audio Features

A discrete-time audio signal is modeled using
discrete AM-FM subcomponents whose instantaneous am-

plitude and frequency signals are and
, respectively. The model parameters are estimated

from the outputs of bandpass filters, using convolution with
real Gabor filters, a discrete-time energy operator

, and the associated discrete ESA, at
an almost instantaneous time resolution [58].
Representation in terms of the dominant modulation com-

ponent is obtained by maximizing per analysis frame the dis-
crete operator , in the -dimensional energy space. For each
frame of length , the dominant modulation component is
the maximum energy response, averaged over the frame

, given as

(8)

where is a moving average filter and the filter impulse
response. The dominant energy filter

is submitted to demodulation via ESA and the in-
stantaneous signals are averaged over frame duration to derive
the dominant amplitude and dominant frequency features

(9)

Overall, each analysis frame yields average measurements for
the source energy, instantaneous amplitude and frequency from
the filter that captures the prominent modulation components.
The resulting feature vector

(10)

is a low-dimensional descriptor of signal properties related
to level of excitation, rate-of-change, frequency content and
source energy (Fig. 1).

C. Audio Saliency

A temporal index of auditory saliency is constructed by inte-
grating the feature values of (10) in a single representation. The
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Fig. 1. Audio stream waveform (left-top) with audio saliency annotation and spectrogram (left-bottom) using the employed audio analysis parameters (15-ms
windows, 7.5-ms overlap). Horizontal lines denote the filterbank (25 filters, 400-Hz bandwidth) central frequencies, i.e., in (3). Dominant modulation features:
energy (solid line) and amplitude (dashed line, right-top); frequency (solid line) and frequency of the dominant filter (black dots) (right-bottom). Audio
data are 300 frames (12 s) from film “Chicago,” containing music, singing, and dialogue.

rationale is to build a data-driven, time-varying saliency func-
tion that resonates with the sensory-level attention invoked to
a listener of the audio stream. The features extracted and se-
lected through the audio model quantify spectral and temporal
saliency from fundamental modulation structures. Our hypoth-
esis for this modulation-based saliency is to be correlated to the
bottom-up attention and listener fixation to parts of an audio
signal.
In accordancewith the overall bottom-up framework, an early

integration scheme is applied. For low-level feature fusion, we
define a saliency measure per analysis frame
on the space spanned by the audio feature vectors. An intuitive
choice of a weighted linear mapping

(11)

where are positive scalars that sum to one
provides a mid-level representation over that will depend on
feature normalization and the weighting scheme.
Features are normalized with respect to their value range in

order to theoretically ensure a mapping to and compensate
for the difference in their dynamic range. Normalization is per-
formed by least squares fitting of independent feature values to

over a long-term window . The choice of can be as-
sociated with scale, auditory memory, and temporal integration
of the attentional selection process, in the sense that features re-
tain their relative variation across a finite time extension. For
large durations of inputs, for example, the audio channel from
a full-length film, the normalizing window can be defined by
logical, structural, or thematic units. In this context, global nor-
malization can be suboptimal if a listener’s attention thresholds
are progressively adapted, e.g., by comparing new representa-
tions to short-term memory.
The weighting scheme controls the type and relative contri-

bution of each feature. It can be fixed or time-adaptive, incor-
porate priors on feature significance, or obtained through super-
vised or semisupervised learning. A selection of constant, equal

weights provides the baseline; a uniform average of the normal-
ized features. Alternatively, assuming independent normal dis-
tributions for each, we account for feature uncertainty by set-
ting the weights inversely proportional to feature variance, i.e.,

. This is a theoretically semi-optimal scheme under
a weak probabilistic fusion framework [61] and provides the
means for adaptivity across time with the variance estimated in
local windows of fixed or varying duration.
The developed audio saliency representation is a continuous-

valued function of time, constrained in by the design of the
fusion norm and formed through an unsupervised, bottom-up
approach. It constitutes a 1-D temporal saliency map, conceptu-
ally similar to spatial saliency for images (2-D maps) [30] and
spatiotemporal saliency maps (3-D volumes) for videos [40].
Schemes for fusion, normalization, weighting, and adaptation
will be further discussed in Section VI.

