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Abstract

In this paper we present a prototype integrated robotic system, the I-Support bathing robot, that aims at supporting new aspects
of assisted daily-living activities on a real-life scenario. The paper focuses on describing and evaluating key novel technological
features of the system, with the emphasis on cognitive human-robot interaction modules and their evaluation through a series of
clinical validation studies. The I-Support project on its whole has envisioned the development of an innovative, modular, ICT-
supported service robotic system that assists frail seniors to safely and independently complete an entire sequence of physically
and cognitively demanding bathing tasks, such as properly washing their back and their lower limbs. A variety of innovative
technologies have been researched and a set of advanced modules of sensing, cognition, actuation and control have been developed
and seamlessly integrated to enable the system to adapt to the target population abilities. These technologies include: human activity
monitoring and recognition, adaptation of a motorized chair for safe transfer of the elderly in and out the bathing cabin, a context
awareness system that provides full environmental awareness, as well as a prototype soft robotic arm and a set of user-adaptive robot
motion planning and control algorithms. This paper focuses in particular on the multimodal action recognition system, developed
to monitor, analyze and predict user actions with a high level of accuracy and detail in real-time, which are then interpreted as
robotic tasks. In the same framework, the analysis of human actions that have become available through the project’s multimodal
audio-gestural dataset, has led to the successful modelling of Human-Robot Communication, achieving an effective and natural
interaction between users and the assistive robotic platform. In order to evaluate the I-Support system, two multinational validation
studies were conducted under realistic operating conditions in two clinical pilot sites. Some of the findings of these studies are
presented and analysed in the paper, showing good results in terms of: (i) high acceptability regarding the system usability by this
particularly challenging target group, the elderly end-users, and (ii) overall task effectiveness of the system in different operating
modes.

Keywords: Human-Robot Communication, Assistive Human-Robot Interaction (HRI), Bathing robot, Multimodal dataset,
Audio-gestural command recognition, Online validation with elderly users

1. Introduction

Advanced countries with well organized and modern health
care systems tend to become aging societies, according to World
Health Organization’s research on health and ageing [1]. The
percentage of population with special needs for nursing atten-
tion (including people with disabilities) is significant and due
to grow. Health care experts are called to support these people
during the performance of Activities of Daily Living (ADLs)
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such as dressing, eating and showering, inducing great finan-
cial burden both to the families [2] and the caregivers [3]. Great
research effort has been spent over the last decades [4, 5, 6, 7]
on studying and classifying the functional disabilities of older
adults and associating the latter with basic factors of morbidity
and mortality.

Personal care (showering or bathing), which is crucial for
a person’s hygiene, is included among the first ADLs, which
incommode an elderly’s life [7] and ADL difficulties in bathing
or showering represent the strongest predictor of subsequent in-
stitutionalization in older adults [8]. Older adults require as-
sistance in bathing or showering more frequently than for any
other ADL [9]. As bathing is a highly intimate ADL, the wish
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for independence from personal bathing assistance of caregivers
as long as possible is, however, not unusual in older adults [10].
An assistive bathing robot may thus represent an opportunity
for older adults with bathing disability to take care of them-
selves in bathing, to reserve their privacy, and reduce the burden
of caregivers.

During the last decades, an enormous number of socially
interactive robots have been developed constituting the field
of Human-Robot Interaction (HRI) an actual motivating chal-
lenge. The robotics society is attempting to tackle this chal-
lenge of unattended nursing by developing flexible and mod-
ular assistive devices that aim to cover the needs for support
of everyday tasks involved in the caring of frail people in both
in-house [11] and clinical environments. Specifically, devices
intended for this purpose involve either static physical interac-
tion [12, 13, 14], or are mounted on mobile platforms [15, 16].
The focus of these solutions lies on a specific body part (e.g.,
the head) and the support of disabled people on the perfor-
mance of ADLs with rigid manipulators. Furthermore, the lit-
erature reveals two commercial solutions presented in [17, 18],
which provide a safe, independent showering experience and
are equipped with soaping and water rinsing system. On the
downside, both of these solutions completely lack physical in-
teraction with the user and therefore lack some basic function-
alities of the bathing sequence such as scrubbing and wiping
the senior.

Direct physical interaction with frail seniors raises a multi-
tude of issues, including safety, reliability for human-robot in-
teraction and adaptability to the user’s needs and preferences.
Moreover, human body parts are curved and deformable and
their size and shape differs a lot from one person to another.
Unexpected body-part motion may also occur during the opera-
tion of the robot, increasing the risk of undesirable and possibly
harmful contact between the human and the robot. Therefore,
there are augmented human perception requirements, not only
in terms of sensorial information adequacy and accuracy but
also in terms of perception algorithms.

The first requirement cannot be addressed with simple prox-
imity sensors and monocular cameras, since both of these solu-
tions give poor sensorial feedback. Additionally, cameras in-
tended for visual capturing with RGB data during the shower
process, could raise some ethical issues in terms of privacy and
comfort, especially when an elderly person’s mental health de-
teriorates. On the contrary, the use of cheap depth or stereo vi-
sion cameras can provide rich information with good accuracy
[19, 20] and fulfill the requirements of a great variety of ap-
plications [21], without necessarily the use of RGB data. The
second requirement has actually led HRI to extend into other
research areas [22]. One such area concerns the development
of multimodal perception interfaces, required to facilitate natu-
ral human-robot communication, including not only visual sen-
sors, but also audio or inertial sensors [23]. The concept be-
hind these algorithms is to design interaction techniques that
will enhance the communication making it natural and intu-
itive, enabling robots to understand, interact and respond to hu-
man intentions intelligently. For a review, we refer the reader
to [24, 25, 26, 27, 28, 29].

Recently, researchers in computer vision proposed some ap-
proaches based on Deep Learning (DL) techniques, which have
presented very detailed results on human perception and specif-
ically body-part segmentation. The first fully-convolutional neu-
ral network (CNN) implementing semantic segmentation is [30]
and many more works [31, 32, 33, 34] followed with detailed
results, which are able to segment the human body parts at pixel
level or get a sparse pose of the body parts [35, 36] with close
to real-time performance.

Direct interaction of a robotic device with the environment
is a research subject that the robotics society is addressing for
many years. But the interaction with a human being is a much
more delicate action and is considered risky to be executed by
a rigid robotic manipulator, even if it is equipped with the most
sophisticated force/impedance control schemes. On the other
hand, the advantage of soft robots [37] lies on their inherent or
structural compliance, which gives them the ability to actively
interact with the environment and undergo large deformations
[38]. The term soft robotics is not only used to state that the de-
vices are made of soft materials, but also to underline the shift
from robots with rigid links (even hyper redundant ones [39]) to
bio-inspired continuum robots. Many continuum manipulators
have already been presented [40] with different types of actu-
ation, e.g., tendon based [41, 42] or a combination with pneu-
matic chambers [43, 44, 45]. The repertoire of actuation is not
only important for the motion dexterity and shape [46] of a soft
robot but also for stiffening [47, 48] and compliance, two prop-
erties that are crucial especially for physical interaction with a
human.

Contributions and overview
The I-Support project envisioned, and during its course ac-

complished, the development and integration of an innovative,
modular, ICT-supported robotic system that supports frail older
adults’ motion abilities. It successfully assists them to safely
and independently complete various physically and cognitively
demanding bathing tasks, such as properly washing their back
and their lower limbs. The main contributions of the work pre-
sented in this paper relate to the development and seamless in-
tegration of novel cognitive human-robot interaction technolo-
gies and to the evaluation of these technologies, as individual
modules as well as an integrated assistive robotic platform as a
whole, through a series of clinical validation studies in realistic
scenarios and under real operating conditions. These technolo-
gies include: human activity monitoring and recognition, adap-
tation of a motorized chair for safe transfer of the elderly in
and out the bathing cabin, a context awareness system that pro-
vides full environmental awareness, as well as a prototype soft
robotic arm and a set of user-adaptive robot motion planning
and control algorithms. Key features of this assistive robotic
platform, described in the paper, are supported by our state-of-
the-art pipeline for multimodal modeling and learning which
aims to enhance the human-robot communication making it nat-
ural, intuitive and easy to use, addressing aspects of smart as-
sistive HRI. An important contribution of the work presented in
this paper also concerns a new dataset that includes audio com-
mands, gestures, which is an integral part of human communi-
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cation [49], and co-speech gesturing data, which is still quite
limited in HRI [50], as well as a suite of tools used for data ac-
quisition. The end goal of our work is to support and maximize
safety, reliability and self-confidence for the frail users, as well
as to enable intuitive and transparent HRI which incorporates
reliable user intention recognition and real-time adaptation of
the reactive and supportive robotics system’s behavior. To that
end, two multinational validation studies were conducted in two
European clinical pilot sites for the evaluation of the various
functionalities of the I-Support system in the bathroom envi-
ronment of the selected care facilities. The validation studies
included elderly subjects and were carried out under realistic
conditions, showing good results and high acceptability by this
particularly challenging target group.

