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Texture Analysis and Segmentation Using
Modulation Features, Generative Models,
and Weighted Curve Evolution
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Abstract—In this work, we approach the analysis and segmentation of natural textured images by combining ideas from image
analysis and probabilistic modeling. We rely on AM-FM texture models and, specifically, on the Dominant Component Analysis (DCA)
paradigm for feature extraction. This method provides a low-dimensional, dense, and smooth descriptor, capturing the essential
aspects of texture, namely, scale, orientation, and contrast. Our contributions are at three levels of the texture analysis and
segmentation problems: First, at the feature extraction stage, we propose a Regularized Demodulation Algorithm that provides more
robust texture features and we explore the merits of modifying the channel selection criterion of DCA. Second, we propose a
probabilistic interpretation of DCA and Gabor filtering in general, in terms of Local Generative Models. Extending this point of view to
edge detection facilitates the estimation of posterior probabilities for the edge and texture classes. Third, we propose the Weighted
Curve Evolution scheme that enhances curve evolution-based segmentation methods by allowing for the locally adaptive combination
of heterogeneous cues. Our segmentation results are evaluated on the Berkeley Segmentation Benchmark and compare favorably to

current state-of-the-art methods.

Index Terms—Texture analysis, image segmentation, AM-FM models, demodulation, generative models, curve evolution, cue

combination.

1 INTRODUCTION

TEXTURE is ubiquitous in natural images and constitutes a
powerful cue for a variety of image analysis and
computer vision applications like segmentation, shape from
texture, and image retrieval. The advances of the last two
decades in image analysis and biological and computer
vision have deepened our understanding of this field, yet it
remains open and challenging.

The problem of texture analysis has been addressed
using primarily feature and model-based methods; feature-
based methods [2], [22], [30], [44], [47], [57] analyze texture
using an informative description that lends itself more
easily to subsequent tasks, typically using linear filterbanks
as front-end systems. Members of the second category, like
Markov Random Fields (MRFs) [8], [56], use tractable
models for texture patterns and formulate texture analysis
as a parameter estimation task; the gap between these two
approaches has been bridged in [17], [56], yielding a
powerful yet intricate common framework. A different
path has pursued the use of textons [23]; an operational
definition of textons as cluster centers in a filter response
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space is advocated in [31], [37], while, in [16], [17], a texton
dictionary is proposed as a medium for the optimal
representation of images.

These are powerful models for texture analysis, but their
appropriateness for unsupervised texture segmentation is
limited in some respects. In conjunction with both bound-
ary-based [31], [32], [37] and region-based [30], [31], [44],
[50], [57] approaches, the high dimensionality of filterbank
features can lead to poor segmentations and requires
dimensionality reduction, which is a problem in itself.
MREF-based approaches suffer from a computational aspect
since their fitting is coupled with segmentation, resulting in
a time-consuming iterative procedure. Texton-based ap-
proaches fit naturally with pairwise clustering techniques
[31], [50], where the proximity between two pixels is
estimated by comparing the distributions of texton indexes
in their neighborhoods. However, such descriptors cannot
be used by variational and generative segmentation
methods alike [1], [30], [44], [52], [57] that rely on having
smooth features within homogeneous regions.

Our approach builds on the class of Amplitude-Modula-
tion-Frequency-Modulation (AM-FM) image models [18],
[19], [34] and, specifically, on the Dominant Component
Analysis (DCA) method [20]. In short, DCA represents
texture locally in terms of a single AM-FM signal, whose
parameters are estimated and used as a texture descriptor.
This yields a feature set that encompasses information
about texture contrast, scale, and orientation while lending
itself naturally to tasks like density estimation used in
image segmentation.

In our work, whose preliminary versions have been
presented in [11], [27], [28], [29], we pursue the construction
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of a concise texture analysis and segmentation system for
generic natural images by extending the potential of the
DCA method. Specifically, our contributions to texture
analysis, feature interpretation, and texture segmentation
are listed as follows:

1. Feature Extraction. In Section 2.2, a regularized
algorithm for demodulation is introduced which
avoids discrete image differentiations using combi-
nations of Gabor filtering and the 2D Teager-Kaiser
energy operator [34], [35]. The potential of alter-
native criteria for channel selection based on the
2D operator is explored in Section 2.3, yielding
features that are more appropriate for segmentation.

2. Probabilistic Analysis. A probabilistic formulation of
the AM-FM channel selection procedure is presented
in Section 3 by modeling observations in terms of
sinusoids and introducing locality in the likelihood
expressions. This facilitates the interpretation of
Gabor filtering in terms of model fitting, which is a
formulation we also use in Section 3.3 to phrase edge
detection in common terms with texture analysis.
This lays the ground for the probabilistic discrimina-
tion between edges, textured areas, and smooth
areas, which is a practically important problem for
image segmentation.

3. Image Segmentation. In Section 4, we present an
unsupervised segmentation scheme based on DCA
features that uses curve evolution implemented with
level set methods. Using our probabilistic analysis
results, we propose a method for the combination of
heterogeneous cues that enhances the original
Region Competition-Geodesic Active Region (GAR)
evolution rule [44], [57]. Specifically, we introduce
the Weighted Curve Evolution method that incorpo-
rates the posterior probabilities of the texture and
edge classes in the evolution law. We report
systematic experiments on the Berkeley Benchmark,
where consistent improvements in performance are
attained when compared to simpler or different
segmentation methods.

Since our contributions span different levels of the
overall analysis and segmentation system, each section is
written in a modular manner, with introductory subsections
on prior work and necessary background information.

2 AM-FM TexTuReE MODELS

Locally narrow-band signals can model a variety of
textured images like patterns formed by surface deforma-
tions, orientation-diffusion biological markings, and man-
made objects exhibiting periodic structure, like those in
Fig. 1. Modulation, or AM-FM models, have been success-
fully applied to speech signal analysis [4], [35] and are
ideally suited for the description of such image signals [3],
[34]. Modeling signals in terms of nonstationary sinusoids,

f($>y) = a(xvy) cos(qﬁ(x,y)), (1)

AM-FM models locally capture image contrast in terms of
the amplitude modulating signal a(x,y) and image structure
(scale and orientation) in terms of the instantaneous frequency
vector:
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Fig. 1. Textures of the locally narrowband type. (a) Results of
evolutionary processes. (b) Surface deformations. (c) Biological
patterns. (d)-(f) Periodic man-structured objects.
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Even though many natural textures can be modeled in
terms of a monocomponent AM-FM signal, images with
2D structure containing patterns like corners, crosses, and
junctions necessitate that more than one component be
simultaneously present in the local image spectrum. The
multicomponent AM-FM model [19], [20] models an
image [ as the superposition of locally narrow-band
sinusoidal components fi(z,y) corrupted by a white

Gaussian noise (WGN) field w(z, y):

=

I(w,y) =Y ar(z,y) cos(du(w,y)) +w(z,y). (3)

= Ji(zy)

The fundamental problem of image demodulation aims at
estimating, for each of the K components, the instantaneous
amplitudes a;(z,y) and frequencies Ji(x,y) = Voi(z,y).

The decomposition of an image in terms of this expression
is an ill-posed problem due to the existence of an infinity of
modulating signal pairs and component superpositions
satisfying (3). Even if a separation of I in narrowband
components fi(z,y) is known in advance, unavoidable
modeling errors of any demodulation algorithm, the presence
of noise, interference from neighbor spectral components,
and discretization of the signal derivatives are possible
sources of error in component estimation. Robustness in the
AM-FM demodulation problem can be achieved by consider-
ing the following problems:

P1. Reduction of the error in modeling each narrow-
band component fi(z,y) by a 2D AM-EM signal
while maintaining smoothness in the estimated
modulation signals.