IV. VISUAL ANALYSIS

We define saliency computation in image sequences as a
problem of assigning a measure of interest to each visual unit.
This means that a saliency measure is produced by taking
into account the actual spatiotemporal evolution of the input.
Inspired by theories of grouping and perceptual organization
we propose a model based on a volumetric representation of
the visual input where features are grouped together according
to several criteria related to Gestalt laws.
The input is a sequence of frames represented in our model

as a volume in space-time. This volume is decomposed into
a set of conspicuity features, each decomposed into multiple
scales. Voxel interactions are allowed in three different ways:
1) intra-feature (proximity), between voxels of the same fea-
ture and same scale; 2) inter-scale (scale), between voxels of the
same feature but different scale; and 3) inter-feature (similarity),
between voxels of different features. We implement this kind of
interactions through global minimization of an energy, which
is strongly related to Gestalt’s figure/ground separation, since
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the background is continuously suppressed after each iteration.
The stable solution of the energy minimization leads to the final
saliency volume. It is important to note that this formulation
allows for selective enhancement of features rather than naive
smoothing of conspicuous features. Broadly speaking, the con-
straints enhance coherency of similar and neighboring voxels
according to each of the criteria.
Let be a volume representing a set of consequent input

frames, defined on a set of points , where is
an individual space-time point. Points form a grid in
the discrete Euclidean 3-D space defined by their coordinates.
Under this representation, point becomes the equivalent to a
voxel in this volume and is the value of the volume at
. is decomposed into a set of conspicuity volumes with

corresponding to three different features, namely
intensity, color, and orientation. Each conspicuity volume is fur-
ther decomposed into multiple scales and a set is
created with and representing a
Gaussian volume pyramid. The final saliency distribution is ob-
tained by minimizing an energy function composed of a data
term and a smoothness term :

(12)

The data term models the interaction between the observation
and the current solution, while the smoothness term is composed
of the three constraints.

A. Visual Features

In order to establish a common encoding and allow in-
teraction between different features, each of the volumes
participating in the energy minimization is initialized by
conspicuity and not by pure feature value. Such encoding
establishes a common conspicuity range among all features
that makes them comparable. This means, for example, that
the most conspicuous voxel in the intensity volume must have
the same value as the one in the color volume. Intensity con-
spicuity is obtained by applying to the intensity, given by

, where are the color components of
volume a local contrast operator that marks a voxel as more
conspicuous when its value differs from the average value in
the surrounding region:

(13)

where and is the set of the 26-neighbors of . The
26-neighborhood is the direct extension in 3-D of the 8-neigh-
borhood in the 2-D image space.
Color conspicuity is based on the color opponent theory that

suggests the control of color perception by two opponent sys-
tems: a blue–yellow and a red–green mechanism. Such spatial
and chromatic opponency exists for the red–green, green–red,
blue–yellow, and yellow–blue color pairs in human primary vi-
sual cortex [62], [63]:

(14)

with , , ,
and .
Orientation is computed using spatiotemporal steerable filters

tuned to respond to moving stimuli. The responses are ob-
tained by convolving the intensity volume with the second
derivatives of a 3-D Gaussian filter and their Hilbert trans-
forms . The quadrature response is taken to eliminate phase
variation. More details are given in [64]. Energies are computed
at orientations defined by the angles related to the three dif-
ferent spatiotemporal axes. In order to get a purer measure, the
response of each filter is normalized by the sum of the consort
and orientation conspicuity is computed by

(15)

B. Energy Formulation

Each of the conspicuity volumes encodes the saliency of
the contained voxels according to the corresponding feature
only. These volumes should interact in order to produce a single
saliency measure for each voxel. The proposed model achieves
this through a regularization framework, whereby conspicuity
volumes compete along a number of directions, namely in-
teraction among voxels at the intra-feature, inter-scale and
inter-feature level. As discussed above, the different interactions
are implemented as a competition modeled by energies inspired
by theGestalt laws. Specifically, proximity and closure laws give
rise to the intra-feature constraint, according to which voxels
that are located near each other tend to be part of a group, and
small gaps are closed due to the induced forces. The similarity
law is related to all energies, since voxels similar in terms of
intra-feature, inter-feature and inter-scale value tend to group.
Finally, the common fate law is related to the entire minimiza-
tion approach which produces space-time regions that can be
perceived as coherent and homogeneous. Hence, we expect that
voxels conspicuous enough to pop out in all dimensions will
become more salient during the minimization process.
The data term, , preserves a relation between the observed

and initial estimate in order to avoid excessive smoothness of
the result, since the energies involved in tend to smooth the
visual input according to different criteria. The constraint is for-
mulated as an energy relating the observed to the initial voxel
values. For a set of conspicuity volumes , the data term is de-
fined as

(16)

where is the initial estimate, ,
, and . The sum limits are omitted for

simplicity.
The smoothness term is formulated as

(17)

where denote the intra-feature, inter-feature, and
inter-scale constraints, respectively. models intra-feature
coherency, i.e., defines the interaction among neighboring
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Fig. 2. Sample video frames (top) and corresponding color-encoded saliency maps (bottom) from movies “Lord of the Rings I” (left) and “300” (right).

voxels of the same feature, at the same scale and enhances
voxels that are noncoherent with their neighborhood:

(18)

produces small spatiotemporal blobs of similar valued
voxels. models inter-feature coherency, i.e., it enables
interaction among different features so that voxels being con-
spicuous across all feature volumes are grouped together and
form coherent regions. It involves competition between a voxel
in one feature volume and the corresponding voxels in all other
feature volumes as follows:

(19)

models inter-scale coherency among ever coarser resolu-
tions of the input, i.e., aims to enhance voxels that are conspic-
uous across different pyramid scales as

(20)

Voxels that retain high values along all scales are more salient.
This effect is in conformance also to the scale saliency definition
proposed by Kadir and Brady [36].