The remainder of this paper is structured as follows: in
Sec. 2 we describe the overall architecture of the I-Support
system. In Sec. 3 we go into more detail regarding the de-
veloped online audio-gestural recognition system for human-
robot communication, while in Sec. 4 we describe the adaptive
robotic motion planning method. The dataset collected during
the course of the project for modelling and offline evaluation is
presented in Sec. 5. Finally, in Sec. 6 two multinational valida-
tion studies conducted in two European hospitals are described,
showcasing promising results both regarding the system perfor-
mance but also the user satisfaction.

2. System Architecture

The I-Support system is depicted in Fig. 1(b), presenting an
installation in a clinical bathroom environment. The safety and
operational requirements emerging from two use cases were
taken into account. These use cases include two demanding
washing tasks in terms of mobility and force exertion for the
elderly, i.e. washing the back and the legs (lower limbs). Next,
we describe the main modules of the system, namely: the mo-
torized chair, the human-robot interaction module and the sen-
sors used for communication, the context awareness system, the
soft robotic arm and the overall software and process architec-
ture.

2.1. Motorized chair

A motorized chair has been employed inside the shower to
effectively assist the older adults during sit-to-stand and stand-
to-sit tasks and for safely transfer from the exterior to the inte-
rior space of the shower cabin. The design that was followed
was to adapt a commercially available chair due to the reduced
costs in comparison to custom designs. The selected chair was
adapted in accordance in order to provide 3DOF motion. More
specifically, a lateral translation adjusts the proximity of the
user to the robot and a vertical translation regulates the height
of the chair from the ground. Additionally, the rotational DOF
around its axis allows for easy accessibility in different bath-
room environments.

2.2. Human-Robot Interaction
For the purpose of human-robot communication and per-

ception, the I-Support system was equipped with Kinect V2
RGB-D cameras. These sensors are frequently used for vi-
sual analysis in assistive robotics [51], [52], [53] as they are
inexpensive, reliable and simple to waterproof. They are also
easy to mount on different surfaces and integrate software-wise.
Three Kinect sensors were placed in the bathroom as shown in
Fig. 1(b). This multi-view setup was designed so as to be able
to deal with the two main technological tasks of the I-Support
project, namely: a) audio-gestural command and action recog-
nition and b) body pose estimation for robotic manipulation,
considering various constraints (i.e. the size of the bath cabin,
the size and the placement of the chair and the soft-arm robot
base). For body pose estimation, it is required to have two dif-
ferent data streams for the analysis of the tasks under inves-
tigation (i.e. washing the legs and washing the back), which
are RGB and depth. These two streams should be registered,
in other words they have to be calibrated and aligned, to al-
low simultaneous processing. For the second task, i.e. (audio-
)gestural and action recognition, it is essential to have the RGB
stream in High Definition (HD) format, in order to retain the
region of interest (i.e. hand gestures or face) with acceptable
resolution.

To tackle the above mentioned tasks, we have employed
three Kinect V2 sensors that can provide all required visual and
audio information. These sensors can capture Full HD RGB
video at 30fps (frames per second), while the depth information
is recorded using the infrared camera embedded in the Kinect in
standard resolution. The color stream is captured in BGRA for-
mat of total 32bpp (bits per pixel) resulting in an uncompressed
image of about 8MB, while for the depth information the same
format of total 16bpp is employed (ca. 800KB). For the au-
dio/spoken command recognition task we experimented with
the audio stream that can be captured by the built-in multi-array
microphone of the Kinect sensors. Specifically, each Kinect in-
corporates an array of four individual microphones and the raw
audio information can be captured at 16000 Hz, with 32-bit res-
olution. Figure 2 shows examples of the data streams that are
acquired from the Kinect sensors.

In the early stages of system integration process the place-
ment of the Kinect sensors inside the bathroom was a challeng-
ing task. The constraints of the camera placement were the cap-
turing of all significant tasks involving HRI, while at the same
time satisfying the space limitations imposed by a conventional
bathroom in nursing homes. After extensively experimenting
with all possible positions the resulting sensor set-up was able
to capture the necessary information for both tasks, i.e. infor-
mation of the user’s back or legs for robotic manipulation, as
well as the hand gestures performed for communication with
the robot. Two of the sensors (Kinect sensors 1 and 2) were
placed inside the bath cabin, in order to capture the legs and the
back of the user during the different tasks, while a third camera
was placed outside the cabin, in order to capture the gestures
performed by the user during the task washing the back.

Specifically, during the task washing the legs Kinect 2 recorded
the user’s legs (including registered RGB and depth in SD res-
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Figure 1: Installation of the I-Support system in clinical environment for experimental validation. The devices constituting the overall system are presented. (a)
Amphiro b1 water flow and temperature sensor. (b) General aspect of the system showing the Motorized Chair, the Soft Robotic Arm and the installation of the
Kinect sensors (for audio-gestural communication). (c) Air temperature, humidity and illumination sensors by CubeSensors. (d) Smartwatch for user identification
and activity tracking.

Figure 2: Data streams acquired by Kinect 1 and 3: RGB (top), depth (2nd
row) and log-depth (3rd row) frames from a selection of gestures (“Tempera-
ture Up”, “Scrub Legs”), accompanied by the corresponding German spoken
commands waveforms (4th row) and spectrograms (bottom row) “Roberta,
Wärmer”, “Roberta, Wasch die Beine”.

olution), for body pose estimation and visual tracking of the
robot; while Kinect 1 was used by the audio-gestural and ac-
tion recognition module. Except for the streams in SD resolu-
tion, sensor 1 also recorded the color stream (RGB) in Full HD
resolution. In this configuration no video information was cap-
tured by Kinect 3. During the task washing the back, Kinect
1 recorded the back of the user (captured information includes
RGB and depth in SD resolution), while Kinect 3 recorded the
color stream, used for gesture recognition, in Full HD. In this
case, Kinect 2 was not required for capturing any data.

2.3. Context Awareness System (CAS)
In order to achieve a proper operational flow during a show-

ering task, it is important for the system not only to be able to
perceive and communicate with the user, but also to have full
environmental awareness. The latter can be achieved with the
aid of extra sensorial data coming from different types of sen-
sors. To begin with, Amphiro sensors, depicted in Fig. 1(a),
can provide useful data to the system regarding water flow and
temperature. Additionally, air temperature, humidity and illu-
mination are environmental conditions indicative for the user’s
safety and comfort. These values are obtained by sensors con-
structed by CubeSensors, shown in Fig. 1(c).

A smartwatch similar to the one presented in Fig. 1(d) is
integrated for user identification and activity tracking purposes
[54]. The identification process includes a data acquisition step
in which the user’s personal data (e.g. gender, age, size) and
preferences (e.g. showering duration, scrubbing patterns, body
parts to avoid etc.) are stored in a database. The identifica-
tion step implemented with the smartwatch includes a bar-code
scanning, through which the personalization data are passed to
the system and are taken into account for the bathing procedure.
Furthermore, activity tracking algorithms are employed to rec-
ognize falls or inactivity time periods, which are indicative for
emergency situations. The above mentioned data are available
not only to the I-Support system but also to the nursing staff via
an Android application, for monitoring and acting while emer-
gency situations emerge.

2.4. Soft Robotic Arm
A soft-arm has been developed to assist elderly people in

bathing tasks. Soft manipulators can be considered intrinsi-
cally safe thanks to the actuation technologies they are made of.
One of their main features is their compliant body that can de-
form passively to adapt to environment changes, thus reducing
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Figure 3: Construction stage of the Soft Robotic Manipulator. The modular
design provides the flexibility to modify the robot’s characteristics according to
the motion requirements.

the complexity of active control. The technical requirements,
in terms of desired reachable workspace and expected move-
ments have been guaranteed by a hybrid actuation strategy, as
summarized in [43]. Here, we briefly recap the arrangement of
the actuators in the modules (Fig. 3). Two different actuation
technologies are combined based on their working principle, in
order to achieve the desired motion behavior:

• Flexible fluidic actuators, which enable elongation and
omni-directional bending, exhibiting low accuracy;

• Tendon-driven mechanisms, which can shorten the mech-
anism and provide (redundant) omni-directional bending
with high movement resolution.