P2. Suppression of noise.

P3. Suppression of neighbor spectral components while
estimating one component.

P4. Regularization of derivatives.

Simultaneously achieving all of the above goals is a

complex optimization task which remains an unsolved
problem. In the following sections, well-established solutions
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to problems P1-P3 are presented, followed, in Section 2.2,
by a novel algorithm that jointly considers all problems. In
Section 2.3, the DCA method is presented, together with a
modified channel selection criterion that yields better
localized features.

2.1 AM-FM Demodulation

2.1.1 Energy Operators and Demodulation

Attheheart of problem P1 lies the fact that there are an infinite
number of combinations that satisfy (1) for a given f. An
efficient scheme for the demodulation of the narrow-band
components into smooth modulating functions is provided
by the multidimensional Energy Separation Algorithm (ESA)
[34], which is based on a generalization to higher dimensions
of the 1D Teager-Kaiser energy operator [35]:

V(f)(,y) 2 V@I — fz,y) VP (xy). (@)

Now, let f be a 2D spatial AM-FM signal as in (1). Under
realistic assumptions [34], applying V to f yields the energy
product of the squared instantaneous amplitude and
frequency magnitude:

Vlacos(9)] ~ a® ||, ()

with an approximation error bounded within a negligible
range. This quantity may be interpreted as the component
modulation energy. Applying ¥ to the partial derivatives
fo=0f/0x, f, =0f/0y and combining all energies yields
the 2D continuous ESA [34]:

(f)
V(fe) +¥(fy)

U(fa) [Y(f)
\I/(f) ~ |w1(m7y)|, \I’(f) ~ ‘WQ(xa y)|’ (7)

which can estimate, at each location (z,y), the amplitude
envelope and the magnitudes of the instantaneous frequen-
cies of the nonstationary AM-FM signal. The signs of the
frequency signals can be implicitly obtained by the signs of
the carrier, approximated by the filter central frequencies.

~ la(z,y)l, (6)

2.1.2 Multiband Gabor Filtering and Demodulation
A simultaneous solution to problems P2 and P3 has been
given in [3], [4] using a bank of bandpass filters densely
covering the frequency plane. The filterbanks used for this
task are typically 2D Gabor filters, favored due to their
optimal joint spatial and spectral localization [14], [9]. Apart
from component decoupling and robustness to noise, this
approach specifies in advance the number and spectral
localization of the different components, thereby constrain-
ing the decomposition of any given 2D signal to a fixed
component configuration. In Fig. 2, we visually show the
filterbank used in our experiments, while details are given
in Appendix A.

Demodulation via the ESA can be extended to the
complex signals derived from convolution with complex
Gabor filters; the energy for a complex-valued signal

flz,y) = a(x,y) exp(jé(z,y)) is defined as
C(f) = Y[Re{f}] + ¥[Im{ f}] (8)
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Fig. 2. Filterbank grid on the 2D frequency domain. Contours correspond
to half-peak bandwidth magnitude.

and, based on the approximation (5), the operator response
is C[f] ~2a%||3||°. The averaging of operator responses
results in smoother estimates of the modulating functions.
Applying C to f = I * g and its partial derivatives f, and f,
results in a demodulation scheme where the frequencies are
given by (7) and the amplitude is given by a slight
modification of (6):

o
) + 7,

Another point is that Gabor filtering imposes a specific
decomposition of an arbitrary signal of the form (3) into a
sum of narrow-band components, with the frequency
content of each component localized around the corre-
sponding Gabor filter’s central frequency. However, the
frequency content of the actual component may not be
centered at the fixed central frequency of the Gabor filter,
thereby resulting in a suppressed estimate a; of its
amplitude A;. This can be compensated for by using the
component’s estimated instantaneous frequency &j; speci-
fically, if G (-) is the frequency response of the Gabor filter,
the approximation

)

la(z, y)| = 7

a,
Ay,

= 1Gh@] (10)

yields an amplitude estimate that is insensitive to devia-
tions from the corresponding filter central frequency [20].

2.2 Regularized Demodulation

A problem that emerges with ESA demodulation is that the
signal derivatives can only be approximated using discrete
differentiation operations. As a result, the two differential
operators entailed in the energy operator responses may
furnish inaccurate amplitude and frequency estimates. In
what follows, we present a theoretically sound approach to
alleviate this problem, introducing a regularized 2D energy
operator and a related regularized 2D ESA.

As analyzed in [46] for edge detection, two regularized
solutions to the derivative estimation problem which
minimize the sum of the data approximation error and
the energy of the second derivative of the approximating
function are 1) spline interpolation and 2) convolution of
the image data by a function that can be closely modeled by
a Gaussian. In our problem, which deals with narrow-band
but not necessarily low-pass signals, the Gaussian filter
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TABLE 1
Demodulation Comparisons
between Gabor ESA and Discrete ESA

\/ < (A — A)? > for Gabor / discrete ESA (bold/plain)

log SNR a=0 a=1
10 4210 %]1.210°%[2.110 2] 3.910 2
6 6.910°%[1.3107%[22107%|3.910°?

/< (@x — wg)? > for Gabor / discrete ESA (bold/plain)
log SNR a=0 a=1
10 6.410°°[1.9107?[(4.910°3] 221077
6 1.1107%]1.9107%2[4.910°3] 2.31072

response must be modulated by a sine with a carrier equal
to the spectral mean location of the signal. This yields a
Gabor filter. In [10], the spline and the Gabor regularization
of the energy operator and the ESA were compared for
1D signals, yielding a slight superiority of the Gabor ESA.

Motivated by the above, we propose a 2D Gabor ESA
algorithm for simultaneous filtering and demodulation. Let
I(z,y) be the continuous image, ¢g(z,y) be the impulse of a
real 2D Gabor filter, and f(z,y) = I(z,y) *x g(z,y) be its
output. Since convolution commutes with differentiation,
the continuous 2D energy operator combined with Gabor
bandpass filtering becomes

U(f) =W xg)= I+ Vgl|" = (I +g)(Ix V).  (11)

Thus, the differential operators have been replaced by filter
derivatives that can be analytically estimated, thereby
avoiding discretization errors.

Similarly, for the estimation of the instantaneous
amplitude and frequency, the 2D Gabor ESA for demodu-
lating f = I * g consists of the following two steps:

1. Use the Gabor energy operator to compute the
instantaneous energies of three image functions,
U(f), U(f,), and U(f,), where

U(fo) = 11 Val® = (I xg) I+ VPg,).  (12)

2. Use the evaluated energies in the formula of the

2D continuous ESA.

For all three energies, we need seven Gabor differential
formulas: g,, 9y, Guzs Gyy, 9y and V2g,, V2g,. The Gabor ESA
is thus computationally more intensive since it requires
more convolutions but adds robustness and improved
performance. For efficiency, we use an FFI-based fre-
quency-domain implementation of the Gabor ESA, using
the equation

FL29N _ pg) ) Gy 13
{uray } = Flaion) i)' (13)
relating the Fourier transforms F{-} of a signal and its
derivatives.

In Table 1, the performance of the discrete ESA is
compared to the Gabor-ESA scheme at varying degrees of
noise and nonstationarity. Signals of the form

Frequency Magnitudes Derivative- vs. Difference

1.57=Gabor
~Derivative
1{*Difference s

(b) (©) (d

Fig. 3. Regularized demodulation. (a) Representative AM-FM signal of
the family (14) obtained for modulation index a = .5 and log(SNR) = 6.
(b) Gabor filter used for demodulation. (c) Fourier transform magnitudes
for the filters involved in the alternative demodulation schemes,
demonstrating the deviation of the central difference filter A, from the
derivative operation 2. (d) Deviation of A, * g from % in the frequency
domain.

f(@,y) = [1+ aA(z, y)] cos(ucw + vy + af(z,y)),  (14)
O(z,y) = % [2 cos(%m) + cos(%y)}7 (15)
A = e~ 50 (16)

are used, where u, and v, are the central frequencies of the
Gabor filter used for demodulation, shown in Fig. 3b. The
signal is immersed in white Gaussian noise at various
Signal-to-Noise Ratios (SNRs), while the index « is varied to
produce different degrees of nonstationarity.