C. Energy Minimization

To minimize (12), we adopt a steepest gradient descent algo-
rithm where the value of each feature voxel is updated along a
search direction, driving the value in the direction of the esti-
mated energy minimum

(21)

(22)

where is the iteration number, is the learning rate and a
momentum term that controls the algorithm’s stability. The two
parameters are important both for stability and speed of conver-

gence. Practically, few iterations are enough for the estimate to
reach a near optimal solution.
Equation (22) requires the computation of the energy partial

derivative

(23)

where , , and with
the three energy constraints of the smoothness

term. The detailed analytic derivation of the partial derivatives
of and can be found in [41].

D. Visual Saliency

The convergence criterion for the minimization process is de-
fined by , where is a small constant.
The output is a set of modified conspicuity multiscale volumes

and saliency is computed as the average of all vol-
umes across features and scales as follows:

(24)

A more detailed description of the method for different applica-
tions can be found in [40] and [41]. Fig. 2 depicts the computed
saliency on three frames of the movies “Lord of the Rings I” and
“300”, where higher values correspond to more salient regions
(e.g., the shining ring or the falling elephant).
In order to create a single saliency value per frame, we use

the same features involved in the saliency volume computation,
namely, intensity, color, and spatiotemporal orientation. Each of
the feature volumes is first normalized to lie in the range
and then point-to-point multiplied by the saliency one in order
to suppress low-saliency voxels. Each frame is assigned a single
saliency value through the weighted average:

(25)

where the second sum is taken over voxels of saliency volume
and stands for the th feature volume at the first

pyramid level.

V. TEXT ANALYSIS

Text saliency scores are assigned on the basis of empirical
word-level relative importance values. As a preprocessing step,
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spoken language information in the audio stream has to be au-
tomatically recognized or manually annotated. In addition, the
produced transcripts have to be time-aligned with the audio
stream, in order to establish a temporal word-frame correspon-
dence. In this work, we utilize the annotation available in the
subtitles of movies and commercial video streams, although the
proposed approach can be also applied to the output of an auto-
matic speech recognizer.

A. Audio Segmentation Using Forced Alignment

Although subtitles provided with commercially released
video material are roughly time aligned with the audio stream,
the synchronization is not perfect. To correct timestamp bias
and achieve accurate word-level alignment, we perform forced
segmentation on the audio stream using the speech transcript
and phone-based acoustic models, i.e., an automatic speech
recognition (ASR) system. The original timestamps in the
subtitles are used to find the approximate location of the text in
the audio stream in order to initialize the forced segmentation
procedure. We avoid losing relevant speech segments in the
audio stream by adding a small fixed amount of time before the
start time and after the end time of the subtitle timestamps.
In this work, we use the Sonic ASR toolkit [65] and gen-

eral-purpose acoustic models, i.e., content-dependent triphone
hidden Markov models trained on clean speech. The grammar
used is based on the phonetic transcription of the corresponding
text in the subtitles with garbage models in the beginning and
end of each sentence. Informal evaluation of the forced seg-
mentation results showed good performance on approximately

of the sentences analyzed. Errors occurred for portions of
the audio stream where speech overlapped with loud music or
noises. Audio alignment results can be further improved by em-
ploying acoustic model adaptation techniques [66] or acoustic
modeling of various noise types [67], [68].

B. Syntactic Text Tagging

The time-aligned transcripts are analyzed using a shallow
syntactic parser that (mainly) performs part-of-speech (POS)
tagging. We employ a decision-tree-based probabilistic tagger
[69], although in principle any POS tagger can be used. Text
saliency scores are assigned to each word based on the POS
tag of that word. The motivation behind this approach is the
well-known fact that (on-average) some POS convey more in-
formation than others. The most salient POS tags are proper
nouns, followed by nouns, noun phrases, and adjectives [70].
Verbs can specify semantic restrictions on their pre- and post-ar-
guments, which usually belong to the aforementioned classes.
Finally, there is a list of words (often referred as stop-words)
that have very little semantic content.
POS taggers contain anywhere from 30 to 100 different

tags. We have grouped those into six POS classes to simplify
the text saliency computation process. The first (and most
salient) class contains the proper nouns, e.g., names and cities.
The second contains common nouns, the third contains noun
phrases, the fourth adjectives, the fifth verbs, and the sixth
class the remaining parts of speech, e.g., pronouns, preposi-
tions, conjunctions, and adverbs. The following weights are
assigned to each of the six classes: .
Note that scores are normalized between 0.2 and 1, i.e., even

