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Abstract—In this work, we approach the analysis and segmentation of natural textured images by combining ideas from image
analysis and probabilistic modeling. We rely on AM-FM texture models and, specifically, on the Dominant Component Analysis (DCA)
paradigm for feature extraction. This method provides a low-dimensional, dense, and smooth descriptor, capturing the essential
aspects of texture, namely, scale, orientation, and contrast. Our contributions are at three levels of the texture analysis and
segmentation problems: First, at the feature extraction stage, we propose a Regularized Demodulation Algorithm that provides more
robust texture features and we explore the merits of modifying the channel selection criterion of DCA. Second, we propose a
probabilistic interpretation of DCA and Gabor filtering in general, in terms of Local Generative Models. Extending this point of view to
edge detection facilitates the estimation of posterior probabilities for the edge and texture classes. Third, we propose the Weighted
Curve Evolution scheme that enhances curve evolution-based segmentation methods by allowing for the locally adaptive combination
of heterogeneous cues. Our segmentation results are evaluated on the Berkeley Segmentation Benchmark and compare favorably to
current state-of-the-art methods.

Index Terms—Texture analysis, image segmentation, AM-FM models, demodulation, generative models, curve evolution, cue
combination.
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1 INTRODUCTION

TEXTURE is ubiquitous in natural images and constitutes a
powerful cue for a variety of image analysis and

computer vision applications like segmentation, shape from
texture, and image retrieval. The advances of the last two
decades in image analysis and biological and computer
vision have deepened our understanding of this field, yet it
remains open and challenging.

The problem of texture analysis has been addressed
using primarily feature and model-based methods; feature-
based methods [2], [22], [30], [44], [47], [57] analyze texture
using an informative description that lends itself more
easily to subsequent tasks, typically using linear filterbanks
as front-end systems. Members of the second category, like
Markov Random Fields (MRFs) [8], [56], use tractable
models for texture patterns and formulate texture analysis
as a parameter estimation task; the gap between these two
approaches has been bridged in [17], [56], yielding a
powerful yet intricate common framework. A different
path has pursued the use of textons [23]; an operational
definition of textons as cluster centers in a filter response

space is advocated in [31], [37], while, in [16], [17], a texton
dictionary is proposed as a medium for the optimal
representation of images.

These are powerful models for texture analysis, but their
appropriateness for unsupervised texture segmentation is
limited in some respects. In conjunction with both bound-
ary-based [31], [32], [37] and region-based [30], [31], [44],
[50], [57] approaches, the high dimensionality of filterbank
features can lead to poor segmentations and requires
dimensionality reduction, which is a problem in itself.
MRF-based approaches suffer from a computational aspect
since their fitting is coupled with segmentation, resulting in
a time-consuming iterative procedure. Texton-based ap-
proaches fit naturally with pairwise clustering techniques
[31], [50], where the proximity between two pixels is
estimated by comparing the distributions of texton indexes
in their neighborhoods. However, such descriptors cannot
be used by variational and generative segmentation
methods alike [1], [30], [44], [52], [57] that rely on having
smooth features within homogeneous regions.

Our approach builds on the class of Amplitude-Modula-
tion-Frequency-Modulation (AM-FM) image models [18],
[19], [34] and, specifically, on the Dominant Component
Analysis (DCA) method [20]. In short, DCA represents
texture locally in terms of a single AM-FM signal, whose
parameters are estimated and used as a texture descriptor.
This yields a feature set that encompasses information
about texture contrast, scale, and orientation while lending
itself naturally to tasks like density estimation used in
image segmentation.

In our work, whose preliminary versions have been
presented in [11], [27], [28], [29], we pursue the construction
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of a concise texture analysis and segmentation system for
generic natural images by extending the potential of the
DCA method. Specifically, our contributions to texture
analysis, feature interpretation, and texture segmentation
are listed as follows:

1. Feature Extraction. In Section 2.2, a regularized
algorithm for demodulation is introduced which
avoids discrete image differentiations using combi-
nations of Gabor filtering and the 2D Teager-Kaiser
energy operator [34], [35]. The potential of alter-
native criteria for channel selection based on the
2D operator is explored in Section 2.3, yielding
features that are more appropriate for segmentation.