For o =0, i.e., a stationary sinusoid, the approximation
in (5) becomes exact, so, for Gabor ESA, the only source of
error is noise. On the contrary, the differentiation scheme
used in the discrete ESA introduces systematic errors, as
shown in Fig. 3d, and results in inferior frequency and
amplitude estimates. For higher degrees of nonstationarity,
Gabor ESA systematically yields better estimates, with the
errors being solely due to the noise signal and the
approximations of ESA.

2.3 Texture Features

The demodulation procedure furnishes a 3D vector
(A, Vo) (z,y) for each of the components in (3), so
demodulating the filterbank channel outputs yields a 3 x
K-dimensional texture feature vector at each pixel. This
multidimensional feature extraction scheme, termed Chan-
nelized Component Analysis in [20], provides a rich image
representation and can achieve accurate reconstructions of
multicomponent signals; however, the high dimensionality
of the feature vector may result in poor segmentations.

A compact texture description can be extracted using the
DCA method [18], [20] that retains the most prominent
structure of the texture signal. Assuming that a single
narrowband component dominates the filter responses at
pixel (z,y), DCA selects pixelwise the channel i(z,y) that is
closest to the component, demodulates its output, and uses
the resulting AM-FM features for texture representation.
The channel i(x,y) is chosen among the K filter responses
by maximizing a criterion I';(z, y):

i(w,y) = arg max {I'i(z,y)}, (17)
ADCA(Z‘) y) = A?(Ty) (.f, y), Wpea (l’, y) = Q?(Ty)('I? y) (18)
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Fig. 4. The Dominant Componnets Analysis method for a locally narrowband signal: A set of bandpass Gabor filters is initially used to isolate and
demodulate the individual components of (3). The dominant channel is subsequently chosen at each image location and its AM-FM parameters are
used as a local texture descriptor. The principal structure of the textured signal is thus captured by the DCA parameters.

The choice of the dominant channel in the original work on
DCA has been based on the maximization of the estimated
amplitude envelopes:

Fk(x’y) = |ak(x7y)| (19)

In Fig. 4, a locally narrowband signal is used to
demonstrate the structure-capturing properties of this
procedure. A texton dictionary-based method would break
the image into pieces indicating which of the textons best
match the input signal, yielding a discrete texton-index
tessellation of the image, while a filterbank-based feature
descriptor would retain all filter responses, even though
most offer no information complementary to that of the
most active filter. On the other hand, using the DCA
method, a single filter is automatically selected and a low-
dimensional smoothly varying feature vector is derived
from it. Note that, instead of the instantaneous frequency
measurements in Fig. 4, we use the phase estimate
delivered by the complex Gabor filter since it is better
suited for visual display.

The refined frequency and amplitude estimates (7), (10)
furnished by the demodulation algorithm thus allow us to
transcend from the quantized set of orientations and
scales used by the front-end filterbank to a continuous
representation.

2.8.1 Energy-Based Dominant Component Analysis
(EDCA)

As an alternative to amplitude-based dominant component
extraction, termed ADCA henceforth, we have considered
an energy channel selection criterion, based on the
modulation product (5), leading to the EDCA scheme.
Intuitively, if we think of texture signals as produced by
physical oscillating sources in different scales and orienta-
tions, the selection of the dominant component could be

based on the maximum-energy source that accounts for
producing the local texture modulations. According to this
scheme, modulation features are chosen from the filter
output of dominating energy:

Li(z,y) = [ * g)](z, ),

where the complex energy operator (8) is used for a
complex filter g;.

Using the modulation energy for DCA results in
improved localization in texture and object boundaries:
Since the 2D energy operator jointly captures contrast and
frequency information in the modulation product (5), the
scheme can effectively consider channels with low ampli-
tude (i.e., contrast) variations but high instantaneous
frequency magnitude.

To illustrate their differences, in Fig. 5, we compare the
features extracted using the original and the alternative
energy-based method. Comparing Figs. 5b and 5¢c, we see
that the EDCA measurements are sharper around object
boundaries, with improved localization and detail preser-
vation. We observe, for example, that the diffusion effects
around the borders of the tiger and the zebra are alleviated
using EDCA. The reconstructions delivered by the two
schemes reveal the preservation of finer structure in the
energy-based scheme; as an indicative example, notice that
ADCA interprets the feet of the zebra as a slowly varying
horizontal oscillation, while EDCA focuses on the smaller
scale structure of the vertical zebra skin pattern.

We note here that the DCA model is designed primarily
for 1D features like sinudoidal signals and requires
additional AM-FM components to model 0D and
2D features like blobs and crosses, respectively. It would
be beneficial to account for such patterns in our front-end
system, but we have practically observed that, as seen also
in Fig. 5, for images exhibiting such patterns, a perceptually

(20)
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(b)

I;\"\\‘ =

Fig. 5. Amplitude versus Energy-based DCA: Comparing the estimated amplitude and the synthesized component using the two alternative channel
selection criteria, (19) and (20), we observe that EDCA focuses on more prominent texture variations, combining information about frequency and
contrast. Instead, DCA favors large-scale image variations, which are not always perceived as texture. (a) Input image. (b) ADCA amplitude.

(c) EDCA amplitude. (d) ADCA synthesis. (e) EDCA synthesis.

meaningful part of the image structure is captured by the
DCA features.

3 LocAL GENERATIVE MODELS FOR TEXTURE AND
EDGES

In this section, we probabilistically justify the channel
selection of DCA, introducing a generative model that
accounts for the locality of the decision process. Based on
this model, Gabor filtering can be interpreted as parameter
estimation. An analogous model is provided for edge
detection, allowing us to estimate posterior probabilities
for the texture and edge classes, based on Bayes’ rule. After
a brief introduction of generative models in Section 3.1, in
Section 3.2, we present our local generative models and
relate them to the DCA method. Section 3.3 extends this
approach to edge detection and the discrimination between
edges and texture.

3.1 Generative Models
Generative models are capable of reproducing an image or
parts of it and probabilistically relate the image observa-
tions with the model synthesis. They can thus be used for
both modeling and classification, based on Bayes’ rule.
Specifically, given K alternative classes C; .
observation O, each class uses a low-dimensional parameter
set E; in its synthesis equation O(x) ~ I;(z|E;) to approximate
the observations. Adopting a probabilistic error model yields a
likelihood expression P;(O|E;) for the observations conditioned
on the model synthesis and by integrating out the model
parameters we obtain the model evidence:

P(OIC;) = /P(O)|Ei,C¢)P(Ez|C¢)dEz
(21)
~ [ POB)PE)aE,

where P;(E;) is the prior distribution of the model para-
meters. This integration is typically bypassed, assuming that
the ith model evidence is proportional to the maximum
value of the integrand P,(O|E;)P,(E;) attained at the
Maximum A Posteriori (MAP) or, if the prior is uniform, the
Maximum-Likelihood (ML) parameter estimate E,. Based on
this approximation, the Generalized Likelihood Ratio Test
(GLRT) [24] assigns the observations to the class with
maximal posterior probability, derived from Bayes’ rule:

P(C)POIC;)  P(OE)P(E:)
i1 P(CL)P(OICK) Y1, Pu(OfEy) Pe(Ey)
(22)

P(Ci|0) =

where it is assumed that the prior probabilities P(C;) for all
classes are equal.