As a result, the system is capable of elongation/contraction and
bending movements, exploring a workspace compatible with
different activation patterns, while specific antagonistic activa-
tion sequences provide stiffness capabilities as well.

2.5. Software Architecture and Operational Flow

In order to accommodate the hardware devices mentioned
above along with the required real-time processing of the data,
we have designed and implemented a system that uses Linux
operating system in order to be able to handle multiple and
fully synchronized Kinect sensors in modular configurations.
With this architecture, the acquisition and the data processing
is made using the Robot Operating System (ROS) using a dif-
ferent Linux machine for each camera. For the ROS setup we
have used a master-client network approach, where a master
computer system controls all the other hosts where the various
sensors are connected.

Integration of the software nodes was accomplished in three
stages: (i) unit testing of ROS free software (i.e. mathematical
functions, non-ROS libs etc.), (ii) unit testing of ROS nodes
and creation of ROS packages, and (iii) integration of all pack-
ages and testing that they all work together according to specs
(topics, services, actions, loop rates). It was demonstrated that
ROS-network set up and data connectivity function success-
fully. The process for remote launching of the ROS nodes was
almost entirely automated through nested launch files.

2.5.1. Operational flow and Finite State Machine (FSM)
The operational flow of I-Support is composed by the robotic

task sequence of the washing activities. It also includes the ini-
tialization, the termination and the error handling actions of the
I-Support system. The robotic task sequence for the shower-
ing process has been derived by conducting a survey about the
senior users’ preferences on shower-activities, based on ques-
tionnaires that were answered by the seniors and by the care-
givers. The outcome of the survey indicated that the critical
body areas that should be washed by I-Support system are the
back of the user, the private parts, and the legs of the user. For
the pilot studies the consortium decided to test and validate the
washing of the legs and of the back of the user. Furthermore,
the information gathered by the end-users indicated that the
washing activities should be broken down into washing, rins-
ing and scrubbing. Also, it indicated that the Seniors would
like to use a small set of commands that will allow them to in-
tuitively interact with the robotic system and synthesize a com-
plete sequence of shower activities including actions such as
start, stop, pause and repeat the procedure. To this end, the fol-
lowing minimal set of audio-gestural commands was defined:
{wash − back,wash − legs, scrub − back, scrub − legs, rinse −
back, rinse − legs, start, halt, stop, repeat}.

The entire I-Support process is modeled as a sequence of
states and is supervised by a finite state machine (FSM) which
has been developed and modeled as a directed graph. Each node
of the graph corresponds to a state (for example washing, rins-
ing, scrubbing), and each directed edge corresponds to an event
that triggered a change of state and optionally some associated
action (for example the user requests through audio-gestural
commands to repeat or stop the washing). The FSM manages
the showering process by monitoring the progress of each state
and the generation of the state sequence until the termination
of the process. The actual sequence of states is not fixed, in-
stead it is flexible and varies depending on the external triggers.
The triggering events are generated either by the HRI module
(see Sec. 3), or by the robotic motion planner or by the Chair-
Controller; based on the triggering events different states se-
quences can be synthesized by the end-user. For example, an in-
dicative set of state sequence is: IDLE, CHAIR-IN, DOUSING,
SCRUBBING, SCRUBBING-PAUSED, RINSING, WASHING-
ENDED, CHAIR-MOVING-OUT. In between these states (which
represent washing activities) there are intermediate states that
represent robot kinematic transitions to a starting pose required
for the initiation of the next activity. The described sequence
is depicted in Fig. 4. Any emergency situations are handled by
the emergency stop state, to which all states can transition. The
state washing-ended is also accessed by all states in order to
facilitate handling of errors, such as the inability of the user to
complete the washing procedure or the abrupt wish to terminate
the process.

The FSM was implemented in ROS using the Smach pack-
age, which is a powerful and scalable Python-based library for
hierarchical state machines. The Smach package does not de-
pend on ROS and can be used in any Python project. The
executive Smach stack however provides seamless integration
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Figure 4: Example of I-Support FSM state diagram for washing back application.

with ROS, including smooth actionlib integration and a Smach
viewer to visualize and introspect state machines. Implemen-
tation wise, all states are stored in the generic state machine
container. They are initialized and when triggered by an event
they execute the action code stored in the state. Each has a
number of possible outcomes associated with it. An outcome
is a user-defined string that describes how a state finishes. The
transition to the next state is specified based on the outcome of
the previous state.

The Finite State Machine (FSM) was personalized, thus, de-
pending on the user, it could be automatically modified in order
to meet the particular needs and requirements (i.e. size, gender,
preferences, medical condition). This was achieved by inter-
facing the FSM with the Context Awareness System (CAS) and
the personalised information that was stored in the I-Support
system database. The FSM also performed the launching of the
ROS nodes (depending on the current state) and the monitoring
(running, success, fail) of each active node.

2.6. Safety validation

I-Support is a hardware device that comes into physical con-
tact with humans, either on purpose during scrubbing and wash-
ing tasks or accidentally as it describes trajectories in the shower
workspace. Furthermore, it is an electrical device that operates
in a humid and wet environment subjected to jets of water. It
might operate in a healthcare environment, such as a hospital,
where the levels of noise and electromagnetic noise should be
kept at a minimum. Hence, it was necessary to take actions
for thorough hazard mitigation and for a comprehensive safety
validation of the I-Support system during the design process.

The methodology that was adopted to address the safety is-
sues involved the following steps: (i) analysis of the interna-
tional safety standards and regulations and selection of the most
relevant standard, (ii) classification of the I-Support device ac-
cording to that standard, (iii) hazard analysis of the I-Support
system (identification of hazards, identification of causes asso-
ciated with hazards, determination of degree of risk), (iv) hard-
ware and software design decisions to mitigate hazards (such us
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upper limits on acceleration and speed, minimization of weight,
use of soft materials, DC voltages below 25V, EC compliance,
emergency stops, controlled system shutdown, etc.), (v) test-
ing and validation of the I-Support components and of the in-
tegrated system by an external certified safety engineer, (vi)
safety validation of the complete I-Support installation in the
operating environment where the pilot studies took place.

The ISO 13482 was selected as the most relevant safety
guideline to be followed throughout the project development.
The I-Support robotic solution was classified as a personal care
robot, restraint-free assistance robot (to help provide more ease
and comfort in daily life for independent living). Hence, the
comprehensive description of the hazard-risk analysis, the sub-
sequent design decisions, and the official safety validation re-
sults all complied with the ISO 13482 safety requirements. The
hazard analysis, risk analysis and design decisions are all pre-
sented in detail in [D2.3, Annex 1, http://www.i-support-project.
eu/dissemination/]. Finally, an external safety officer was em-
ployed to perform systematic tests and inspections and verify
that the hardware and software implementation for all compo-
nents, as well as for the overall installation in the healthcare
environment comply with the ISO 13482 standards and safety
requirements.

3. Audio-Gestural HRI

Gesture recognition is a visual task that can aid in human-
robot interaction (HRI) and relies on similar visual processing
methods as in action classification and pose estimation. For
the I-Support system, we implemented a simple rule for ges-
ture recognition that involves the recognition of a vocabulary
of gestures, which serve the role of visual non-verbal com-
mands. For robustness we supplement gesture recognition with
the additional perceptual task of spoken command recognition.
The two modalities can work either independently or in fu-
sion for enhanced performance. Within this context of assis-
tive robotics, and by exploring state-of-the-art approaches from
automatic speech recognition and visual action recognition, we
have developed an intelligent interface that multimodally rec-
ognizes actions and commands by fusing the unimodal infor-
mation streams to obtain the optimum multimodal hypothesis.