“stop-words” are assigned a small weight. The somewhat
arbitrary assignment of POS tag classes to saliency scores
was chosen based on observations of linguistic experts [70],
however, the weights can be learned from saliency annotations
or scores assigned to movie dialogues.
All in all, each word is assigned a saliency score based on the

POS category assigned to it by the tagger. For example, the POS
label and assigned weights for two sentences from “Lord of the
Rings I” are

Note how proper nouns (PNs), e.g., “Sauron”, “Mordor”, are
very salient and are assigned a score of 1, common nouns (NN)
a score of 0.7, noun phrases (NP) and verbs (VBZ, VVG) a
score of 0.5, while “stop-words” (IN) are assigned a score of
0.2. The noun phrases (NPs) tags produced by the parser are
consistent with the (phrase-level) Penn–Tree bank tags. Since
NPs contain a common noun and typically one or two words
of lower saliency (e.g., determiner, pronoun, adjective) they are
assigned a midrange score of 0.5.

C. Text Saliency

Based on the assignment of frames to words from the forced
segmentation procedure and the word saliency scores assigned
by the POS tagger, a text saliency temporal curve is computed
as follows:

(26)

where is the frame index, is the POS class index, is the
saliency score for class , and is an indicator function
that is 1 if frame is aligned with a (portion of a) word in POS
class , else 0.

VI. MULTIMODAL FUSION

Fusion of different modalities and their representations can be
performed at three levels: 1) low-level fusion (i.e., feature vec-
tors); 2) middle-level fusion (i.e., saliency curves); or 3) high-
level fusion (i.e., curve features, salient segments, and events).
The process of combining feature or saliency curves can in gen-
eral be linear or nonlinear [10], [71], have memory, or vary with
time. In addition, representations from heterogeneous modali-
ties may require preprocessing, normalization, and alignment
prior to integration. We consider and evaluate experimentally
different fusion schemes within and across modalities. Specif-
ically, two problems are examined. Intramodal fusion: Fea-
tures for eachmodality are normalized and combined to produce
modality-specific saliency curve (Sections III–V). Intermodal
fusion: Saliency curves from different modalities are combined
in a composite, multimodal saliency. The discussed methods for
saliency fusion, normalization and adaptation have been also ap-
plied for the intramodal, feature integration problem.
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A. Saliency Integration

The individual saliency cues are combined in a multimodal,
audio-visual-text saliency using frame-level fusion

(27)

Variants of fusion norm frameworks are considered and vali-
dated experimentally, namely: 1) weighted linear combinations
with fixed, equal or unequal, weights; 2) variance-based
weights, inversely proportional to each modality’s uncertainty

; 3) nonlinear norms (max, min); and 4)
time-adaptive, dynamic weights, using syntactic video struc-
ture (e.g., scene and shot changes). For intramodal (audio and
visual) fusion, we used the experimentally optimum of the
same variants of baselines (11) and (25).
Linear fusion: The straightforward and most intuitive

scheme sets the information gain of the multimodal curve
equal to the sum of the unimodal gains through a memoryless,
weighted average of audio, visual, and text saliency values

(28)

In general, the weights can be unequal, time-varying, adaptive,
depending on priors such as the uncertainty of the feature
streams etc. Assuming that the individual saliency features are
normalized in and the weights form a convex combina-
tion, linear fusion gives a multimodal saliency in . Our
baseline system (LE-F) is based on linear fusion with all three
saliency curves equally weighted.
Variance-based fusion: Each saliency stream is weighted in-

versely proportional to its variance as

(29)

The linear scheme (28) is optimum (to a second-order approxi-
mation) under the maximum a posteriori (MAP) criterion if the
monomodal MAP estimates are close and the weights equal the
negatives of the second-order derivatives of the monomodal
posteriors at their maxima [61]. If the underlying distributions
are Gaussian, then it is also exact and the weights become in-
versely proportional to the variances. The same variance-based
scheme (VA-F) can also be applied to feature combination
within each modality for intramodal fusion.
Nonlinear fusion: Two nonlinear fusion schemes are consid-

ered for intermodal (resp. intramodal) fusion, namely the min-
imum (MI-F) and maximum (MA-F) rules applied on saliency
(resp. feature) values at each frame:

(30)

-divergence: All of the above linear and nonlinear fusion
schemes can be considered as special cases of the so-called
-mean proposed in [72] for integration of probability distri-
butions. Let be nonnegative quantities, i.e., saliency values;
then, for , their -mean is defined by

for
for

(31)

where are given weights and form a convex combination.
For , we obtain, respectively, the
maximum, weighted arithmetic mean, geometric mean, har-
monic mean and minimum of the values . In [72] it is shown
that the -mean is optimum in minimizing the -divergence.