For the problems we are interested in, low-level models
accounting for generic image variations at the level of
patches are needed. Herein, we consider three general
signal classes, namely, texture, edges, and smooth areas,
with each class using a predetermined parametric synthesis
equation.

3.2 Local Generative Models for Texture

Starting with the texture class hypothesis, we develop a link
between the DCA method and generative models. For this,
we build on the assumption behind DCA, namely, that
texture can be locally described in terms of a single narrow-
band signal. Intuitively, the Gabor filtering and channel
selection stages at the front end roughly estimate the
frequency of the signal, using a quantized set of orientations
and frequency magnitudes. Here, we establish a formal
connection between these two stages and a parametric
probabilistic model: We show that the amplitude estimate
for a Gabor filter output is proportional to a lower bound on
the log likelihood of the observations under a correspond-
ing model hypothesis.

For simplicity, we model the 1D profile of the signal
along the feature’s orientation, using the frequency magni-
tude w = ||, while the patch being modeled is considered
centered around zy = 0. Wherever discrete notation is used,
the signals are represented as N x 1 column vectors.

3.2.1 Local Modeling of Texture
Our model uses a linear basis that describes the signal as a

sinusoid with frequency w, unknown phase offset ¢,,
amplitude A, and DC value B:

O(x) ~ Ir(z|{A, ¢,, B}) = Acos(wz + ¢,) + B (23)
Dr

= Z E;Br(xz), where Dp =3, (24)
i=1

E1 = 14(ZOS(¢)O)7 E2 =-A Sin(¢0), Ed = B7 (25)
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Texture model components
1

Edge model components

(a) (b)

Fig. 6. Basis elements (dashed) and confidence function (solid) for the
1D profiles of the texture and edge classes.

Bri(z) = cos(wz), Bra(z) =sin(wz), Brs(z)=1.

The subscript 7" denotes the texture hypothesis, while we
shall refer to the functions By as the even, odd, and DC
basis elements.

Theideabehind our local generative model is to make explicit
the dependence of the quality of approximation in (23) on the
distance x from the central point zy = 0. Low-dimensional
parametric models can only locally model nonstationary
signals; therefore, observations far from x, should neither be
attributed to the model nor influence the estimates of the
model parameters. This is ignored in related work, e.g., [16],
[33], where using the assumption of White Gaussian Noise,
the parameters are derived in terms of the Least Squares Error
(LSE) projection of the signal on a linear basis.

We account for locality by associating a confidence value
G(z), e.g., a Gaussian function, with the model-based
predictions at point z, as shown in Fig. 6. The quantity
G(x) decreases with the distance from the point zy = 0 and
a background model is introduced to model appearance
away from ). This can be formalized using a binary
random variable z, to indicate whether the observation at x
is due to the foreground or background hypothesis, with
expectation P(z, = 1|z) equaling the confidence value G(x)
there. The likelihood of the observation O(z) at point z for a
set of parameters E then writes

(26)

Pr(O(@)|z,E)= ) Pr(O(),z]z.E) (27)
2,={0,1}
= Y Pr(O(x)|z,z,E)P(zr) (28)
2,={0,1}
= Prs(O(x) — Ir(2|E))G(z) + Pry(O(x))(1 — G(z)) . (29)

zp=1 2,=0

The foreground distribution Pr; uses the model synth-
esis Ir(z|E) to explain the observation O(z), while we
use a uniform background distribution on intensity
Pr;(O(z)) = cp. Note that Pr(z|z,E) = P(z,|z) since the
confidence in the class prediction depends only on the
location z.

A merit of this approach is that it conceptually
disentangles the synthesis from the likelihood expressions;
this facilitates the construction of simple bases for idealized
signals, like sinusoids. Locality is taken into account
separately, allowing for increased flexibility compared to
previous work [16], [33], where the basis elements have
spatially decaying envelopes in order to simultaneously
account for signal properties and model locality.
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3.2.2 Likelihood Expression and Parameter Estimation
For independent errors, we have

Z log Pr(O

which is in general hard to optimize with respect to the
model parameters since the summation of (29) appears
inside the logarithm. We therefore derive a tractable lower
bound of (30) using the concavity of the log function and

Jensen’s inequality:
O(z)|z) + Z (1-

LBr(0) =) G(x

log Pr(O|E) = 2)|z, E), (30)

) log Pr ¢ ( ) log cp.

(31)
In the following, this lower bound will be used instead of
the original expression for the data likelihood. Under the
assumption of WGN with variance o?, the first term of (31)
writes

ZG )log(V/2m0),

(32)

Owlie) = 53R = >_Gla

) log Pr s (

R =Y C@)[0) - Ir()? £ [0 - BEG[O - BE],

(33)

where G is an N x N diagonal matrix, with G;; = G(7), O is
the N x 1 observation matrix, and B and E are N x Dy and
Dr x 1 matrices, respectively, expressing (24) concisely in
matrix notation. Apart from the weighted reconstruction
error R, the rest of the terms in (32) are constant, so the
maximum condition for (32) yields the Weighted LSE
solution:

E=D'(B’GO), D=

BTGB, (34)

R =07GO - E'DE. (35)

The dependence of the reconstruction error on the model
can thus be expressed using only the parameters E: The first
term of (35) is model independent, while the second
involves only the parameters and a fixed matrix.

If the confidence function G(z) is a Gaussian, the product
of the three basis elements in (24) with G(z) yields the
impulse responses of a Gaussian, an even and an odd-
symmetric Gabor filter. This means that the convolution
with these three filters furnishes at each pixel the values of
the 3 x 1 vector B'GO. Further, considering the DC
response of the even Gabor filter to be negligible, we have

D 0 0
ZG cos(z — D=0 Dy 0], (36)
0 0 Ds
1
ZG cos(2:) — D1:D2:§;G(.@) (37)

meaning that the inversion of the matrix in (34) amounts
simply to a normalization of the Gabor/Gaussian filter
responses. Introducing
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ooN G(z) B 1 exi(— 2
G(L)_Z;EG(IE)_\/%UGB ( 20%3)7 38

where o¢p is the spread of the Gabor filter, we have the
following ML estimates:

B =2 Z G (z) sin(x)0(x), (39)
B, = 22 G (z) cos(x)O(z), (40)
iy =Y G'(2)0(x) (41)

These expressions constitute the first main result of this
section: filtering with an even/odd Gabor filter is interpreted
as estimating the optimal weighted projection of the signal on
the corresponding sinusoidal basis element. The weighting
guarantees that points closer to the center of the filter are
reconstructed more accurately than the ones further away; in
the same sense, filtering with a Gaussian function performs a
weighted projection on a constant basis. This also justifies the
use of normalized convolution [26], [54] to a broad set of
problems, including Gabor analysis here and the use of
Quadrature Filter Pairs (QFPs) in Section 3.3.

Further, the decrease in reconstruction error due to the
model of (23) can be expressed as

E2+E

21 E2 +32

ZG
Since Ej = B is determined by the Gaussian filter, the only
term depending on the Gabor filter's orientation is
E? + E2 = A2, which, by (19), amounts to the square of
the amplitude-based channel selection criterion. Using two
constants ¢; and ¢; that are independent of the filter’s
orientation, the lower bound (31) can be written as

E'DE = Z G(x)

LBr(0) = ¢; A% + ¢y (42)

This constitutes the second main result of this section: We
interpret amplitude-based channel selection as multiple
hypothesis testing since we choose the channel that
maximizes the lower bound on the observations’ log
likelihood given the underlying model assumption of (23).
Extending this result, we provide in Appendix B a
probabilistic justification for the Teager Energy channel
selection criterion under the assumption of Brownian noise.

