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Abstract—In this work, we formulate the interaction between image segmentation and object recognition in the framework of the
Expectation-Maximization (EM) algorithm. We consider segmentation as the assignment of image observations to object hypotheses
and phrase it as the E-step, while the M-step amounts to fitting the object models to the observations. These two tasks are performed
iteratively, thereby simultaneously segmenting an image and reconstructing it in terms of objects. We model objects using Active
Appearance Models (AAMs) as they capture both shape and appearance variation. During the E-step, the fidelity of the AAM
predictions to the image is used to decide about assigning observations to the object. For this, we propose two top-down segmentation
algorithms. The first starts with an oversegmentation of the image and then softly assigns image segments to objects, as in the
common setting of EM. The second uses curve evolution to minimize a criterion derived from the variational interpretation of EM and
introduces AAMs as shape priors. For the M-step, we derive AAM fitting equations that accommodate segmentation information,
thereby allowing for the automated treatment of occlusions. Apart from top-down segmentation results, we provide systematic
experiments on object detection that validate the merits of our joint segmentation and recognition approach.

Index Terms—Image segmentation, object recognition, Expectation Maximization, Active Appearance Models, curve evolution,
top-down segmentation, generative models.
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1 INTRODUCTION

THE bottom-up approach to vision [28] has considered the
interaction between image segmentation and object

detection in the scenario where segmentation groups
coherent image areas that are then used to assemble and
detect objects. Due to its simplicity, this approach has been
widely adopted, but there is a growing understanding that
the cooperation (synergy) of these two processes can
enhance performance.

Models that integrate the bottom-up and top-down
streams of information were proposed during the previous
decade by researchers in cognitive psychology, biological
vision, and neural networks [12], [31], [33], [41], [48], where
the primary concerns have been at the architectural and
functional level. In this decade, the first concrete computer
vision approaches to the problem [7], [54] have inspired a
host of more recent systems [6], [15], [21], [24], [25], [27],
[32], [45], [51], [52], pursuing the exploitation of this idea.

Several of these works have been inspired by the
analysis-by-synthesis framework of Pattern Theory [17],
[34], [45]. In this setting, a set of probabilistic generative
models is used to synthesize the observed image and the

analysis task amounts to estimating the model parameters.
This approach can simultaneously regularize low-level
tasks using model-based information and validate object
hypotheses based on how well they predict the image.

In our work, we use Active Appearance Models (AAMs)
as generative models and address the problem of jointly
detecting and segmenting objects in images. Our main
contribution, preliminarily presented in [21], is phrasing
this task in the framework of the Expectation-Maximization
(EM) algorithm [13]. Specifically, we view image segmenta-
tion as the E-step, where image observations are assigned to
the object hypotheses. Model fitting is seen as the M-step,
where the parameters related to each object hypothesis are
estimated so as to optimally explain the image observations
assigned to it. Segmentation and fitting proceed iteratively;
since we are working in the framework of EM, this is
guaranteed to converge to a locally optimal solution.

To make the combination of different approaches
tractable, we build on the variational interpretation of EM;
this phrases EM as the iterative maximization of a criterion
that is a lower bound on the observation likelihood.
Specifically, we consider two alternative approaches for
the implementation of the E-step; the first initially uses an
off-the-shelf oversegmentation algorithm and then assigns
the formed segments to objects. The second uses a curve-
evolution-based E-step that combines AAMs with varia-
tional image segmentation. Both approaches can be seen as
optimizing the criterion used in the variational interpreta-
tion of EM. Further, we combine AAM fitting and image
segmentation based on this criterion. We derive modified
fitting equations that incorporate segmentation information,
thereby automatically dealing with occlusions.
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Finally, we provide systematic object detection results
for faces and cars, demonstrating the merit of this joint
segmentation and recognition approach.

Paper outline. In Section 2, we introduce the basic
notions of EM and give an overview of our approach.
Section 3 presents the generative models we use and
formulates the variational criterion optimized by EM. We
present the two considered approaches for the E-step in
Section 4 and derive the M-step for AAMs in Section 5.
Experimental results are provided in Section 6, while
Section 7 places our work in the context of existing
approaches; technical issues are addressed in the Appendix,
which can be found in the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/TPAMI.2008.158.

2 EM APPROACH TO SYNERGY

Our work builds on the approach of generative models to
simultaneously address the segmentation and recognition
problems. For the purpose of segmentation, we use the
fidelity of the generative model predictions to the image in
order to decide which part of the image a model should
occupy. Regarding recognition, each object hypothesis is
validated based on the image area assigned to the object, as
well as the estimated model parameters, which indicate the
familiarity of the object appearance.