3.1. Visual processing

Gesture recognition allows the interaction of the elderly users
with the robotic platform through a predefined set of gestu-
ral commands. For this task, we have employed state-of-the-
art computer vision approaches for feature extraction, encod-
ing, and classification. Our gesture and action classification
pipeline, see Fig. 5, employs Dense Trajectories [55] along with
the popular Bag-of-Visual-Words (BoVW) framework. The main
concept consists of sampling feature points n from each video
frame on a regular grid and tracking them through time based
on optical flow. Specifically, the employed descriptors are: the
Trajectory descriptor, HOG [56], HOF [57] and Motion Bound-
ary Histograms (MBH) [56]. As depicted in Fig. 6, non-linear
transformation of depth using logarithm (log-depth) enhances

edges related to hand movements and leads to richer dense tra-
jectories on the regions of interest, close to the result obtained
using the RGB stream.

The features were encoded using BoVW and were assigned
to K = 4000 clusters forming the representation of each video.
Afterwards, each trajectory was assigned to the closest visual
word and a histogram of visual word occurrences was com-
puted. For classification non-linear SVMs were adopted us-
ing the χ2 kernel [56], and different descriptors were combined
in a multichannel approach accomplishing an accuracy of 81%
and 84% for the tasks washing the legs and back, respectively.
Since multiclass classification problems were considered, an
one-against-all approach was followed and the class with the
highest score was selected accomplishing classification results
of up to 83% and 85% for the two tasks.

3.2. Audio processing

In addition to gesture command recognition, we have also
developed a spoken command recognition module [58] (Fig. 7)
that detects and recognizes commands provided by the user
freely, at any time, among other speech and non-speech events,
possibly infected by environmental noise and reverberation. The
employed features for acoustic modeling were 39 Mel-Frequency
Cepstral Coefficients (MFCCs) with their first- and second-order
derivatives extracted every 30ms from overlapping windows
of 25ms duration. We target robustness via a) denoising of
the far-field signals by delay-and-sum beamforming, b) global
Maximum Likelihood Linear Regression (MLLR) adaptation
of the acoustic models to the speaker-microphone channels of
the targeted environment, and c) combined command detec-
tion/recognition. In order to build our models we performed
offline classification experiments of pre-segmented commands,
based on a task-dependent grammar of 23 German spoken com-
mands, accompishing accuracies of 76% and 68% for the two
tasks. For a more detailed analysis and further results regarding
the offline experiments of the audio-gestural HRI module we
refer the reader to [59].

4. Real-time Robotic motion Adaptation

The execution of the robotic tasks, instructed by the user or
the carer via HRI commands, relies on a detailed and adaptive
robotic motion planning method. This method was developed
during the project and is based on enriched visual information.
In particular, Point-Cloud data provided by the Kinect sensors,
which are mounted on the shower room as shown in Fig. 1 (b),
are used as an input together with accurate body part recogni-
tion performed either as a pixel-wise [31] area coverage of each
body part, or by using more structural [60] skeleton information
as depicted in Fig. 8. The latter deep learning methods highly
enhance the environment perception skills of the system and are
able to provide robust input to the motion planning, remaining
at the same time unaffected by the changes of the environment
conditions (e.g. illumination) of different shower rooms.

The motion planning method initially proposed in [61] pro-
vides a solution to the problem of defining the motion behavior
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Figure 5: Visual gesture classification pipeline.

Figure 6: Comparison of dense trajectories extraction over the RGB (top), depth
(middle) and log-depth (bottom) clips of gesture “Scrub Back”.

Figure 7: Spoken command recognition module for HRI, integrated in ROS,
including always-listening mode and real time performance.

of a robotic manipulators end-effector, operating over a curved
deformable surface (e.g. the users body part). Such surfaces

Figure 8: Example of the visual user perception algorithm in two instances: (a)
hands-up and (b) relaxed. The visual information is used as an input for the
motion planning method.

characterize the human body parts, which are systematically or
randomly moving and deforming (e.g. due to users breathing
motion). The main goal of the motion behavior task is the on-
line calculation of the reference pose for the end-effector, in
order for the robotic manipulator to be compliant with the body
part and simultaneously execute predefined surface tasks (e.g.
scrubbing the users back). Due to the motion control complex-
ity of the soft robotic manipulator described in Sec. 2.4, the
motion planning method is structured to be model free. There-
fore, it can be adjusted to any robotic manipulator, provided
that all the robot’s workspace and velocity constraints are taken
into account.

The two scenarios, i.e. washing or scrubbing the back or
the legs, considered in the I-Support project are actually the
most challenging for the elderly in terms of mobility limita-
tions. These scenarios were considered during the development
of the motion planning method as shown in Fig. 9. In the back
washing scenario the area pixel-wise visual information is used,
whereas in the legs washing scenario we use the skeleton human
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recognition. These recognition techniques are combined with
the Point-Cloud information obtained from the Kinect sensors
in order to achieve accurate reference pose estimation.

Figure 9: Two scenarios were considered during the development of the motion
planning method: (a) Back washing and (b) Legs washing. In (a) area pixel-
wise visual information was used, whereas in (b) the skeleton information was
adequate for the completion of washing tasks for the legs. The red spheres
depict the result of the skeleton recognition for the right leg and the green sphere
depicts the target position that the robot has to reach as a result of the motion
planning method.

Another important aspect of the motion planning method
is the straightforward combination with other motion planning
techniques, which allow for the incorporation of imitation learn-
ing techniques. More specifically in [62] we integrated a leader-
follower framework of motion primitives (CC-DMP) [63] with
a vision-based motion planning method to adapt the reference
path of a robots end-effector and allow the execution of wash-
ing actions. This system incorporates clinical carers expertise
by producing motions, which are learned by demonstration,
using data from the publicly available KIT whole-body mo-
tion database [64]. This integration accomplishes to make the
robotic washing actions more human-friendly and more accept-
able by the elderly users.

5. Audio-gestural data collection

In order to be able to build accurate models for learning
in our audio-gestural communication module, we conducted a
systematic collection of multisensory data, where various ex-
periments were designed with the involvement and guidance of
the clinical partners. During the whole process of designing the
data collection experiments, the clinical partners continuously
contributed with valuable feedback in order to take into account
the specific capabilities and needs of the elderly end-users. The
experiments contained multiple scenarios, e.g. for entering and
exiting the shower, washing/scrubbing the back or the legs, for
stopping or repeating a procedure, for changing the temperature
of the water etc. Figure 10 shows some samples of the designed
gestures for various bathing tasks.

The dataset includes data recordings in a more strict and
guided context (where the commands are predefined) and record-
ings of freestyle audio-gestural commands while introducing
various dialogue features for the interaction. Specifically, three
different sessions for data collection were defined, namely record-
ings of: a) 33 audio-gestural commands, performed simulta-
neously, b) spoken commands only and c) gesture commands
only. For the spoken commands we provided a short and a long

Figure 10: Sample gestures for the bathing HRI task.

version that is preceded by a system activation keyword, the
female name “Roberta” that exists in both German and Italian
language, where the actual validations with the elderly users
were conducted. For the gesture commands we provided more
than one gestures in order to include variability and thus, con-
sider factors such as a) physiological aspects of the elderly, b)
intuitiveness and naturalness, c) the cognitive capacity of the
elderly as well as d) the design of a system that could recog-
nize smaller or larger variations of the same command. Those
commands, in a second phase, and for the validations with the
elderly end-users were narrowed down, taking into account the
results of the first recognition experiments (recognizability and
discriminability by the machine algorithms employed) and after
consulting the clinical partners regarding what is most suitable
for the elderly end-users.

Data collection experiments were performed using the Kinect
sensors integrated in a ROS environment and synchronized us-
ing software triggering, while an integrated annotation and ac-
quisition web-interface that facilitates on-the-fly temporal ground-
truth annotation for fast acquisition [65] was used. For carrying
out the recordings supplementary material has been provided
with the predefined spoken commands and the videos of the
predefined gestures. For the freestyle experiments pictures have
been assembled in order to guide the user so as to perform the
various tasks using natural language and gestures.

5.1. Audio-Gestural Development Dataset

We have recorded visual data from 23 users (eight females
and fifteen males, aged 23-35) while performing predefined
gestures, and audio data from 8 users while uttering predefined
spoken commands in German (the users were non-native Ger-
man speakers, having only some beginner’s course). The to-
tal number of commands for each task was: 25 and 27 ges-
ture commands for washing the legs and the back, respectively,
and 23 spoken commands for the core bathing tasks, i.e. wash-
ing/scrubbing/wiping the back or legs, for changing base set-
tings of the system, i.e. temperature, water flow and sponta-
neous/emergency commands. A background model was also
recorded, including generic motions or gestures that are actu-
ally performed by humans during bathing; so as to be able to re-
ject out-of-vocabulary gestures/motions as background actions.