3.3 Edge and Texture Discrimination

Edge detection is now phrased in the same generative
model setting, thereby making it possible to evaluate the
edge and texture hypotheses on common grounds. Speci-
fically, the decrease in the weighted reconstruction error
induced by each of the two hypotheses serves as a means to
decide which type of structure is dominant. We can thus
estimate their posterior probabilities, which, as we subse-
quently show, can be used for cue combination in image
segmentation.

3.3.1 Edge Synthesis Equations

In [39], it was argued that edges are perceived at locations
of phase congruency, where the signal is approximated by a
Fourier series expansion of the form:

Ox) ~ Ig(z) = A Z ay cos(wokz + ¢,) + (43)

Above, I, is the approximation to the signal using the edge
class model and wy is the fundamental frequency of the
Fourier series. The phase offset ¢, is common to all
harmonic components; hence, at point x9 =0, phase
congruency occurs with different values of ¢,, yielding
different types of edges, e.g., for ¢, = /2 and ¢, = 0, step-
like and bar-like edges are perceived, respectively.

The use of QFPs for edge detection [40], [45] has been
largely motivated by this model: QFPs consist of a pair of
even and odd-symmetric filters h. and h,, with zero DC
response and identical Fourier spectrum magnitude. Con-
volution of a signal of the form of (43) with a QFP and
estimation of the local enerqy [40] measurement LE(x) =
(he * O)2 + (ho * O)2 yields a quantity invariant to ¢,, while,
in [45], it is proven that such an approach can better localize
composite edges than Canny edge detection.

We can bring (43) in the previous setting by writing it as
an expansion on a linear basis:

Ip(z|E) = ZE Bpi(z), where Dp=3,  (44)

= Acos(¢,), FEp=—Asin(¢,), FEs3=DB, (45)
BE 1 Z ap. COS LU()]{:T) (46)

Bpa(z Z ay sin(wokz), (47)

and Bpz(x) = 1. Obviously, the basis elements are periodic,
which is in contrast with the notion of an edge. However, as
shown in Fig. 6b and detailed in Appendix A, the spatial
support of the confidence function is so small that it takes
into account less than half of their period, where the basis
elements behave like typical edge signals. Consequently,
the filters h, = G(z)Bg,(z) and h, = G(z)Bpa(x) are tuned
to edge signals.

Considering negligible the spectrum magnitude of h. +
Jjh, for negative frequencies, we can view h. and h, as a
Hilbert pair. Following the same steps as in Section 3.2, we
can then show that filtering with this pair amounts to
estimating the optimal weighted projection of the image
neighborhood onto the edge-function basis, Bgri, Bgp.
Further, its squared local energy (h. * I)* + (h, % I)* locally
measures the fitness of the edge model to the observed data.

Comparing the generative models for edges and tex-
tures, the model of (23) accounts for signals that are ideally
localized in frequency, while that of (43) can account for
sharp transitions, using higher frequency terms. Further, in
the texture-model case, as shown in Fig. 6a, the support of
the related confidence functions allows for several oscilla-
tions of the harmonic component, thereby rendering their
outputs better tuned to periodic signals than isolated
intensity variations.

A picture of what each class “sees” in an image can be
obtained by reconstructing the image in terms of the locally
estimated model parameters; in Fig. 7, we see that the edge
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Fig. 7. Reconstruction of the nonsmooth component of the image in (a)
using (b) the edge model of (43) and (c) the texture model of (23). The
reconstruction in image (c) favors the periodic aspects of the local
structure, contrary to (b), where sharp nonperiodic transitions in intensity
are more pronounced.

model of (43) interprets image variation in terms of sharp
transitions in intensity, while the texture model of (23)
focuses on oscillatory image patterns. The contrast of the
reconstructed images is proportional to the amplitude of the
model or, equivalently, to the log likelihood of the image
patches given the models; one can observe that, along object
borders, the edge contrast is sharper than that of the texture
model and vice versa in the interior of textured areas. More
extensive results are available at the first author’s web page.

3.3.2 Null Hypothesis—Smooth Signals

Complementing the set of models, smooth (5) regions are
modeled as constant signals:

O(z) ~ Is(z) = B. (48)

This model reduces the credibility of texture/edge features
at smooth image areas; using the same rationale as with the
previous two models, we can view the output of convolu-
tion with a Gaussian function as the optimal weighted
projection of the observed image data on the basis element 1.
This model is bound to result in a larger reconstruction
error than the other two since it arises as a special case of
(23) and (43) by setting A = 0. We therefore introduce a
Minimum Description Length (MDL) penalty term equal to
MDL = —%log(>", G(x)); we set n =2 equal to the addi-
tional number of parameters, while the term }log(}", G(z))
can be derived by adapting to our case the proof in [24,
volume 2, chapter 6, appendix F].

3.3.3 Edge versus Texture Discrimination over Multiple
Scales

Up to now, it has been assumed that all three models
attempt to explain an image neighborhood at a fixed scale;
since we choose among the considered classes by combin-
ing evidence from all scales, we need to render comparable
likelihood terms that account for a different number of
image observations.

First, we derive a quantity invariant to additive constants
by considering the term Gy = log%, with H being one of
E and T and S being the smooth hypothesis. Replacing the
log likelihoods with their lower bounds then yields

1
G =55 (B DnEy — EsDsEg) + MDL(H). (49)
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The first summand quantifies the increase in log likelihood
gained by introducing the more complex model H, while
MDL(H) = —log(3_, Gu(x)) favors the smooth hypothesis at
areas where this gain is not significant; the subscript  has
been added here to G since different hypotheses may choose
different scales and, thus, different confidence functions G.
Apart from MDL(H), the quantity Gy scales proportionally to
the area under the confidence function Gy. Therefore, by
dividing it with ¢) Gy(x), we obtain an approximately
scale-invariant quantity, namely, the per-pixel gain in log
likelihood:

_ On
32, Gu(z)’

which is used subsequently instead of Gy to decide whether

Exn (50)

the observation is smooth or is better modeled by H. The
deviation from scale invariance is due to the MDL-related

rorm 220, Gn()

G and shows a small preference to
hypotheses ‘that model larger image areas, which is
intuitively plausible. Two design parameters in this final
expression are the factor c that determines the crispness of
the subsequent decisions and the assumed variance of the
noise process o. Eventually, these parameters should be
estimated using ground-truth data, but we have obtained
satisfactory results on a large variety of images using the
constant values o =10"! and ¢=10 for images taking

values in [0, 1].

Having derived this criterion allows us to compare the
two different classes, even if they choose submodels
residing at different scales: Separately finding the maxima
of the quantities £ and &7 over scales and orientations, we
can write, e.g., for the texture-class posterior:

P(O|T) Rr
P(T|0O) = =
(T10) P(O|T)+ P(O|E)+ P(O|S) Rr+Rp+1’
where Rr = P(oIT) = !

~ P(O|S)  1+exp(—&r)’
(51)

and, similarly, Rp =1/(1+ exp(—Eg)). The posterior for
the edge class is derived in an analogous manner, while,
for the smooth class, it is derived from the residual:
P(S|0) =1—- P(E|O) — P(T0).

This approach has been applied on a variety of natural
images, like those in Figs. 8 and 9, giving plausible results.' In
these images, the probability of an edge is typically higher
along the borders of objects, while, at textured regions, it is
lower than what would be indicated by a direct application of
an edge detection filter. We also observe that, on object
borders, there is a decrease in the probability of texture since
the edge model explains away the intensity variation.