This yields, however, an intertwined problem: On one
hand, knowing the area occupied by an object is needed for
the estimation of the model parameters and, on the other
hand, the model synthesis is used to assign observations to
the model. Since neither is known in advance, we cannot
address each problem separately. We view this problem as
an instance of the broader problem of parameter estimation
with missing data: In our case, the missing data are the
assignments of observations to models. A well-known tool
for addressing such problems is the EM algorithm [13],
which we now briefly describe for the problem of parameter
estimation for a mixture distribution [5] before presenting
how it applies to our approach.

2.1 EM Algorithm and Variational Interpretation
Consider generating an observation In by first choosing one
out of K parametric distributions, with prior probability �k,
and then drawing a sample from that distribution with
probability P ðInj�kÞ. EM addresses the task of estimating
the parameter set A … fA1; . . . ; Akg, Ak … ð�k; �kÞ, which
optimally explains a set of observations I … fI1; . . . ; INg
generated this way.

The missing data are the identities of the distributions
used to generate each observation; these are represented
with the binary hidden variable vectors zn … ‰zn;1; . . . ; zn;K �T .
zn corresponds to the nth observation and its unique
nonzero element indicates the component used to generate
In. By summing over the unknown hidden variables
Z … fz1; . . . ; zng, we can express the likelihood of the
observations given the parameter set:

log P ðIjAÞ …
XN

n…1
log P ðInjAÞ …

XN

n…1
log

X

zn

P ðIn; znjAÞ: ð1Þ

We can write the last summand as

P ðIn; znjAÞ … P ðInjzn; AÞP ðznjAÞ …
YK

k…1
�kP ðInj�kÞ‰ �zn;k : ð2Þ

Finding the optimal estimate A� is intractable, since the
summation over zn appears inside the logarithm in (1).
However, for a given Z, one can write the full observation log
likelihood:

log P ðI; ZjAÞ …
X

n

X

k
zn;k log �kP ðInj�kÞð Þ: ð3Þ

The parameters in this expression can be directly estimated
since the summation appears outside the logarithm.

The EM algorithm exploits this by introducing the
expectation of (3) with respect to the posterior distribution
of zn;k. Denoting by zn;k the vector zn that assigns
observation n to the kth mixture, i.e., has zn;k … 1, we write
the EM algorithm as iterating the following steps:

. E-step. Derive the posterior of z conditioned on
the previous parameter estimates, A�, and the
observations:

En;k � P ðzn;kjIn; A�Þ …
��

kP Inj��
k

� �

P
j ��

jP Inj��
j

� � ; ð4Þ

and form the expected value of the log likelihood
under this probability mass function:

log P I; ZjA�ð Þh iE…
X

n

X

k
En;k log �kP ðInj�kÞð Þ: ð5Þ

. M-step. Maximize the expected log likelihood with
respect to the distribution parameters:

��
k …

P
n En;k

N
; ��

k … arg max
X

n
En;k log P ðInj�kÞ:

ð6Þ

Intuitively, in the E-step, the unobserved binary variables in
(3) are replaced with an estimate of each mixture’s
“responsibility” for the observations, which is then used
to decouple parameter estimation in the M-step. This
consistently increases the likelihood [13] and converges to
a local maximum of (1).

EM can also be seen as a variational inference algorithm
[18] along the lines of [35]. There, it is shown to iteratively
maximize a lower bound on the observation likelihood:

log P ðIjAÞ � LBðI; Q; AÞ;

LBðI; Q; AÞ …
X

Z
QðZÞ log

P ðIjZ; AÞP ðZjAÞ
log QðZÞ

:
ð7Þ

The bound LB is expressed in terms of Q, an unknown
distribution on the hidden variables Z, and the parameter
set A. The form in (7) is derived from Jensen’s inequality.
Typically, Q is chosen from a manageable family of
distributions; for example, by choosing a factorizable
distribution Q …

Q
QnðznÞ, computations become tractable

since the summations in (7) break over n.
The individual distribution QnðznÞ determines the prob-

ability of assigning the nth observation to one of the
K components. To make the relation with (4) clear, we use

KOKKINOS AND MARAGOS: SYNERGY BETWEEN OBJECT RECOGNITION AND IMAGE SEGMENTATION USING THE EXPECTATION... 1487

Authorized licensed use limited to: National Technical University of Athens. Downloaded on January 8, 2010 at 06:49 from IEEE Xplore.  Restrictions apply. 



Qn;k to denote the probability of zn;k. By breaking the
product in the logarithm, we can thus write (7) as

LBðI; Q; AÞ …
X

n;k
Qn;k‰log P ðInjAkÞ

þ log P ðzn;kjAkÞ � log Qn;k�:
ð8Þ

Maximizing the bound in (8) with respect to Q subject to the
constraint that

P
k Qn;k … 1, 8n, leads to Qn;k … En;k. There-

fore, the variational approach to EM interprets the E-step as
a maximization with respect to Q.