2. Probabilistic Analysis. A probabilistic formulation of
the AM-FM channel selection procedure is presented
in Section 3 by modeling observations in terms of
sinusoids and introducing locality in the likelihood
expressions. This facilitates the interpretation of
Gabor filtering in terms of model fitting, which is a
formulation we also use in Section 3.3 to phrase edge
detection in common terms with texture analysis.
This lays the ground for the probabilistic discrimina-
tion between edges, textured areas, and smooth
areas, which is a practically important problem for
image segmentation.

3. Image Segmentation. In Section 4, we present an
unsupervised segmentation scheme based on DCA
features that uses curve evolution implemented with
level set methods. Using our probabilistic analysis
results, we propose a method for the combination of
heterogeneous cues that enhances the original
Region Competition-Geodesic Active Region (GAR)
evolution rule [44], [57]. Specifically, we introduce
the Weighted Curve Evolution method that incorpo-
rates the posterior probabilities of the texture and
edge classes in the evolution law. We report
systematic experiments on the Berkeley Benchmark,
where consistent improvements in performance are
attained when compared to simpler or different
segmentation methods.

Since our contributions span different levels of the
overall analysis and segmentation system, each section is
written in a modular manner, with introductory subsections
on prior work and necessary background information.

2 AM-FM TEXTURE MODELS

Locally narrow-band signals can model a variety of
textured images like patterns formed by surface deforma-
tions, orientation-diffusion biological markings, and man-
made objects exhibiting periodic structure, like those in
Fig. 1. Modulation, or AM-FM models, have been success-
fully applied to speech signal analysis [4], [35] and are
ideally suited for the description of such image signals [3],
[34]. Modeling signals in terms of nonstationary sinusoids,

fðx; yÞ … aðx; yÞ cosð�ðx; yÞÞ; ð1Þ

AM-FM models locally capture image contrast in terms of
the amplitude modulating signal aðx; yÞ and image structure
(scale and orientation) in terms of the instantaneous frequency
vector:

~!ðx; yÞ … r�ðx; yÞ …
@�
@x

;
@�
@y

� �
ðx; yÞ: ð2Þ

Even though many natural textures can be modeled in
terms of a monocomponent AM-FM signal, images with
2D structure containing patterns like corners, crosses, and
junctions necessitate that more than one component be
simultaneously present in the local image spectrum. The
multicomponent AM-FM model [19], [20] models an
image I as the superposition of locally narrow-band
sinusoidal components fkðx; yÞ corrupted by a white
Gaussian noise (WGN) field wðx; yÞ:

Iðx; yÞ …
XK

k…1
akðx; yÞ cosð�kðx; yÞÞ
|�����������������{z�����������������}

fkðx;yÞ

þwðx; yÞ: ð3Þ

The fundamental problem of image demodulation aims at
estimating, for each of the K components, the instantaneous
amplitudes akðx; yÞ and frequencies ~!kðx; yÞ … r�kðx; yÞ.

The decomposition of an image in terms of this expression
is an ill-posed problem due to the existence of an infinity of
modulating signal pairs and component superpositions
satisfying (3). Even if a separation of I in narrowband
components fkðx; yÞ is known in advance, unavoidable
modeling errors of any demodulation algorithm, the presence
of noise, interference from neighbor spectral components,
and discretization of the signal derivatives are possible
sources of error in component estimation. Robustness in the
AM-FM demodulation problem can be achieved by consider-
ing the following problems:

P1. Reduction of the error in modeling each narrow-
band component fkðx; yÞ by a 2D AM-FM signal
while maintaining smoothness in the estimated
modulation signals.

P2. Suppression of noise.
P3. Suppression of neighbor spectral components while

estimating one component.
P4. Regularization of derivatives.
Simultaneously achieving all of the above goals is a

complex optimization task which remains an unsolved
problem. In the following sections, well-established solutions
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Fig. 1. Textures of the locally narrowband type. (a) Results of
evolutionary processes. (b) Surface deformations. (c) Biological
patterns. (d)-(f) Periodic man-structured objects.
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to problems P1-P3 are presented, followed, in Section 2.2,
by a novel algorithm that jointly considers all problems. In
Section 2.3, the DCA method is presented, together with a
modified channel selection criterion that yields better
localized features.