We thus see that the generative model approach allows
us to interpret probabilistically and attach likelihood and
posterior probability terms to filtering operations; as we
show next, these can be practically incorporated in
subsequent tasks like image segmentation. Finally, based
on the generative model setting, we can also address

1. We distribute our Matlab code at http://cvsp.cs.ntua.gr/software.
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Fig. 8. Discrimination of textured areas from edges, using local
generative models: (a) input image, (b) texture, and (c) edge model
amplitude, /A?+ A%, with A; and A, estimated according to (34).
(d)-(f) Posterior probabilities for the three classes considered, using
(51). (a) Input image. (b) Texture amplitude. (c) Edge amplitude.
(d) Prob(smooth). (e) Prob(texture). (f) Prob(edge).

problems like boundary effects, missing data, and the
nonzero DC response of even-symmetric filters. For the first
two problems, we assign zero weight to the reconstruction
error at locations with missing data and points beyond the
image border, thereby getting responses with minimal
boundary effects. Concerning the last problem, D =
[B’GB| is not diagonal and its inverse is computed to
derive the optimal even/odd projection coefficients. All of
the matrix inversions are computed offline, resulting in
minimal additional computational burden. Generally, the
pair of even/odd symmetric filters does not need to
constitute a Hilbert pair, as, e.g., in [40], since the expression
of the weighted reconstruction error does not in any way
constrain the basis elements used.

4 UNSUPERVISED TEXTURE SEGMENTATION WITH
AM-FM FEATURES AND WEIGHTED CURVE
EVOLUTION

In this section, after a short review of existing region-based
curve evolution methods for texture segmentation, we
present our contributions comprising 1) the use of AM-
FM features as cues for variational unsupervised texture
segmentation and 2) the introduction of Weighted Curve
Evolution (WCE) as a method that allows us to combine
texture, edge, and intensity cues in a locally adaptive
manner. Experimental results using images from the
Berkeley data set [38] are provided at the end of the
section, validating the merits of our contributions on the
segmentation task.

4.1 Curve Evolution Methods for Texture

Segmentation

The first variational region-based textured image segmenta-
tion techniques [30], [57] used modified versions of the
Mumford-Shah functional [41] to incorporate the multi-
dimensional features used for texture description. Most
recent algorithms [5], [7], [44], [49], [55] use similar energy
criteria and rely on curve evolution for energy minimization.

A significant precursor of current work has been the
Region Competition method [57], which introduced prob-
abilistic information in curve evolution while clarifying and

(@)

Fig. 9. (a) Input images and posterior probabilities of (b) texture and
(c) edge models, respectively.

unifying different variational criteria. The idea of this
algorithm is the maximization of the probability of the
features F' extracted from an image, using a set of M regions
R;, within which the observations are assumed to follow a
simple region-specific parametric distribution with para-
meters ¢;. Combining the log-likelihood of the image features
with a prior term on the length of region borders
I' ={Ty,...,T'y}, whereT'; = OR;, gives rise to the following
functional:

M .
s oy =35 [as— [[ wspre). 62
i=1 i i

Calculus of variations yields the evolution equation for the
ith region border:

ar;
= —priNi +log i
P(F|6))

ot
where k; is the curvature, N, is the outward unit normal of
front I';, and j is the neighboring region that competes with
i for the observations at the interface position. The front
motion steadily increases the functional of (52) by assigning
observations to the region that models them better while
maintaining the borders smooth at the same time.
In [44], this evolution algorithm has been combined with
boundary terms, giving rise to the GAR algorithm:

P(F|0;)
P(F|0;)

ar;
ot

=|Alog + (1= N[=VgIg)-Ni—g(Ip)r:] N,

(54)

where ¢(-) is a monotonically decreasing function, I is the
strength of an edge detection system, and )\ determines the
relative weights assigned to region and edge-based infor-
mation. The last term is inspired from the Geodesic Active
Contour model [6], [25] and forces the region borders to
stay close to edges. Further, for the implementation of this
evolution law, the use of the level set technique [42] was
proposed; this has been established as an elegant mathe-
matical tool for the solution of problems involving evolving
interfaces, offering robustness, topological flexibility, and
mathematical tractability.



152 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31,

In our implementation, which follows [44], we use a
separate embedding function for each front and solve the
evolution equation using an explicit integration scheme. For
efficiency and robustness, a multiresolution scheme in
combination with the narrow-band method is used, while,
for the reinitialization of the embedding functions, we use
the method in [12]; more efficient schemes could be used,
however, as, e.g., in [43].

4.2 Modulation Features for Texture Segmentation

In the supervised texture segmentation scenario, e.g., [44],
the high dimensionality of texture features derived from a
Gabor filterbank can be dealt with by choosing the channels
that maximally separate different textures. It is, however,
harder to tackle the unsupervised problem, where heur-
istics are typically used. In a recent attempt to face the high-
dimensionality problem [49], a vector valued diffusion
procedure has been used to smooth a compact texture
descriptor, derived from local image derivatives:

8ul _ 1
= d1v< Z |Vug|) VU;) g(z) = Vu + 103"

where the channels are initialized to wui(-,0) =I2,
us(+,0) = I, 1, us(-,0) = I;. Combined with image intensity,
the resulting four-dimensional feature vector offers satis-
factory results for the unsupervised segmentation of
textured images. A problem mentioned in [49] is that these
features do not carry information about texture scale, but, in
[5], a diffusion-based scale measure has been introduced to
extend the original feature vector. Still, when using the
output of a nonlinear diffusion procedure, one does not
have a firm understanding of what the features stand for
since they are a “by-product” of a complex process.

We argue that the DCA features are better suited for
segmentation for primarily three reasons: First, information
about texture scale, contrast, and orientation is captured
with a low-dimensional descriptor. Second, the generative
model interpretation facilitates the estimation of the poster-
ior probability of the texture and edge classes, which we use
subsequently to determine the influence of the texture
features on the evolution process. Third, DCA features are
easily interpretable: They are derived from a model for
texture representation and can synthesize the textured
component of the image, thereby showing us what the
model “sees” in the image.

The use of DCA features for image segmentation was
initially proposed in [48], [51] and subsequently in [11], [28],
where results with various textured images were demon-
strated for proof of concept. The feature vector consists of
the image intensity and the DCA components, namely,
amplitude, frequency magnitude, and orientation. The
distribution P(-|¢;) within region 7 is modeled as a product
of a multivariate Gaussian for the first three features and a
von Mises distribution for the orientation feature 0; details
on the latter are given in Appendix C. Parameter estimation
for the distributions P(-|0;) is performed in alternation with
curve evolution, yielding an adaptive unsupervised image
segmentation scheme. This contrasts with the initial work in
[48], combining curve evolution techniques with DCA
features: Therein, curve evolution solely using a Geodesic
Active Contour term was used at postprocessing to simplify
the borders by introducing curvature information. In this
work, arbitrary initial conditions are used for the curves,
which automatically detect the image segments.

(55)
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4.3 Cue Combination via Weighted Curve Evolution
When the assumptions underlying feature extraction do
not correspond to the signal behavior, the features are
meaningless and can mislead the segmentation. For example,
on object borders, texture features are erroneously active; at
smooth regions, the orientation features behave erratically;
while, in the interior of textured regions, the edge and
intensity cues can impede the evolution of the curve. Recent
approaches to dealing with this problem include [16], [31],
where fairly intricate techniques are used to determine the
textured areas in an image. Instead, using a generative model
approach, one can quantify which hypothesis is most reliable
at a specific location in the image, thereby assigning a
confidence measure to each of the modalities used for cue
extraction. Ina manner inspired from the fusion literature, we
incorporate the class posterior probabilities derived in (51) in
the Region Competition algorithm, thereby rendering the
curve evolution immune to the aforementioned problems.