Apart from providing a common criterion for the two
segmentation algorithms used subsequently, this formula-
tion makes several expressions easier. For example, by
breaking the product in (7) and keeping the termP

Z QðZÞ log P ðZjAÞ, we have a quantity that captures prior
information about assignments. For mixture modeling, this
simply amounts to the expression

P
n

P
k Qn;k log �k, which

favors assignments to clusters with larger mixing weights.
In image segmentation, however, there are other forms of
priors, such as small length of the boundaries between
regions, or object-specific priors, capturing the shape
properties of the object. We will express all of these in
terms of QðZÞ log P ðZjAÞ.

2.2 Application to Synergy
In the mixture modeling problem, the hidden variable
vectors provide an assignment of each observation to a
specific mixture component. The analogy with our problem
comes by seeing the object models as the mixture
components and the hidden variables as providing the
image segmentation.

We apply the EM algorithm to our problem by treating
segmentation as the E-step and model fitting as the M-step,
as shown in Fig. 1. In the E-step, we determine the
responsibility of the object model for image observations
and, in the M-step, we estimate the model parameters so as
to optimally explain the data that it has occupied.
Intuitively, we consider segmentation as determining a
window through which the object is seen, with binary
hidden variables determining whether the object is visible

or not. Top-down segmentation decides where it is best to
open this window, while model fitting focuses on the object
parts seen through it.

Illustrating this idea, Fig. 2 shows the result of iterating
the E- and M-steps for a toy example: Starting from a
location in the image proposed by a front-end detection
system, the synthesis and segmentation gradually improve,
converging to a solution that models a region of the image
in terms of an object. The assignment of observations to a
model and the estimation of the model parameters proceed
in a gradual relaxation-type fashion until convergence.

Apart from providing a top-down segmentation of the
image, this idea can be useful for two more reasons: First,
we use segmentation information to deal with occlusion.
The E-step can decide to assign occluded parts to the
background, thereby freeing the object from explaining
these areas. The fitting can therefore focus on the areas that
actually belong to the object, as shown in Fig. 3: Based on
our approach, the synthesis more accurately captures the
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Fig. 1. Overview and pseudocode for our approach: A front-end object detection system provides a set of candidate object locations. The location of
each object hypothesis Oi is used to initialize the parameters Ai of a generative model, which then enters an EM loop. In the E-step, the object
obtains the image areas it explains better than the background and, in the M-step, the model parameters are updated. After convergence, the model
parameters and the object segmentation are used to verify object hypotheses and prune false positives.

Fig. 2. Improvement of the segmentation and parameter estimates at
increasing iterations of EM. The middle row shows the evolution of the
face hypothesis region (E-step) and the bottom row shows the object
fitting results, using the above region (M-step).
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intensity pattern of the face and gives reasonable predic-
tions in the part that has been occluded. We address this
aspect in further detail in Section 5.

Second, we can use the E-step results, as well as the
AAM parameters, to prune false positives, as shown in
Fig. 4. The likelihood of the AAM parameters under the
model’s prior distribution indicates how close the observed
image is to the object category, which helps discard false
positives. Further, the E-step results quantify the fidelity of
the model to the image data in terms of the extent of the
area assigned to it. Object hypotheses generated from
detections due to background clutter have a low chance of
explaining a large part of the image and thereby obtain a
smaller area. We systematically evaluate the merit of these
ideas in Section 6.

Both of these uses could, in principle, be pursued with
different approaches, like the stochastic search over models
and segmentations in [45]. However, our work makes the
use of a bottom-up/top-down loop broadly accessible by
using a deterministic and well-studied inference algorithm.
Both the EM algorithm and the system components are
widely used in current research and can be incorporated
with little additional effort in existing systems.

3 GENERATIVE MODELS AND EM CRITERION

A basic ingredient of our approach is the use of generative
models; such models are popular in computer vision as they
can be used to formulate in a principled manner problems
like detection, tracking, and, in our case, top-down
segmentation. For object detection, such models are used
extensively in the setting of part-based object models. In our
work, we are interested in modeling the whole area
occupied by an object instead of a few interest points or
features. We therefore consider global generative models
for image intensity.

We now introduce the models we use for our object
categories and the alternative background hypothesis. At
the end of this section, we combine them in an EM criterion
used in the rest of the paper. This is then maximized by the
E- and M- steps of our approach.