5.2. Extended Audio-Gestural Dataset

The data have been collected from 12 native German speak-
ers (three females and nine males, aged 18-30), having three
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iterations/repetitions each. In more detail, the extended dataset
includes:

• Calibration recording (checker-board pattern, no human
subject).

• Human subject is given textual/visual description of the
action to be performed (e.g. “instruct the system to dry
the legs”); for both washing positions (back/legs).

• Human subject is shown a video of predefined gestures;
for both washing positions.

• Background model including random “negative” gestures.

• Wash/wiping motions in wash-back/legs position, includ-
ing four different wiping styles each (horizontal/vertical,
small/big circles).

• Speech commands read in wash-back/legs position.

Complementary high-precision VICON MX motion cap-
ture data using 10 cameras have been recorded for a subset
of the subjects, due to the efforts involved for calibrating the
VICON system given the occlusions caused by the I-Support
setup. Specifically, seven human subjects have been recorded in
two recording sessions each, during the above-described record-
ing protocol, yielding a total of 1.7 TB of data in 1636 Rosbags
that are available from the KIT Motion Database for the pur-
poses of the project (with VICON data being available for three
of the subjects).

6. Experimental Evaluation

Two multinational validation studies were conducted in two
European pilot sites: a) Fondazione Santa Lucia (FSL) Hospital
in Rome, Italy and b) Bethanien Hospital in Heidelberg, Ger-
many; including target population, outcomes and indicators to
evaluate the I-Support system for addressing all evaluation ac-
tivities. The intention of validating the system multinationally
is to increase the value of the users’ subjective assessments and
especially to evaluate the acceptability of the system by peo-
ple with different habits and social-ethical background. Both
studies included the installation and the evaluation of the vari-
ous functionalities of the I-Support system in the bathroom en-
vironment of the selected care facilities. For the conduction
of the validations both pilot sites obtained approval from the
Ethics Committee.

The studies were realized in two rounds at each pilot site:

1. The first pilot testing consisted of evaluation, in dry con-
ditions, of well-defined functionalities of the first proto-
type of the bathing robot system and was intended to ob-
tain early feedback. This evaluation round focused on
a stable but limited intelligence prototype that included
human-robot interaction (HRI) using audio-gestural com-
mands. Feedback received from this testing round was
used into the design and the development process.

2. The second pilot testing round consisted of mainly sum-
mative evaluation activities and focused on the fully func-
tional and intelligent system, thus the showering activ-
ities with water (i.e. rinsing, scrubbing), including the
shared control functionality of the I-Support system, the
integrated learning and cognition strategies, as well as
the full context awareness. Additionally, a water pouring
scenario was also evaluated examining various operation
modes and also the end-users’ general satisfaction and
preferences for various controllers for the robotic motion.

The user group of the I-Support bathing robot is defined as
persons with difficulties in bathing activities, as evaluated by
the bathing item of the Barthel Index (0 pt. = “patient can use a
bath tub, a shower, or take a complete sponge bath only with as-
sistance or supervision from another person”) [66], which rep-
resents a clinically well-established index to evaluate an indi-
vidual’s functional disabilities in ADLs. According to this user
group definition, participants of the evaluation studies only in-
cluded persons with difficulty in their ability to perform bathing
activities on their own.

The two use cases evaluated included the interaction of the
I-Support system with two regions of the body:

• Distal region that comprises lower thighs from knee joints
downwards and feet. Note that for washing these body
parts, the user has to bend forward with a high risk of
losing postural control.

• Back region expanding from the cervical spine to the tail-
bone. In this case, it is practically impossible for the users
to reach their back.

During the validations, the Kinect sensors were installed in the
bathrooms of the two hospital sites as shown in Fig. 1(b); incor-
porating the required adjustments regarding their positions and
angles depending on the available space of each room in or-
der to be able to monitor the elderly and the robotic soft arms.
Based on this data the perception unit reconstructed a 3D model
of the elderly and the robot and provided feedback to the system
controller. Then the system controller generated motion control
commands and tool commands and guided autonomously the
soft arms to wash, scrub and rinse the specific body parts.

6.1. Multimodal Fusion and Online A-G Command Recogni-
tion System Integration

For the online validations and in order to evaluate the Sys-
tem Performance of the audio-gestural communication of the
user with the robot, our online Audio-Gestural (A-G) multi-
modal action recognition system was used, developed in [65]
using the Robotic Operating System (ROS), see Fig. 11. The
online A-G system enables the interaction between the user
and the robotic soft arms and thus, monitors, analyzes and pre-
dicts the user’s actions, giving emphasis to the command-level
speech and gesture recognition. Always-listening recognition is
applied separately for spoken commands and gestures, combin-
ing at a second level their results. A late fusion scheme is used,
where the individual multi-class results are combined, encoding
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this way inter-modality agreement, using a simple rule that was
found quite effective and fast among other approaches [58].

Figure 11: Online Audio-Gestural Command Recognition System.

The overall system comprises two separate sub-systems:

1. The spoken command recognizer, a single node that per-
forms always-listening speech recognition of predefined
command phrases that accompany the gestures.

2. The gesture recognizer consisting of two nodes: the ac-
tivity detector that performs temporal localization of seg-
ments with visual activity and the gesture classifier.

The spoken command recognition module works as described
in Sec. 3.2. The activity detector processes the RGB or the
depth stream in a frame-by-frame basis and determines the ex-
istence of visual activity in the scene, using a thresholded activ-
ity “score” value. The output from both sub-systems are com-
bined at the fusion node producing a single result. Specifically,
the implemented fusion node receives the N-best results an-
nounced by the individual recognizers, checking for available
results every 0.5 secs by receiving periodically messages in or-
der to synchronize the recognizers. A waiting period T is also
defined, during which the node waits to combine the incoming
messages. If this period expires, it is assumed that one modal-
ity either may not have been activated by the user, or failed
to detect the given input. In such cases, the node announces
single-modality results.

The A-G recognition system’s grammars (for both spoken
and gesture command recognition) and functionalities were adapted
to the specific bathing tasks, delivering recognition results as
ROS messages to the system’s finite state machine (FSM) that:
(1) decided the action to be taken after each recognized com-
mand, (2) controlled the various modules and (3) managed the
dialogue flow by producing the right audio feedback to the user,
for more details see Sec. 2.5.

6.2. Experimental Setup and Protocol
The proposed experimental setups aimed to:

1. Objectively evaluate the effectiveness of the bathing sys-
tems individual modules. Therefore, the experimental
protocols were designed to provide as much data as pos-
sible for statistical analysis, given the frailty of the users
and their limitations.

2. Assess the acceptability of the overall system by the el-
derly subjects. To accomplish this, the experiments were
conducted under realistic conditions and included typi-
cal procedures that the users might follow during their
bathing routine with the I-Support system.

3. Assess the ability of the users to complete a bathing pro-
cedure, according to their preferences, using the HRI com-
ponents of the system.

4. Assess the acceptability of the system by the caregiving
personnel and its ability to monitor the effectiveness and
safety of the bathing procedure.

6.2.1. Validation Round I
During the experiments, we simulated the two bathing sce-

narios at dry conditions, at the two pilot sites: 1) FSL Hospi-
tal and 2) Bethanien Hospital. Validation round I followed the
same evaluation study designs in both pilot sites, in order to ob-
tain comparable evaluation results. For the HRI experiments on
each site, potential I-Support users were recruited based on the
following main inclusion criteria: (1) dependency in bathing
activities as assessed by the bathing item of the Barthel Index
[66] and (2) no severe cognitive impairment as assessed by a
score of >17 on the Mini-Mental State Examination (MMSE)
[67]. Recruitment yielded a significant number of participants
at both sites: 25 (mean age±SD: 67.4±8.9 years) and 29 (mean
age±SD: 81.4±7.7 years), respectively. Table 1 shows an overview
of the setups for the two validation rounds at the two pilot sites;
where naive denotes elderly users having no experience with
the system, but only a few minutes training prior to their inter-
action.