Supra-Bayesian fusion methods [21] combine the outputs
of multiple classifiers (“experts”) by treating them as random
variables and considering their joint distribution. Specifi-
cally, for two classes ¢ and j and a set of features F, any soft
classifier usmg these features provides a log-odds quantity
L = log P(( F“ 7- This quantity is treated as a random variable
and is assumed to follow a Gaussian distribution condi-
tioned on the actual class of the features:

P(Lpli) ~ N P(Lplj) ~

where o is common for both cases. These distributions
quantify the certainty associated with any classifier deci-
sion: A large o indicates a low confidence in log-odd
accuracy and diminishes the effect of a large value of Lp.
For a good classifier, if the data /" are due to hypothesis i, it
is highly probable (low o) that L will take a high value
(i > pj) and vice versa.

The results of N classifiers using different features or
different classification methods can be integrated based on
this approach. Their log-odds £ = [L4,..., Lk] are viewed
as a multidimensional random variable that follows a
Gaussian distribution conditioned on the class i:

P(Li) ~ N(p;, %), P(L]7) ~ N(p), ).

The posterior log-likelihood ratio given all the expert odds
then equals

(:U'ivoj)a N(Nj702)’ (56)

(57)

P(i|L)
P(j|L)

For the special case where the classifiers behave indepen-
dently, we have a diagonal covariance matrix; further, by
appropriately scaling and shifting the classifier outputs, we
can guarantee that u; = —p; and all the elements of p; equal
unity so that we have

Byt Byop
= (e, -

log Hy)- (58)

. K [:
|£ Z_

This formula expresses a straightforward idea: When a
classifier gives noisy results, i.e., has a large o, a lower
weight should be assigned to its decision and vice versa.
The use of log-odds is particularly convenient in that we
express the combination operation in terms of a summation.

(59)
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Fig. 10. Segmentation results using different features and evolution schemes. (a) Input image. (b) Segmentation using DCA features and intensity,
as in our initial work [28]. (c) Segmentation using our implementation of the diffusion features in [49]. (d) Segmentation using DCA features in

conjunction with the Weighted Curve Evolution method.

Within this framework, the probabilistic balloon force
of (53),
P(F0;)
EERE)
can be seen as classifying the observed features F' into either
region 4 or region j and advancing the fronts so as to
correctly classify the observations. The link we build
consists of treating the class posterior probabilities of (51)
as indicative of the accuracy of a classifier that uses a subset
of these features. We consider that three classifiers are used
to determine the evolution of the curve: one based on
intensity, another on texture cues, and a loosely defined
“context-based” classifier that groups pixels into separate
classes across edges; the term (—Vg-N)N — g in (54)
has this effect close to edges, ie., aligning the segment
borders with the edges. For the first two, we have, using the
previous notation,

P(Fr|0r;) P(Fsl0s,)
S Lo =log 2o
P(Frlor;)” T "B P(Fls,)

where, by P(F¢|0.,), we denote the likelihood of the feature
set F, related to class ¢ (texture-T or smooth-S) under the
distribution P of region i, whose parameters are 6..;. For the
final decision, each expert’s decision is weighted by the
posterior probability of each hypothesis (51); this way, for
textured areas, the texture features have a larger impact on
the evolution of the curve than the intensity features and
vice versa for smooth regions. Equation (54) then gives rise
to an evolution scheme that we call Weighted Curve
Evolution:

Ly =log (60)

or; P(F.|0.;)
= welog ———"2 + wp[(-Vg-N) — gs] |N.
o CEET,S S TAT) el(=Vg-N) — gr]

(61)

In (61), we use as weights wg, wr, and wg the posterior
probabilities of the edge, texture, and smooth hypotheses.
Note that weighting with wp does not interfere with the

edge detection procedure used to estimate Vg since it only
indicates the importance of the edge information.

We have deliberately used wg, wr, and wg and avoided
the posterior probability notation to clarify that apart from
the intuitive motivation presented earlier, no formal
connection is implied between the class posterior probabil-
ities and an optimal combination of the results. Any other
measure of “texturedness,” “edgeness,” and “smoothness”
could be used instead, like the ones examined in [31], [37],
[53], while our measures of these quantities could be
equally well used in the context of their work.

4.4 Experimental Evaluation

We have applied our method to the unsupervised segmenta-
tion of a large set of natural images, including the Berkeley
Segmentation Benchmark [38]. To demonstrate the merit of
our contributions, we have considered alternative features
and segmentation approaches, as well as a simpler version of
our approach, initially presented in [28].

Initially, in Fig. 10, we present segmentation results
using three alternative schemes: In Fig 10b, the results of
curve evolution along [28] are shown, using the 3D DCA
texture descriptor obtained with energy-based channel
selection. In Fig 10c, we use the nonlinear diffusion-based
feature set in [49], using our own implementation of the
diffusion scheme. Finally, in Fig 10d, we show results
obtained with the DCA features and the cue integration
scheme described in Section 4.3. For all of the results that
we show, the number of fronts is manually determined,
while similar segmentations are obtained for different
numbers of fronts. In general, we consider the task of
estimating the number of segments a high-level task, while
our concern in this work is improving the performance of
segmentation as a front-end module.

Concerning our original approach [28], we observe the
problems mentioned earlier: Even though satisfactory results
are obtained with heavily textured images as, e.g., in the tiger
and sea-flower scenes, on smooth areas the erratically
behaving orientation vector leads to wiggly boundaries.
Further, for example, for the zebra image, the large texture
amplitude estimate at the object’s borders inflates the fore-
ground region since the competing background hypothesis is
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TABLE 2
Average/Median Values of BCE for Different Segmentation Schemes and Front Numbers (Lower Is Better)
Fronts Optimal 2 3 4 5 6 7 8 9 10
DCA, WCE | 38/39 | .46/49 | 49751 | 51752 | .54/.53 | 5453 | 57157 | 59/58 | 59759 | .61/.61
DCA, Plain | .39/.39 | .48/.51 | .50/51 | .51/.52 | .54/.53 | .56/.56 | .58/.58 | .60/.59 | .62/.61 | .63/.61
[49], WCE | 40741 | .47/49 | 51/.53 | 52/.53 | .55/55 | .57/.58 | .59/.58 | .60/.60 | .62/.61 | .63/.63
[49], Plain | .40/.42 | .48/.50 | .52/.53 | .55/.54 | .56/.56 | .59/.59 | .60.60 | .63/.62 | .63/.63 | .65/.65
N. Cuts A1/43 | 49151 | .52/.53 | .55/.53 | .55/.55 | .59/.60 | .60/.59 | .63/.61 | .631.63 | .64/.65

characterized by low-amplitude features and, hence, does not
easily explain these observations.

The features in [49] perform comparably to the DCA
features but suffer from the same problems on smooth areas.
In many figures, e.g., the rocks, lion, and tiger images in
Fig. 10, the borders of objects are grouped in a separate region
since the image derivatives due to object borders are treated
as texture features and call for a region to explain them.

The Weighted Curve Evolution results are immune to the
confusion between edge and texture cues; better segmenta-
tion results are typically obtained, with the region borders
accurately localizing the object borders. The negative effects
of orientation features at smooth regions are diminished
due to the smaller weight assigned to the texture hypothesis
there. One can mention some exceptions, for example, the
buildings image in Fig. 10: There, the texture cue for the left
building is not strong enough and leads to its over-
segmentation in the Weighted Curve Evolution case.

Coming to systematic evaluation results on the Berkeley
Benchmark, the first segmentation evaluation measure we
considered was the Bidirectional Consistency Error (BCE)
introduced in [36]. This quantifies, in a smooth manner, the
overlap between a machine-generated segmentation S);
and a set of human segmentations S, _x, by comparing, at
each pixel p;, the machine-generated segment R),(p;) to all
possible human-generated segments R, _x(p;) containing p;.
Its expression is

1< .
BOE(SJU) = Ez IIlklIl m&X(E(S]\], Skvp’i)’ E(Sk7 S]U>pi))7
i=1 )

(62)

where E(S]\17SA7P7) = | AIT%J?[}p)]](p )‘ ’

which averages, over the n image pixels, a symmetric
segmentation discrepancy measure defined in terms of
E(Su, Sk.pi). The latter measures the degree to which
region R, is not contained in region R), via normalized area
differences. It is shown in [36] that the BCE sharply
separates human from random segmentations and we
therefore use it here as a region-based segmentation
evaluation measure.