B. Normalization Scale and Weight Adaptation

Movies are structured hierarchically in progressively larger
units of increasing duration (e.g., frames, shots, scenes, set-
tings, and thematics). A global normalization of feature and
saliency values for fusion assumes a mode of prolonged,
attentional viewer fixation around the global maxima of the
resulting curves. To introduce locality in feature scaling, three
linear schemes are considered based on semantically-chosen
normalization windows: 1) global normalization (GL-N); 2)
scene-based normalization (SC-N); and 3) shot-based nor-
malization (SH-N), with values scaled independently across
movies, scenes and shots respectively. For SC-N (resp. SH-N)
normalization, we impose the same peak-to-peak variation
for all scenes (shots) in a movie clip. Other schemes such as
nonlinear (e.g., log) scaling or root-mean-square normalization
across shots or scenes may be plausible options but are not
considered here. In accordance, the same locality is considered
for dynamic adaptation of the fusion rule, through weight
updating across global or local windows. In the case of the
inverse-variance weighting scheme of (29), the variance of
each stream can be computed at a global (VA-GL-F), shot
(VA-SH-F) or scene (VA-SC-F) level.

VII. VIDEO SUMMARIZATION

We present a dynamic summarization algorithm that selects
the most salient audio and video subclips in order to produce
a coherent and informative summary. Clips are selected based
on their attentional capacity through the computed multimodal,
audio-visual-text (AVT) saliency. One approach for creating
summaries is to select, based on a user- or application-defined
skimming index, portions of video around key frames and align
the corresponding “audio sentences” [10]. Here, summaries are
created using a predefined skimming percentage.
First, a smoother, coarse attention curve is created using me-

dian filtering on the initial AVT saliency, since information from
key frames or saliency boundaries is not necessary. A saliency
threshold is selected so that a required percent of summariza-
tion is achieved. Frames with saliency value
are selected to be included in the summary. For example, for

summarization, , the threshold is selected so
that the cardinality of the set of selected frames

is of the total number of frames. The re-
sult from this leveling step is a video frame indicator function
for the desired level of summarization that equals 1,
, if frame is selected for the summary and 0 otherwise.
The resulting indicator function is further processed to form
contiguous blocks of video segments. This processing involves
eliminating isolated segments of small duration and merging
neighboring blocks in one segment. Finally, the selected clips
are tailored together using overlap-add (fade-in fade-out) for
both the audio and visual streams. More details are provided
in [13].
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Fig. 3. Saliency curves, multimodal fusion, and manual versus automatic seg-
ment selection for movie summarization (800 frames, scene from the movie
“300”). Key frames (top) correspond to the indicated saliency peaks.

Results presented in this paper use the following parameters,
for videos at a rate of 25 frames per second: a 41-frame me-
dian filter is used for saliency curve smoothing; selected clips
that are shorter than 20 frames long are ignored; selected clips
that are at most 10 frames apart are joined together; and fade-in
fade-out is applied over 10 frames. In Fig. 3, an example of indi-
vidual saliency curves and their multimodal fusion (linear with
equal weights) is shown for a short clip from the movie “300”.
Video frames associated with high saliency values (marked with
circles on the multimodal curve) are shown on top and seg-
ments selected from the median-filtered curve for the summary
( ) are shown at the bottom.

VIII. DATABASE

The Movie Summarization Database consists of half-hour
continuous segments from seven movies (three and a half hours
in total), namely: “A Beautiful Mind” (BMI), “Chicago” (CHI),
“Crash” (CRA), “The Departed” (DEP), “Gladiator” (GLA),
“Lord of the Rings—the Return of the King” (LOR), and
the animation movie “Finding Nemo” (FNE). Oscar-winning
movies from various film genres (e.g., drama, musical, action,
epic, fantasy, animation) were selected to form a systematic,
genre-independent database of acclaimed, high-produc-
tion-quality videos. In this paper, we present results for seven
movies, however the expansion and annotation of the database
is an ongoing task.
Movie clips were first manually segmented into shots and

scenes. A shot is defined as the interval between editing tran-
sitions (e.g., cut, fade) while a scene, is defined as a complete,
continuous chain of actions (shots) that occur at the same place

TABLE I
AVERAGE PERCENTAGE OF FRAMES LABELED SALIENT

TABLE II
AVERAGE (PAIRWISE) CORRELATION BETWEEN LABELERS

and time. The average shot and scene duration was 2.5 s and
3.5 min, respectively. Next, labeling of perceptual, semantic,
and affective content was performed, as follows.
1) Sensory information: monomodal (audio, visual) and mul-
timodal (AV) saliency of the sensory content, i.e., segments
that are, respectively, acoustically, visually or audio-visu-
ally interesting.