The experimental protocol exhibited a variety of 7 audio
(A) or audio-gestural (A-G) commands, in Italian and in Ger-
man (see Table 2), in sequences that would simulate realistic
interaction flows for both tasks. Table 3 shows the sequence of
the A and A-G commands as performed in both validation ex-
periments. Prior to the actual testing phase, all commands were
introduced to the participants by the clinical test administrator,
while during the experiment the participants were guided on
how to interact with the robot by showing the audio commands
written on posters and the audio-gestural commands by per-
forming them, instructing them to simply read or mimic them.
The administrator could also intervene whenever the flow was
changed unexpectedly after a system failure. Additionally, a
technical supervisor handled the PCs and annotated on-the-fly
the recognition results of the system.

6.2.2. Validation Round II
A second set of validation experiments were carried out at

the same pilot sites, aiming at an enhanced user experience. In
Bethanien hospital the experiments were also designed to ac-
company a clinical sub-study. For the purpose of these valida-
tion studies, some of the gestural commands were redesigned
based on feedback from previous tests in order to become eas-
ier and more intuitive for the elderly users. To address the lack
of data for the newly introduced gestures, a small scale data
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Validation Round I Validation Round II

Heidelberg

# users 29 naive German-speaking patients 25 naive German-speaking patients
mean age±SD 81.4±7.7 years 77.9±7.9 years

MMSE (max. 30pt.) 25.3 ± 3.1 25.6 ± 3.1
evaluated commands 7 A-G commands 7 A-G commands

scenario “Legs” and “Back” position “Back” position
Gesture-only and audio-gestural scenario

FSL

# users 25 naive Italian-speaking patients 25 naive Italian-speaking patients
mean age±SD 67.4±8.9 years 69.4±7.5 years

MMSE (max. 30pt.) 27.6 ± 2.5 24.3 ± 3.5
evaluated commands 7 A-G commands 7 A-G commands

scenario “Legs” and “Back” position “Legs” position

Table 1: Overview of the validation setups for the two rounds at the two pilot sites.

Vocabulary of A-G commands
English Italian German

Wash legs Lava le gambe Wasch meine Beine
Wash back Lava la schiena Wasch meinen Rücken
Scrub back Strofina la schiena Trockne meinen Rücken

Stop (pause) Basta Stop
Repeat (continue) Ripeti Noch einmal

Halt Fermati subito Wir sind fertig

Table 2: Validation Round I: The audio-gestural commands that were included
in the two bathing scenarios. All commands were preceded by the keyword
“Roberta”.

Distal Region Back Region
ID Command Modality Command Modality
1 Wash Legs A Wash Back A-G
2 Stop A Halt A-G
3 Repeat A Scrub Back A-G
4 Halt A Stop A-G
5 Wash Legs A-G Repeat A-G
6 Halt A-G Halt A-G
7 Halt A-G Halt A-G

Table 3: Validation Round I: The sequence of Audio (A) and Audio-Gestural
(A-G) commands performed by the participants in the validation experiments.

collection with healthy subjects was carried out prior to the be-
ginning of the studies.

Validation round II at FSL: 25 naive Italian-speaking pa-
tients tested the system (mean age±SD: 69.4±7.5 years). The
experimental protocol in this case too included a set of 7 audio-
gestural commands, for which Italian audio models were devel-
oped. The participants were seated in the “legs” position and
the robot responded to each command with (a) audio feedback
and (b) by simulating the appropriate action with the soft arm
for the the commands: “Wash Legs”, “Scrub Legs”, “Stop”,
“Repeat” and “Halt”. The exact scenario is shown in Table 4.
The administrator, for each participant, filled in a report sheet
according to the user’s performance and the system’s command
recognition.

Validation round II at Bethanien: A set of 25 elderly pa-
tients were selected with mean age±SD: 77.9±7.9 years. The
experimental protocol included 7 commands, shown in Ta-
ble 5, to which each patient was briefly introduced. They were
first asked to perform only the gestural part of the 7 commands
(gesture-only (G) experiment) and then both the audio and the
gestural part of the commands at the same time (audio-gestural

(A-G) experiment).
During all experiments, the participant was seated in the

“back” position. After a command was performed, a short break
took place to give the I-Support system the opportunity to re-
spond to the command. In case of successful recognition, the
system responded with an appropriate audio response and soft-
arm action. The maximum system response time was about 3
to 5 seconds for the G and the A-G experiments, respectively.
If the system did not recognize the command correctly in this
time interval or the command was performed incorrectly by the
participant, the test administrator asked the participant to repeat
the command once more (i.e. maximum 14 attempts for each
experiment [2 attempts × 7 commands]).

6.3. Audio-Gestural Validation Experiments and Results

6.3.1. Validation Results Round I
Multimodal recognition was evaluated in terms of (1) Mul-

timodal Command Recognition Rate (CRR): CRR = # of com-
mands correctly recognized by the system / # of commands cor-
rectly performed by the user, (2) accuracy, and (3) user perfor-
mance/learning rate, so as to measure the correlation of the sys-
tem’s performance with the user’s experience. The above met-
rics were considered in order to correlate, as much as possible,
the systems performance with the user’s experience. User per-
formance was evaluated by the percentage of well-performed
commands relative to the total number of commands tested. A
gestural command was rated as not well-performed when the
movement of the gesture was not performed as intended, in-
cluding movement errors that seriously affected the trajectory
of the gesture. An audio-gestural command was rated as not
well-performed if the gesture was not performed as intended (as
described before) and/or if phrasing of the audio command was
false. In this validation round, demanding acoustic and visual
conditions were faced along with large variability in the perfor-
mance of the A-G commands by the participants, constituting
the recognition task rather challenging. Table 6 shows the ob-
tained CRR (%) and accuracy results (%), which are up to 84%
and 80% for both washing tasks, averaged across 29 (FSL) and
25 (Bethanien) users, respectively. The deviation between the
two sites is due to the lower age and higher cognitive level of
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A-G command Soft-arm motion & feedback
1. – the soft-arm goes to a pre-defined initial position
2. Wash my legs
= “Roberta, Lava la gambe”

audio feedback is provided and the soft-arm performs
a washing movement

2. Increase temperature
= “Roberta, Più fredda”

audio feedback is provided, the soft-arm continues
the washing movement

3. Lower temperature
= “Roberta Più calda”

audio feedback is provided, the soft-arm continues
the washing movement

4. Stop
= “Roberta, Fermati”

audio feedback is provided, the soft-arm’s movement
is paused

5. Scrub my legs
= “Roberta, Strofina la gambe”

audio feedback is provided, the soft-arm performs
a scrubbing movement

6. Stop
= “Roberta, Fermati”

audio feedback is provided, the soft-arm’s movement
is paused

7. Repeat
= “Roberta, Ancora”

audio feedback is provided, the soft-arm resumes
the scrubbing movement

8. Halt
= “Roberta, subito”

audio feedback is provided and the soft-arm goes
to its rest position

Table 4: Validation Round II (FSL): Commands tested in the scenario on the audio-gestural human-robot interaction. Left column indicates the audio commands
and the right column the audio feedback given by the system and the corresponding simulated action of the soft-arm.

Audio Command Gesture Command

1. Wash back
= “Roberta, wasch meinen Rücken”

2. Higher temperature
= “Roberta, wärmer”

3. Lower temperature
= “Roberta, kälter”

4. Scrub back
= “Roberta, schrebbe meinen Rücken”

5. Repeat
= “Roberta, noch einmal”

6. Stop
= “Roberta, stop”

7. Halt
= “Roberta, wir sind fertig”

Table 5: Validation round II (Bethanien): Commands tested on the audio-gestural human-robot interaction scenario. Left column indicates the audio commands and
the right column the corresponding gesture for the audio-gestural commands.

the FSL patients, as well as the slight differences in lightning
and cameras’ placement.

Gesture recognition was expected more challenging while

bathing the legs, due to occlusions of the hands with the robot
and/or the chair. The users experienced only a limited amount
of false alarms (3 in total as measured at FSL), which were con-
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System Performance % User Performance %
CRR % Accuracy % Speech Gestures

L B Av. L B Av. L B L B
FSL 80 87 83.5 86 73 79.5 98 99 81 78

Bethanien 85 74 79.5 67 77 72 91 90 84 71

Table 6: Validation Round I Results: Average Audio-Gestural Command
Recognition Results; System Performance (CRR%) and User Performance (%)
averaged across 29 and 25 users at FSL and Bethanien Hospitals, respectively.
(L stands for legs, B for back and Av. for average.

sidered annoying, since the system triggered a response without
an “actual” input. Regarding the user performance, the partici-
pants performed successfully the spoken commands (over 98%
and 90% accuracy for the two sites), while the average perfor-
mance of gestures was satisfactory (between 70% to over 80%
for the two tasks), considering the quick training provided by
the administrator. Finally, we have to mention that the results
of both modalities were somehow degraded, when the user per-
formed simultaneously the A-G commands, due to increased
cognitive load.