Another measure used for segmentation evaluation in
[13] is the F-measure related to the Precision-Recall
measurements obtained by treating the segmentation
boundaries as an edge map. Precision equals the proportion
of correctly detected edges and Recall is the proportion of
human-generated boundaries that were detected. The
F-measure equals their geometric mean and summarizes a
detector’s performance. Even though this measure ignores
the connected components provided by a segmentation, it
quantifies the accuracy of the segment boundary locations.

(63)

We use both measures since they behave complementa-
rily. The F-measure severely penalizes missed boundaries
and can improve for oversegmentations of the image, while
BCE favors a moderate number of large segments.

To explore the merits of our approach, we have
compared our method to the alternative segmentation
methods on the Berkeley Benchmark. The diffusion features
are extracted using our own implementation, designed to
accurately match the results in [49]. The Normalized Cuts’
results have been obtained using the Berkeley Segmentation
Engine, using gray-scale images segmented with texture
and intensity cues.

We compute the results obtained for an increasing
number of image regions, without any postprocessing to
determine the number of fronts to reduce the different
sources of change in performance. For the sake of
completeness, we also compute the statistics of BCE that
would be obtained if the number of fronts providing the
best BCE score was available by an “oracle”; these are
shown in the first column of Table 2.

Specifically, in Table 2, we compare the average and
median BCE measures obtained from the different segmen-
tation algorithms. The results validate the usefulness of the
WCE scheme when comparing the “WCE” with the “plain”
columns. Further, the results show a consistent improve-
ment obtained when using our DCA features instead of
those in [49] and also when the WCE method is used in
conjunction with the latter. Finally, our method is shown to
outperform Normalized Cuts for all choices of the number
of segments.

In Fig. 11, we use Precision-Recall measurements to
further explore the merit of our method compared to
Normalized Cuts. We note that the F-measures obtained here
are inferior to those reported in [13] since we do not use color
in order to compare the results on an equal footing. Even
though the Normalized Cut method minimizes a global
criterion and can provide a potentially optimal segmentation,

5 segments

DCA, WCE, F: 0.45
N. Cuts, F: 0.27
- asa 5

10 segments 40 segments

DCA, WCE, F: 0.49
N. Cuts, F: 0.42
> &

DCA, WCE, F: 0.49
N. Cuts, F: 0.33
vs% =

Precision
Precision
Precision

Recall
Aggregate F-measure
Fronts 5|10]20|30] 40
DCA, WCE | .45| .49 | .50 | .49 | .48
N. Cuts |.26] .33 | .34 | .41 | .42

Fig. 11. Precision-Recall results on the Berkeley Benchmark obtained
for an increasing number of image segments.
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Fig. 12. Segmentation results using DCA features and WCE (preferably seen in color).

from our results, we observe that the performance of curve
evolution methods is generally better.

5 CONCLUSION

Motivated by the mathematical clarity and the practical
applicability of modulation models, we have pursued their
exploitation in texture analysis and segmentation, working
at all problem levels. Apart from improvements in feature
extraction in itself, where a rigorous contribution to the
demodulation problem and an improved channel selection
scheme have been presented, our work has focused on the
cross-fertilization between ideas from image analysis and
computer vision. Starting from establishing a link between
AM-FM and generative models, we have phrased Gabor
filtering/DCA channel selection in terms of parameter
estimation and hypothesis testing, respectively. Building on
this link, we have formulated edge detection on common
grounds, facilitating the extraction of model-based posterior
probabilities for the edge, texture, and smooth classes.
Inspired by the fusion literature, we have introduced the
Weighted Curve Evolution method that weighs the con-
tributions of different cues according to their model
posterior probability. This has allowed the exploitation of
these quantities in natural image segmentation, yielding
systematically better results, as shown on the Berkeley
Segmentation Benchmark.

In future work, we intend to explore the use of AM-FM/
DCA models in related problems, like U+V decomposition
and image inpainting, as well as the extraction of salient
tokens for object detection problems. We believe that AM-
FM/DCA models have not yet been brought to their full
potential; by combining the transparency of model-based
approaches and the efficiency of feature-based approaches,
they can serve as a reliable front end for higher level
computer vision tasks.

APPENDIX A
FILTERBANK SPECIFICATION

We use isotropic Gabor filters with impulse response
T

g(z,y) = exp(— 52k )exp(gucm + juey), where o determines
the spatial support and (uc,v.) is the localization in the

frequency plane. Fifty geometrically scaled filters are
used, covering five scales and 10 orientations in the
frequency plane, as shown in Fig. 22. The design is
similar to [19]; the smallest frequency is r, = 0.5 cycles/
= /u2 + v? decreas-
ing geometrically with a ratio R~ 0.56. The central
frequency is related to o as o-r.=3.7, resulting in a
half-peak bandwidth of B~ 0.7 octaves.

For the edge detection filters, we relate to each texture
model of the form (23) a corresponding edge model expressed
asin (43). The fundamental frequency in (43) is set empirically
to wy = 0.4wg, with we being the frequency of the texture
model in (23). The Fourier series coefficients ay. in (43) are set
equal to those of a periodic square wave.

image, with the center frequencies r.

APPENDIX B
BrROWNIAN NOISE AND TEAGER ENERGY

In Section 3.2.2, a white Gaussian noise (WGN) assumption
led to the interpretation of the channel selection criterion as
a lower bound on the observation likelihood.

In the more general case of correlated noise, parameter
estimation involves diagonalizing the noise covariance
matrix [24] and analysis becomes intractable. For Brownian
motion, however, one can work on the derivative of the
observations that are then modeled in terms of the derivatives
of the basis elements plus WGN. This amounts to reconstruct-
ing the derivative of the signal O’ on the differentiated basis
elements, which, specifically for sinusoids, are By, =
and B/, = wBr,;. The normalization of the basis elements
with respect to a multiplying constant is effected by the
combination of (34) and (35), so we can consider that the
signal derivative is projected onto basis elements B/, = By
and B}, = —Br,. The amplitude A’ of the differentiated
signal O' can thus be estimated as

—wBr s

4 = (O <GB} + (0 GBray (64)
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= /(0GB + (0GB, (65)

— (0GB + (0GB’ =wA. (66)

Iterating the previous analysis, the data likelihood can be
expressed in terms of (4')’ =w?4?, where A is the
amplitude estimate for the nondifferentiated signal. The
quantity w?A? equals the response of the energy operator in
(4) for a sinusoidal, probabilistically justifying its use for
channel selection in (20) in the case of Brownian noise.

APPENDIX C

ORIENTATION DISTRIBUTION

exp(r cos(6—6p))
271y (k)

is analogous to the Gaussian for orientational data. I is the

The von Mises density function Py (6; 6y, k) =

Bessel function of the first kind with pure imaginary

argument, while the estimator of 6, is given by [15]
0() = tanfl (72’( sin(6)

kcos((ﬁ.)
the solution of

). k can be numerically estimated as

1 K 2 K 2
Ii(k) = ady(k), &= % <Z sin(Gk)> + (Z cos(@k)> ,
k=1 k=1

with K being the number of observations within the region.
Actually, since the orientation estimates range in [0, 7) and
not in [0,27), we multiply their value by two before
inserting them into the parameter estimation and likelihood
expressions.
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