2) Cognitive information: the combination of sensory/per-
ceptual events and semantics/pragmatic events. It includes
the semantic information layer, i.e., segments that are
conceptually important as stand-alone sensory/semantic
events, henceforth referred to as audio-visual-semantic
events (AVS).

3) Affective information: both intended emotions and experi-
enced emotions have been annotated. More details on the
affective annotation and the associated emotion tracking
task are provided in [73].

Annotation was performed by three expert viewers using
ANVIL video annotation tool [74]. Movie segments that were
considered salient at the audio sensory (A), visual sensory (V),
audio-visual sensory (AV), and audio-visual sensory/semantic
(AVS) level were labeled in separate annotation runs. The
output of each run was a binary saliency indicator function.
Table I shows the (average) percentage of frames labeled as A,
V, AV, or AVS for each of the seven movies. To achieve a high
degree of annotation uniformity for this highly subjective task,
the annotators followed guidelines from a labeler’s manual on
how to perform the labeling of all individual layers. Table II
shows the average (pairwise) correlation agreement, which was
overall satisfactory, for each annotation layer and movie. Note
that the agreement is higher for the sensory (A, V, AV) layers
compared with the sensory-semantic AVS layer. However, the
ground-truth saliency indicator functions, used for evaluation
purposes in Section IX, consist of frames that have been labeled
salient by at least two labelers. Thus, despite the lower agree-
ment between annotators observed for certain movies, the final
saliency ground-truth was formed on the basis of consistently
labeled salient frames only.

IX. EVALUATION AND DISCUSSION

Here, we present objective (quantitative) and subjective
(qualitative) results for the proposed saliency representations
and video summarization algorithms. The different fusion and
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TABLE III
FRAME-LEVEL SUMMARIZATION PRECISION FOR FEATURE (AUDIO, VISUAL) AND SALIENCY (AUDIO-VISUAL-TEXT) FUSION, EVALUATED ON

MONOMODAL (A, V), MULTIMODAL (AV) AND MULTIMODAL-SEMANTIC (AVS) GROUND-TRUTH ANNOTATIONS

normalization schemes for multimodal saliency are systemati-
cally evaluated, with respect to frame-level precision, against
the annotated ground-truth and compared to learning-based
classification. The produced summaries are also qualitatively
evaluated in terms of informativeness and enjoyability.

A. Objective Evaluation of Fusion Schemes

We evaluate three normalization schemes, i.e., global
(GL-N), scene-level (SC-N), shot-level (SH-N), and six fu-
sion schemes, i.e., linear (LE-F), min (MI-F), max (MA-F),
inverse variance (VA-GL-F, VA-SC-F, VA-SH-F), using the
annotations of the movie database as ground-truth, on three
different tasks: 1) intramodal fusion of audio features into an
audio saliency curve (audio feature fusion), evaluated on audio
saliency ground-truth (A-A); 2) intramodal fusion of visual
features into a visual saliency curve (visual feature fusion),
evaluated on visual saliency ground-truth (V-V); and 3) in-
termodal fusion of audio, visual and text curves (AVT) into
multimodal saliency, evaluated on ground-truth of audio-visual
(AVT-AV) and audio-visual-semantic (AVT-AVS) annotations.
Results are presented in terms of frame-level pre-

cision scores for all tasks. Specifically, the automati-
cally-computed binary indicator functions on the output
of the summarization algorithm (Section VII) are com-
pared with the annotated database ground-truth. Precision,
i.e., the percentage of correctly detected salient frames
given the ground-truth labeling to salient/nonsalient frames

, best char-
acterizes the frame-level performance on these salient event
detection tasks. Note that, for the intramodal experiments
(audio feature and visual feature fusion), the saliency indicator
and associated summaries are produced using only the corre-
sponding modality features (audio and visual respectively).
Various percentages of summarization are considered, cor-
responding to different levels of decision thresholds on the
computed saliency curves.
Frame precision scores for intra- and intermodal fusion are

presented in Table III for summaries that include 20%, 33%,

and 50% of the original number of frames, and for the tasks
of audio feature fusion, visual feature fusion and audio-vi-
sual-text saliency fusion. All possible combinations among
normalization and fusion schemes are evaluated. Best results in
each task are shown in bold. There are two clear trends across
tasks and evaluation settings: 1) global normalization (GL-N)
significantly outperforms shot-level and scene-level normal-
ization schemes and 2) nonlinear minimum fusion (MI-F) and
inverse variance weighting (VA-GL-F, VA-SC-F, VA-SH-F)
outperform uniform linear combination (LE-F) and max fusion
(MA-F). For the remainder of this paper, we focus only on
the best performing normalization (GL-N) and fusion (MI-F,
VA-GL-F, VA-SC-F, VA-SH-F) schemes. Linear fusion (LE-F)
results are also reported as baseline.
In Fig. 4, frame precision results are shown as a function of