2.1 AM-FM Demodulation
2.1.1 Energy Operators and Demodulation
At the heart of problem P1 lies the fact that there are an infinite
number of combinations that satisfy (1) for a given f . An
efficient scheme for the demodulation of the narrow-band
components into smooth modulating functions is provided
by the multidimensional Energy Separation Algorithm (ESA)
[34], which is based on a generalization to higher dimensions
of the 1D Teager-Kaiser energy operator [35]:

�ðfÞðx; yÞ …� krfðx; yÞk2 � fðx; yÞr2fðx; yÞ: ð4Þ

Now, let f be a 2D spatial AM-FM signal as in (1). Under
realistic assumptions [34], applying � to f yields the energy
product of the squared instantaneous amplitude and
frequency magnitude:

�‰a cosð�Þ� � a2k~!k2; ð5Þ

with an approximation error bounded within a negligible
range. This quantity may be interpreted as the component
modulation energy. Applying � to the partial derivatives
fx … @f=@x, fy … @f=@y and combining all energies yields
the 2D continuous ESA [34]:

�ðfÞ
������������������������������
�ðfxÞ þ �ðfyÞ

p � jaðx; yÞj; ð6Þ

������������
�ðfxÞ
�ðfÞ

s

� j!1ðx; yÞj;

������������
�ðfyÞ
�ðfÞ

s

� j!2ðx; yÞj; ð7Þ

which can estimate, at each location ðx; yÞ, the amplitude
envelope and the magnitudes of the instantaneous frequen-
cies of the nonstationary AM-FM signal. The signs of the
frequency signals can be implicitly obtained by the signs of
the carrier, approximated by the filter central frequencies.

2.1.2 Multiband Gabor Filtering and Demodulation
A simultaneous solution to problems P2 and P3 has been
given in [3], [4] using a bank of bandpass filters densely
covering the frequency plane. The filterbanks used for this
task are typically 2D Gabor filters, favored due to their
optimal joint spatial and spectral localization [14], [9]. Apart
from component decoupling and robustness to noise, this
approach specifies in advance the number and spectral
localization of the different components, thereby constrain-
ing the decomposition of any given 2D signal to a fixed
component configuration. In Fig. 2, we visually show the
filterbank used in our experiments, while details are given
in Appendix A.

Demodulation via the ESA can be extended to the
complex signals derived from convolution with complex
Gabor filters; the energy for a complex-valued signal
fðx; yÞ … aðx; yÞ expðj�ðx; yÞÞ is defined as

CðfÞ … �‰Reffg� þ �‰Imffg� ð8Þ

and, based on the approximation (5), the operator response
is C‰f � � 2a2k~!k2. The averaging of operator responses
results in smoother estimates of the modulating functions.
Applying C to f … I � g and its partial derivatives fx and fy
results in a demodulation scheme where the frequencies are
given by (7) and the amplitude is given by a slight
modification of (6):

jaðx; yÞj �
CðfÞ

���
2

p ������������������������������
CðfxÞ þ CðfyÞ

p : ð9Þ

Another point is that Gabor filtering imposes a specific
decomposition of an arbitrary signal of the form (3) into a
sum of narrow-band components, with the frequency
content of each component localized around the corre-
sponding Gabor filter’s central frequency. However, the
frequency content of the actual component may not be
centered at the fixed central frequency of the Gabor filter,
thereby resulting in a suppressed estimate ak of its
amplitude Ak. This can be compensated for by using the
component’s estimated instantaneous frequency ~!k; speci-
fically, if Gkð�Þ is the frequency response of the Gabor filter,
the approximation

Ak …
ak

jGkð~!kÞj
ð10Þ

yields an amplitude estimate that is insensitive to devia-
tions from the corresponding filter central frequency [20].

2.2 Regularized Demodulation
A problem that emerges with ESA demodulation is that the
signal derivatives can only be approximated using discrete
differentiation operations. As a result, the two differential
operators entailed in the energy operator responses may
furnish inaccurate amplitude and frequency estimates. In
what follows, we present a theoretically sound approach to
alleviate this problem, introducing a regularized 2D energy
operator and a related regularized 2D ESA.