Figure 12: Validation Round I Results (FSL): Recognition statistics per com-
mand. The vertical red lines distinguish the command sequences (see the cor-
responding IDs in Table 3 for the tasks “washing the legs” and “washing the
back”.

Figure 12 shows indicative curves on how the users per-
formed, on their first attempt, each gesture command after the
short training, as measured for the two task at the FSL valida-
tion. We note that initially (gesture ID 5) the users either were
not familiar with this type of communication or their concen-
tration level was low, since they were performing only spoken
commands up to that point. There was however a tendency of
increased learning rate, meaning that during the experiments
the users got more familiar with the multimodal commands and
executed them more accurately, indicating the intuitiveness of
this HRI modality. Especially for commands such as “Halt”,
which was repeated several times (ID 4,6,7) during the washing
sequence the command performance of the user reached levels
higher than 90%. This observation is highly important, since
we can conclude that simple combinations of spoken and ges-
tural commands are both memorable and suitable for an elderly
user’s communication with an assistive robotic system.

6.3.2. Validation Results Round II
During Validation round II at FSL we put the emphasis on

the overall system integration, such as the control flow of the
bathing procedure, where the system performance in CRR%

was up to 83.5% for the legs position. The recognition per-
formance of the individual audio and gesture modalities was
82.9% and 48.7% respectively, indicating, as in previous ex-
periments, that the synergy between complementary modalities
can actually enhance overall results.

Figure 13 reports results on User Performance and System
Performance (% per command), i.e. the rates of well-performed
commands and commands recognized by the system. As a sec-
ond attempt was made when a command was not well per-
formed and/or it was not recognized, for both User and Sys-
tem Performance the reported percentages refer to the rates of
well-performed or recognized commands at the first attempts
and when summed the first and the possible second attempts.
Regarding user performance, since in this validation the com-
mands were audio-gestural, by well-performed we consider that
both the audio and the gestural command were performed as in-
tended. Regarding system performance, percentages show the
system’s recognition regardless the users performance. Indeed,
we noticed that although a command was not well-performed,
the system was able to recognize it.

The results for user and system performance are quite dif-
ferent, thus deserving a careful discussion. As for user perfor-
mance, the results show a wide range of rates of well-performed
commands with the minimum value of 40% (“Wash Legs” com-
mand, 1st attempt) and the maximum value of 88.5% (second
“Stop” command, 1st + 2nd attempt). Most of the times, the
user had more difficulty in performing the gestural command
than the audio one, thus most of times the second attempt was
required due to insufficient performance. Interestingly, the “Stop”
command, that is performed two times throughout the whole
showering session, presents different rates between the first (on
average 51%) and the second (on average 88.25%) attempt.
This might suggest the unease of performing gestural commands
and the need of repetition in order to better learn it. Regarding
the system performance, the recognition rates shows a narrower
range, with the minimum value of 72% (for the commands
“Wash Legs”, “Temperature Up”, and “Repeat”, 1st attempt)
and a maximum value of 100% (for the commands “Scrub Legs”
and first/second “Stop”, 1st + 2nd attempt).

Overall System Usability: During Validation Round II,
the participants completed the System Usability Scale (SUS)
to evaluate their subjective perception of the overall usability of
the I-Support bathing robot. The SUS is a well-established, re-
liable and valid 10–item scale, which can be quickly and easily
administered to determine the user-perceived usability (effec-
tiveness, efficacy, and satisfaction) of technical systems [68].
Its items are scored on a 5–point Likert-type scale ranging from
“strongly agree” to “strongly disagree”. The combined scores
of the individual SUS items are converted into a total SUS score
ranging from 0 to 100, with a higher score indicating better us-
ability. SUS scores can be classified as “worst imaginable” (0–
25 points), “poor” (25–39 points), “acceptable” (39–52 points),
“good” (52–73 points), “excellent” (73–85 points), and “best
imaginable” (85–100 points) perceived usability [69].

The SUS score across participants (n = 25) averaged 63.8±12.1
points, indicating an overall “good” usability of the I-Support
system tested during the validation experiments. The SUS scores
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Figure 13: Validation Round II Results (FSL): User Performance (%) and System performance (%) rates per command, showing the percentage of the well-
performed commands, i.e. commands performed as intended (User Performance) and the percentage of system recognitions (System Performance) for each of the
following showering task commands: Wash Legs (WL), Temperature Up (TU), Temperature Down (TD), 1st Stop (S 1), Scrub Legs (SL), 2nd Stop (S 2), Repeat
(R), Halt (H). Note: Audio-Gestural commands were considered as well-performed when both the audio and the gestural command were performed as intended.

Figure 14: Percentage (%) distribution of participants’ ratings in the different
SUS score categories.

ranged from the minimum of 42.5 points to the maximum of
87.5 points, suggesting more or less a uniformity in the SUS
results. However, when averaging the scores into the different
rating categories, as can be seen in Fig. 14, most of the partici-
pants gave a rather positive feedback on the I-Support usability.
Specifically, 12% of the participants rated the I-Support system
as “acceptable”, 48% as “good”, 28% as excellent, and 12% as
“best imaginable”.

Validation results round II at Bethanien:
The user performance and system performance were rated

and captured by standardized observation of the clinical test ad-
ministrator using a report sheet for each modality. The user
performance of the G and the A-G commands was rated us-
ing the same assessment strategy for both modalities. Table 7
shows a detailed analysis for the system performance, where
we observe significantly higher CCR (%) results for the A-G
experiment compared to the G-only experiment. The two eso-
teric columns show monomodal results for the audio and ges-
ture modality separately obtained during the multimodal (A-G)
scenario. In the last column, which shows the fusion (A-G)
results, we observe that the use of both modalities can actually
enhance the results. In our understanding and from the observa-

Gesture-only Audio-Gestural
audio gesture fusion

Without
training 59.6% 79.5% 48.0% 86.2%

Table 7: Validation Round II Results (Bethanien): Average System Per-
formance results (CRR%) for the G-only and the A-G experiments; and
monomodal results obtained during the multimodal A-G experiment.

tions we made during the validation, we assume that the users
probably paid much more attention to gestural than to audio
commands.

Finally, Fig. 15 shows results for the system and the user
performance per command, where we note that the per-gesture
performance for the gesture-only experiment accomplished a
CRR of up to 68.7%. Regarding the individual per command
results, the system accomplished the maximum value of 83%
for the “Wash” command, while the performance of the users
yielded the maximum value of 66% for “Halt”. In this case
too, we observe that the system successfully recognized vari-
ous commands that were not well-performed by the users (i.e.
”Wash” 83% vs. 34% and “Repeat” 56% vs. 26% for Sys-
tem and User Performance, respectively), which indicates the
significance of building good models for learning as well as
designing models that are able to recognize smaller or larger
variations of the same command.

Figure 15: Validation Round II Results (Bethanien): System Performance
(CRR%) and User Performance (%) results per command.

15

Please cite it as:   A.Zlatintsi, A.C.Dometios, N.Kardaris, I.Rodomagoulakis, P.Koutras, X.Papageorgiou, P.Maragos, C.S.Tzafestas, 
P.Vartholomeos, K.Hauer, C.Werner, R.Annicchiarico, M.G.Lombardi, F.Adriano, T.Asfour,  

A.M.Sabatini, C.Laschi, M.Cianchetti, A.Güler, I.Kokkinos, B.Klein, and R.López,  
"I-SUPPORT: a Robotic Platform of an Assistive Bathing Robot for the Elderly Population",  

Robotics and Autonomous Systems, Volume 126, April 2020.  
DOI. https://doi.org/10.1016/j.robot.2020.103451.

Published in Robotics and Autonomous Systems



Water Pouring Scenario at Bethanien
The main goal of the water pouring scenario, conducted

at Bethanien, was to study the ability of the elderly to control
the showering process using different operation modes for the
robotic soft-arm, which provide different amount of assistance
during bathing the upper back region.

Specifically, the three operation modes to be evaluated were:

• Autonomous operation: The soft-arm automatically ex-
ecuted the motions needed to provide water pouring for
the full coverage of the upper back region. In this mode,
the participant had no control of the robot motion.