summarization percentage (ranging from 5% to 70%). Results
are shown for global normalization and the best performing
schemes for the intermodal and intramodal fusion tasks (same
as in Table III). For audio feature fusion, in Fig. 4(a), MI-F per-
forms best, while LE-F performs significantly worse compared
with the rest. All inverse variance schemes perform well, with
VA-SH-F being the best (performing close to MI-F). For visual
feature fusion, in Fig. 4(b), MI-F significantly outperforms
the similarly performing inverse variance and linear fusion
schemes. Note the low absolute precision scores achieved for
the visual task (compared to audio detection precision). Results
for multimodal saliency fusion are shown in Fig. 4(c) and (d)
on AV and AVS annotation, respectively. Relative scheme
performance is consistent in both: MI-F performs best, fol-
lowed closely by VA-SH-F, while linear fusion performs very
poorly. Note that (absolute) precision scores are higher in
Fig. 4(d) compared with those in Fig. 4(c), i.e., including con-
tent semantics in the evaluation improves saliency precision.
Although detection relies on low-level features, semantic infor-
mation might be sipping through from text saliency. Overall,
the VA-SH-F and MI-F schemes work very well for both
intramodal and intermodal fusion. Nonlinear min (MI-F) works
notably well for single modality fusion (e.g., visual), especially
for shorter summaries.
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Fig. 4. Frame-level summarization precision scores for (a) audio feature fusion, (b) video feature fusion, and (c), (d) multimodal (audio-visual-text) saliency
fusion. Multimodal fusion is evaluated on (c) audio-visual human annotation and (d) audio-visual-semantic human annotation.

Finally, we examine the relative performance of single
(A, V) and multiple modalities (AV, AVT) on a common
annotation layer, i.e., audio-visual-semantics (AVS), with
frame-level precision results presented in Fig. 6. Clearly,
the audio features provide the best stand-alone performance,
significantly higher than the visual ones. Fusing the audio-vi-
sual-text curves improves average precision, especially for
longer summaries, using six out of seven movies (shown here
for all seven).

B. Machine Learning

As a proof of concept, we consider a data-driven, machine
learning approach to monomodal and multimodal frame selec-
tion, where classifiers are trained using the frame-wise audio (A)
and visual (V) features, or pooled feature vectors for audiovisual
(AV) and audio-visual-text (AVT). The purpose of this baseline
is twofold: 1) to validate the efficiency of the proposed saliency
features, irrespective of the fusion scheme and 2) to serve as
a supervised learning-based benchmark for summarization via
frame selection.

Specifically, we employ the raw feature vectors of each
modality along with their first and second time derivatives com-
puted over three and five frames, respectively. Nearest neighbor
classifiers (NNR- )1 are trained per individual or multiple
modalities on the annotated saliency ground-truth (A, V, AV,
AVS) for a two-class classification problem (salient-nonsalient
frames). Each classifier output is thus an indicator function of
salient frames, that can be used to form learning-based sum-
maries. In order to select the frames that most likely correspond
to event candidates for a summary, results are reported using a
median-filtered version on the raw classifier output with window
of length . To obtain results for variable compression
rates, a confidence score is defined for each classification result,
i.e., each frame. We set that to be the fraction of the nearest
neighbors with labels in class 1 (salient events); this roughly
corresponds to the posterior probability of event class for that
frame; for details, see [75].
Frame precision results are shown in Fig. 5, for saliency

classification from audio on audio (A-A), visual on visual (V-V),

1Similar results can be obtained using Gaussian mixture models or Support
Vector Machine classifiers.
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Fig. 5. Frame-level NNR- classification precision using different (features-
annotation) salient class labeling for audio (A-A), visual (V-V), audiovisual
(AV-AV, AV-AVS), audio-visual-text (AVT-AVS).

Fig. 6. Frame-level summarization precision scores for audio saliency
(A-AVS), visual saliency (V-AVS) and audio-visual-text saliency curve
(AVT-AVS) using GL-N MI-F, all evaluated on audio-visual-semantic
annotation.

audiovisual on audio-visual-semantics (AV-AVS) and audio-vi-
sual-text (AVT-AVS). A sevenfold cross-validation method was
used in a leave-one-movie-out manner, i.e., NNR- models are
trained on six movies and tested on the seventh. The parameters
were empirically set to neighbors forNNRand s
for median filtering, by optimizing for audio classification ac-
curacy scores. In general, the precision scores achieved using
the classifiers are better than those from the bottom-up saliency
approach for themonomodal saliency (A) and (V) and the multi-
modal audiovisual (AV) schemes, on the expense of the need for
training and parameter-validation ( and ). However, results
from the fused, multimodal AVT curve (Fig. 6) are better than
classification on the pooled audio-visual-text feature vector.