As analyzed in [46] for edge detection, two regularized
solutions to the derivative estimation problem which
minimize the sum of the data approximation error and
the energy of the second derivative of the approximating
function are 1) spline interpolation and 2) convolution of
the image data by a function that can be closely modeled by
a Gaussian. In our problem, which deals with narrow-band
but not necessarily low-pass signals, the Gaussian filter
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Fig. 2. Filterbank grid on the 2D frequency domain. Contours correspond
to half-peak bandwidth magnitude.
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response must be modulated by a sine with a carrier equal
to the spectral mean location of the signal. This yields a
Gabor filter. In [10], the spline and the Gabor regularization
of the energy operator and the ESA were compared for
1D signals, yielding a slight superiority of the Gabor ESA.

Motivated by the above, we propose a 2D Gabor ESA
algorithm for simultaneous filtering and demodulation. Let
Iðx; yÞ be the continuous image, gðx; yÞ be the impulse of a
real 2D Gabor filter, and fðx; yÞ … Iðx; yÞ � gðx; yÞ be its
output. Since convolution commutes with differentiation,
the continuous 2D energy operator combined with Gabor
bandpass filtering becomes

�ðfÞ … �ðI � gÞ … kI � rgk2 � ðI � gÞðI � r2gÞ: ð11Þ

Thus, the differential operators have been replaced by filter
derivatives that can be analytically estimated, thereby
avoiding discretization errors.

Similarly, for the estimation of the instantaneous
amplitude and frequency, the 2D Gabor ESA for demodu-
lating f … I � g consists of the following two steps:

1. Use the Gabor energy operator to compute the
instantaneous energies of three image functions,
�ðfÞ, �ðfxÞ, and �ðfyÞ, where

�ðfxÞ … kI � rgxk2 � ðI � gxÞðI � r2gxÞ: ð12Þ

2. Use the evaluated energies in the formula of the
2D continuous ESA.

For all three energies, we need seven Gabor differential
formulas: gx, gy, gxx, gyy, gxy, and r2gx, r2gy. The Gabor ESA
is thus computationally more intensive since it requires
more convolutions but adds robustness and improved
performance. For efficiency, we use an FFT-based fre-
quency-domain implementation of the Gabor ESA, using
the equation

F
@kþ�g

@xk@y�

� �
… Ffggðj!xÞkðj!yÞ�; ð13Þ

relating the Fourier transforms Ff�g of a signal and its
derivatives.

In Table 1, the performance of the discrete ESA is
compared to the Gabor-ESA scheme at varying degrees of
noise and nonstationarity. Signals of the form

fðx; yÞ … ‰1 þ �Aðx; yÞ� cosðucx þ vcy þ ��ðx; yÞÞ; ð14Þ

�ðx; yÞ …
1
4

2 cos
uc

30
x

� 	
þ cos

vc

30
y

� 	h i
; ð15Þ

Aðx; yÞ … exp �
x2 þ y2

10

� �
; ð16Þ

are used, where uc and vc are the central frequencies of the
Gabor filter used for demodulation, shown in Fig. 3b. The
signal is immersed in white Gaussian noise at various
Signal-to-Noise Ratios (SNRs), while the index � is varied to
produce different degrees of nonstationarity.

For � … 0, i.e., a stationary sinusoid, the approximation
in (5) becomes exact, so, for Gabor ESA, the only source of
error is noise. On the contrary, the differentiation scheme
used in the discrete ESA introduces systematic errors, as
shown in Fig. 3d, and results in inferior frequency and
amplitude estimates. For higher degrees of nonstationarity,
Gabor ESA systematically yields better estimates, with the
errors being solely due to the noise signal and the
approximations of ESA.

2.3 Texture Features
The demodulation procedure furnishes a 3D vector
ðAk; r�kÞðx; yÞ for each of the components in (3), so
demodulating the filterbank channel outputs yields a 3 �
K-dimensional texture feature vector at each pixel. This
multidimensional feature extraction scheme, termed Chan-
nelized Component Analysis in [20], provides a rich image
representation and can achieve accurate reconstructions of
multicomponent signals; however, the high dimensionality
of the feature vector may result in poor segmentations.