• Shared control: The participant could use an input de-
vice to issue simple motion commands (i.e. left vs. right
and up vs. down), which were translated to a number of
(high-level) discrete commands for the I-Support control
system (i.e. soft-arm moved left/right or up/down), while
the system provided assistance in terms of audio signals
indicating that: (1) the participant’s command was rec-
ognized and (2) the command was successfully executed,
meaning that the participant could issue the next motion
command. Further assistance was provided in terms of
ensuring that the upper back region was not exceeded
(i.e. robot motions were restrained to remain within the
standardized target body area, shown in Fig. 16). In this
mode, the participant had predominant, but not full con-
trol over the robot motion.

• Tele-manipulation: The participant could issue motion
commands (i.e. up vs. down and left vs. right) using
the input device, similar to the shared control mode. In
this mode, however, the system did not provide the audio
signals for operating assistance, nor did it constrain the
robot motion to the upper back region. Consequently, the
participant had full control of the robot motion.

Training and Comparison of Input Devices: The main
question during the first stage of this study was the user sat-
isfaction and acceptability of the input device for the elderly
users of the I-Support system. A motion tracking input method
involving technologies, which are available in any smartwatch
as presented in Sec. 2.3 versus a more typical button input de-
vice were examined. For the first input method a motion track-
ing hand-wearable device was constructed that was strapped on
the external side of the palm (Fig. 17), containing an Inertial
Measurement Unit (IMU) (including 3-axis accelerometers, 3-
axis gyroscopes and 1 magnetometer), a micro-controller, and a
bluetooth transmitter for wireless operation. The device could
track the motion of the user’s hand, which was transmitted to
a central controller and those motions were then translated by
the central controller into the desired motion command for the
control of the soft-arm. A thimble with an embedded pres-
sure sensor acted as an activation switch for the tracker device
(Fig. 17(b)) and only when the user pressed the thimble, the
tracker was activated and the motion of the hand was recorded
and translated into the desired motion command. The second
input device was a commercial waterproof computer keyboard,

Figure 16: Standardized target body area (upper back region) with the six tar-
gets points for which the soft-arm provided water pouring. The red-colored
cross represents the starting and final position, the black arrows indicate the
path the water stream took on the participant’s back region.

Figure 17: a) Motion tracking hand-wearable device. b) Thimble with the em-
bedded pressure sensor for activation).

where the user could issue a motion command for the soft-arm
to be controlled by pressing the appropriate arrow button (e.g.
upward movement = up-arrow button).

Both input methods were introduced to the participants as
an option for controlling the soft-arm motion. Participants were
initially trained in both options by a short computer game, which
required to catch a red cube by a user-controlled green cube. If
the red cube was caught then it would randomly jump to another
field on the “game board” and the participant was instructed to
catch it again as many times and as fast as he/she could for a
time period of 1 min. The participants were asked, which op-
tion of the controller was found easier and thus would like to
use in order to control the robot motion of the soft-arm during
the water pouring scenario.

After the training on the two controllers, and independently
of the participants cognitive status, all (100%) mentioned that
(1) providing motion commands was much easier with the com-
puter keyboard than with the motion tracking hand-wearable
device and (2) they prefer to use the computer keyboard for
controlling the soft-arm in the water pouring scenario. There-
fore, the following water pouring scenario was performed in all
participants with the use of the waterproof computer keyboard.

Water Pouring Experiments: The second stage of this
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Operation Mode Task Effectiveness [%]
(mean ± SD)

Autonomous operation 100.0 ± 0.0
Shared control 79.4 ± 18.2

Tele-manipulation 64.4 ± 19.4

Table 8: Task effectiveness in the water pouring scenario with the different
operation modes

study was conducted inside the showering cabin under real wa-
ter pouring conditions. Initially, the participant (wearing a swim-
suit or swimming trunks) was seated on the motorized chair and
the water temperature was set according to his/her preferences.
After that, the operation modes were tested in the following
order: (1) autonomous operation, (2) shared control, and (3)
tele-manipulation.

The test administrator explained that in the first autonomous
operation (duration 1 min) the soft-arm would provide water
pouring fully automatically for the upper back region following
a predefined path, as shown in Fig. 16, with the starting point at
the top right.

After the autonomous operation was completed, the partic-
ipant was introduced into the shared control mode (duration 2
min). In this mode, the participant controls the motion of the
soft-arm’s water stream on his/her own using the controller cho-
sen after the training game. In this mode the system would also
provide an audio signal as previously described. In addition,
it was explained that further assistance would be provided in
terms of restricting the robot motion to the standardized target
body area. Finally, the participant was instructed to cover the
entire upper back region (i.e. all six target points) as fast as
possible by using the shared control mode.

In the last round of testing, the participant used the tele-
manipulation mode (duration 2 min), in which he/she also con-
trolled the motion of the soft-arm’s water stream on his/her
own, using the same controller as before, trying to cover the
entire back region as fast as possible. The participant had now
full motion control over the soft-arm and the system did not
provide any further assistance.

In the water pouring scenario, task effectiveness with the
different operation modes was assessed by a measure of the
area coverage, defined as the percentage of the predefined tar-
get body area covered with water during the standardized time
period (e.g. 3 out of 6 target points covered with water corre-
sponds to 50% coverage).

Maximum task effectiveness was achieved for all partici-
pants when the autonomous operation mode was used, indicat-
ing a very good and reliable system performance. Task effec-
tiveness substantially decreased with the shared control mode
and even more with the tele-manipulation mode, as compared
to the fully autonomous mode (see Table 8). Fourteen partic-
ipants (66.7%) in the shared control mode and 19 participants
(90.5%) in the tele-manipulation mode did not achieve the max-
imum possible coverage.

Our results indicate that the autonomous operation mode
for the robotic soft-arm of the bathing robot is highly effec-
tive and reliable in providing water pouring for a predefined

Figure 18: Percentage (%) distribution of participants’ ratings in the different
SUS score categories

body area. When giving participants more control over the
soft-arm, task effectiveness gradually decreased with lower as-
sistance provided by the bathing robot. These findings suggest
that full system autonomy seems to provide a preferred mode of
operation for this group of elderly population. A more detailed
analysis on the differences in the task effectiveness (and also in
the user satisfaction) with the different operation modes fits the
scope of another publication focusing further on the findings of
the clinical validation study [70].

Overall System Usability: Finally, the participants com-
pleted the System Usability Scale (SUS) to evaluate their sub-
jective perception of the overall usability of the I-Support bath
robot system.

The SUS score across participants that completed the “wa-
ter pouring” scenario (n = 22) averaged 60.7±23.0 points, indi-
cating an overall “good” usability of the I-Support system tested
during the validation experiments. The SUS scores ranged from
the minimum of 0 points to the maximum of 100 points, sug-
gesting a large heterogeneity in the SUS results. However,
when averaging the scores into the different rating categories
(Fig. 18) most of the participants gave a rather positive feed-
back on the I-Support usability. More than 81.8% of the partic-
ipants rated the I-Support system between “acceptable” to “best
imaginable”, while less than 18.2% rated the I-Support system
between “poor” and “worst imaginable”.

7. Conclusion

This paper presents the I-Support robotic platform, a human-
centered robotic bathing system for smart assisted living, which
provides assistance to the frail elderly population in order to
safely and independently be able to complete an entire sequence
of bathing tasks, such as washing their back and their lower
limbs. To achieve this target advanced modules of cognition,
sensing, context awareness and actuation have been developed,
during the course of the project, and have been seamlessly in-
tegrated into the robotic assistance, including a functional soft-
arm prototype and the adaptation of a cost-effective robotic chair.
Additionally, we contribute a new multimodal audio-gestural
dataset and a suite of tools used for data acquisition that have
been used for the development and modeling of our high-accuracy,
real-time, state-of-the-art multimodal action recognition mod-
ule for the analysis, monitoring and prediction of user actions.
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We experimentally validated the I-Support system, in two clin-
ical validation studies that were conducted in two European pi-
lot sites showcasing really good system performance, achieving
this way an effective and natural interaction and communica-
tion, through audio-gestural commands, between users and the
assistive robotic platform. Regarding the task effectiveness in
the water pouring scenario, the results indicate that the robotic
soft-arm is highly effective and reliable and that full system au-
tonomy is preferred by the elderly population. Finally, the two
validation studies also proved high acceptability regarding the
overall system usability by the elderly end-users.
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