C. Subjective Evaluation of Summaries

Summaries obtained for (five times faster than
real time) were subjectively evaluated by 11 naive and three
expert subjects in terms of informativeness and enjoyability on

TABLE IV
SUBJECTIVE EVALUATION OF AVT SUMMARIES AT RATE AND FRAME

PRECISION ON AVS ANNOTATION SHOWN FOR COMPARISON

a scale similarly to [10], [13] for six out of seven
movies of the database. In total, five automatically produced
summaries were used with global normalization (GL-N) and
the following fusion schemes: LE-F (baseline method), inverse
variance (VA-GL-F, VA-SC-F, VA-SC-F) and min fusion
(MI-F). In addition, an “expert” summary, manually created by
a movie production professional, was included in the evalua-
tion. The 14 subjects that participated in the study viewed the
original thirty-minute clip, for each of the movies, followed by
the six summaries (6 min each) in random order.
To better normalize the ratings, the following scale was

communicated to the subjects: poor between 0%–40%, fair
40%–60%, good 60%–75%, very good 75%–90%, and ex-
cellent 90%–100%. Average subjective informativeness and
enjoyability ratings for the five fusion schemes and the expert
summary are shown in Table IV for each of the six movies,
along with objective scores (frame-level accuracy evaluated on
AVS annotation) shown for comparison.
Expert summaries achieved very high subjective ratings, up

to 95% for both informativeness and enjoyability. Automatic
summaries also received high scores, up to 80%, but the perfor-
mance gap between manually and automatically created sum-
maries is large. This is expected since professionally created
summaries contain no artifacts such as abrupt changes in the
audio and visual stream and use high-level information (seman-
tics/pragmatics) to select the relevant subclips. High marks for
expert summaries might also be attributed to subject bias: pro-
fessional skims were clearly a class apart from the automati-
cally created summaries and subjects might have overempha-
sized this difference.
The best performing fusion scheme across all six movies

for subjective informativeness ratings is MI-F, followed by
VA-SH-F and LE-F. The results are consistent with objective
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evaluation results with the exception of LE-F that gets surpris-
ingly high subjective ratings (this could be due to the good
performance of LE-F for the visual stream that is perceptually
important). Note that performance is movie dependent, i.e.,
VA-SC-F and VA-GL-F also score well for certain movies. The
high (absolute) informativeness scores for fantasy/epic and
animated films (LOR, GLA, FNE) may be due to sharp scene
changes, crisp narration, high-intensity color motifs, and audio
effects. Low informativeness for CRA and CHI summaries
could be due to the long dialogue segments and music scenes,
respectively, that are hard to automatically summarize.
Subjective enjoyability scores are higher for VA-SH-F

and VA-SC-F fusion. Among the global fusion schemes
MI-F performs best followed by LE-F and VA-GL-F. Global,
nonadaptive fusion schemes tend to select short segments, re-
sulting in summaries that feel “choppy” or “fast-forward”-like.
VA-SC-F selects longer segments but might miss important
plot elements, thus often forming enjoyable skims that are not
necessarily very informative. An expert subject evaluated the
seventh movie (BMI) in terms of both informativeness and
enjoyability concluding that MI-F and VA-SH-F are the best
performing fusion schemes on both subjective qualities.
Overall, minimum and inverse variance fusion schemes per-

form best with respect to both informativeness and enjoyability
subjective scores. The performance in informativeness ratings
of linear fusion is somewhat surprising considering its poor de-
tection performance. Shot- and scene-based adaptive inverse
variance fusion performed best in terms of skim enjoyability.

X. CONCLUSION

A multimodal saliency curve integrating cues from the aural,
visual, and text streams of videos was proposed based on audio,
image, and language processing and hierarchical low-level
fusion. Used as an indicator function for attention-invoking
salient event detection, the developed representation formed
the basis for dynamic movie summarization under a scalable,
generic and content-independent algorithm. Summarization
performance was quantitatively and qualitatively evaluated on
a movie database with multilayer, multimodal saliency anno-
tation. Subjective evaluations showed that the saliency-based
video skims can have both functional and aesthetic value,
i.e., being informative and pleasing to the viewer. Among
the various explored feature normalization, adaptation and
fusion schemes, global normalization (GL-N), shot-variance
(VA-SH-F) and min-fusion (MI-F) schemes work very well
for both intra- and intermodal fusion. Min fusion proved
well-suited for cue integration within modalities, especially for
visual features and shorter summaries. Minimum and inverse
variance schemes performed best in terms of informativeness,
while adaptive shot- and scene-based inverse variance in terms
of enjoyability. Extensions of this work include: the develop-
ment of mid-level fusion algorithms, both inside and across
modalities, such as learning schemes and nonlinear feature
correlations; incorporation of higher-level features from movie
transcript information; and top-down modeling through movie
semantics, syntax, and structure for bridging the semantic gap.2

2Sample video skims and on-going evaluations can be found at http://cvsp.cs.
ntua.gr/research.
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