A compact texture description can be extracted using the
DCA method [18], [20] that retains the most prominent
structure of the texture signal. Assuming that a single
narrowband component dominates the filter responses at
pixel ðx; yÞ, DCA selects pixelwise the channel iðx; yÞ that is
closest to the component, demodulates its output, and uses
the resulting AM-FM features for texture representation.
The channel iðx; yÞ is chosen among the K filter responses
by maximizing a criterion �kðx; yÞ:

iðx; yÞ … arg max
1�k�K

f�kðx; yÞg; ð17Þ

ADCAðx; yÞ … Aiðx;yÞðx; yÞ; ~!DCAðx; yÞ … ~!iðx;yÞðx; yÞ: ð18Þ
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TABLE 1
Demodulation Comparisons

between Gabor ESA and Discrete ESA

Fig. 3. Regularized demodulation. (a) Representative AM-FM signal of
the family (14) obtained for modulation index � … :5 and logðSNRÞ … 6.
(b) Gabor filter used for demodulation. (c) Fourier transform magnitudes
for the filters involved in the alternative demodulation schemes,
demonstrating the deviation of the central difference filter �x from the
derivative operation @

@x . (d) Deviation of �x � g from @g
@x in the frequency

domain.
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The choice of the dominant channel in the original work on
DCA has been based on the maximization of the estimated
amplitude envelopes:

�kðx; yÞ … jakðx; yÞj: ð19Þ

In Fig. 4, a locally narrowband signal is used to
demonstrate the structure-capturing properties of this
procedure. A texton dictionary-based method would break
the image into pieces indicating which of the textons best
match the input signal, yielding a discrete texton-index
tessellation of the image, while a filterbank-based feature
descriptor would retain all filter responses, even though
most offer no information complementary to that of the
most active filter. On the other hand, using the DCA
method, a single filter is automatically selected and a low-
dimensional smoothly varying feature vector is derived
from it. Note that, instead of the instantaneous frequency
measurements in Fig. 4, we use the phase estimate
delivered by the complex Gabor filter since it is better
suited for visual display.

The refined frequency and amplitude estimates (7), (10)
furnished by the demodulation algorithm thus allow us to
transcend from the quantized set of orientations and
scales used by the front-end filterbank to a continuous
representation.

2.3.1 Energy-Based Dominant Component Analysis
(EDCA)

As an alternative to amplitude-based dominant component
extraction, termed ADCA henceforth, we have considered
an energy channel selection criterion, based on the
modulation product (5), leading to the EDCA scheme.
Intuitively, if we think of texture signals as produced by
physical oscillating sources in different scales and orienta-
tions, the selection of the dominant component could be

based on the maximum-energy source that accounts for
producing the local texture modulations. According to this
scheme, modulation features are chosen from the filter
output of dominating energy:

�kðx; yÞ … �‰ðI � gkÞ�ðx; yÞ; ð20Þ

where the complex energy operator (8) is used for a
complex filter gk.

Using the modulation energy for DCA results in
improved localization in texture and object boundaries:
Since the 2D energy operator jointly captures contrast and
frequency information in the modulation product (5), the
scheme can effectively consider channels with low ampli-
tude (i.e., contrast) variations but high instantaneous
frequency magnitude.

To illustrate their differences, in Fig. 5, we compare the
features extracted using the original and the alternative
energy-based method. Comparing Figs. 5b and 5c, we see
that the EDCA measurements are sharper around object
boundaries, with improved localization and detail preser-
vation. We observe, for example, that the diffusion effects
around the borders of the tiger and the zebra are alleviated
using EDCA. The reconstructions delivered by the two
schemes reveal the preservation of finer structure in the
energy-based scheme; as an indicative example, notice that
ADCA interprets the feet of the zebra as a slowly varying
horizontal oscillation, while EDCA focuses on the smaller
scale structure of the vertical zebra skin pattern.

We note here that the DCA model is designed primarily
for 1D features like sinudoidal signals and requires
additional AM-FM components to model 0D and
2D features like blobs and crosses, respectively. It would
be beneficial to account for such patterns in our front-end
system, but we have practically observed that, as seen also
in Fig. 5, for images exhibiting such patterns, a perceptually
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Fig. 4. The Dominant Componnets Analysis method for a locally narrowband signal: A set of bandpass Gabor filters is initially used to isolate and
demodulate the individual components of (3). The dominant channel is subsequently chosen at each image location and its AM-FM parameters are
used as a local texture descriptor. The principal structure of the textured signal is thus captured by the DCA parameters.
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