3.1 Object Model: AAMs
For Fig. 2, a PCA basis for faces [47] was used as a
generative model, resulting in “ghosting artifacts,” e.g.,
around the hair. This is due to the absence of a registration

step in typical PCA models that perplexes both the
modeling and the segmentation of deformable objects.

We therefore use AAMs [9], [20], [30] as models that
explicitly account for shape variability and can drive both
the analysis and segmentation tasks. Since we want our
approach to be broadly applicable to object detection, we
use AAMs learned with the approach in [23]. The only
information used there is the bounding box of the object,
which is used also by most unsupervised learning algo-
rithms for object detection.

AAMs model separately shape and appearance variation
using linear expressions and combine them in a nonlinear
manner. Specifically, a deformation field S,

Sðx; sÞ � Sxðx; sÞ; Syðx; sÞ
� �

…
XNS

i…1
siSiðxÞ; ð9Þ

is synthesized to bring the image pixel ðSxðx; sÞ; Syðx; sÞÞ
in registration with the template pixel x … ðx; yÞ. The
appearance T is synthesized on the deformation-free
template grid as

T ðx; tÞ … T 0ðxÞ þ
XNT

i…1
tiT iðxÞ: ð10Þ

The model parameters are the shape and texture
coefficients s … ðs1; . . . ; sNS Þ and t … ðt1; . . . ; tNT Þ, while S
and T are the corresponding basis elements, and T 0ðxÞ is
the mean appearance.

Given an observed image I, AAM fitting iteratively
minimizes with respect to s and t a criterion defined on the
template grid:

Eðs; tÞ …
X

x
HðxÞ I Sðx; sÞð Þ � T ðx; tÞð Þ2; ð11Þ

where HðxÞ is the indicator function of the object’s support.
Observations at locations that do not get warped to the
interior of this support cannot be modeled by the AAM and
therefore do not contribute to the error.

Under a white Gaussian noise error assumption, the log
likelihood of IðxÞ writes

log P IðxÞjs; tð Þ … �
IðxÞ � T S�1ðx; sð Þ; tÞð Þ2

2�2 �
log 2��2

2
:

ð12Þ
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Fig. 3. Dealing with occlusion. The sunglasses in (a) lead to erroneous
AAM fitting, as shown in (b). The EM approach leads to the more robust
fit in (c) since the E-step results in (d) do not assign the sunglass region
to the object. (a) Input. (b) Plain AAM. (c) EM-based AAM. (d) E-step
results.

Fig. 4. Top-down information helps prune false positives. Background
clutter leads to a false positive, shown with a red-dashed box in (a); this
is pruned due to both the unlikely AAM parameter estimates, witnessed
as a nontypical face in (b), and the lower values of the E-step results,
shown by a lower gray value in (c). (a) Detections. (b) Syntheses.
(c) Segmentations.
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Here, S�1 fetches from the template coordinate system the
prediction T ðS�1ðx; sÞ; tÞ corresponding to the observed
value IðxÞ and, as above, this equation holds only if
HðS�1ðx; sÞÞ … 1, namely, if x can be explained by the AAM.

If the magnification or shrinking of the template point x
is negligible, we have P ðIjs; tÞ / expð�Eðs; tÞ=ð2�2ÞÞ, which
interprets AAM fitting as providing a Maximum-Like-
lihood parameter estimate. Further, we can perform
Maximum-A-Posterior estimation by introducing a quad-
ratic penalty on model parameters in (11), which equals the
log-likelihood of the parameters under a Gaussian prior
distribution.

3.2 Background Model: Piecewise Constant Image
To determine the assignment of observations to the object,
we need a background model as an alternative to compete
with. There are several ways to build a background model,
depending on the accuracy required from it. At the
simplicity extreme, in Fig. 2, we use a nonparametric
distribution for the image intensity that is estimated using
the whole image domain. However, for images with
complex background, this distribution becomes loose and
the object model may be better even around false positives.
The more complex full-blown generative approach in [45],
[46] pursues the interpretation of the whole image, so there
is no generic background model. Practically, for the joint
segmentation and detection task, this could be superfluous:
As we show in the experimental results, a simple back-
ground model can both discard false positives and exclude
occluded areas from model fitting.

The approach we take lies between these two cases. We
consider that the background model is built by a set of
regions, within which the image has constant intensity; this
is the broadly used piecewise-constant image model. We
assume that, within each region r, the constant value is
corrupted by white Gaussian noise and we estimate the
parameters ð�r; �rÞ from the mean and standard deviation
of the region’s image intensities. These, together with the
prior probability �Br of assigning an observation to the
region, form the parameter set for background region r:
ABr … ð�r; �r; �Br Þ.

We can combine all submodels in a single background
hypothesis B, under which the likelihood of IðxÞ writes

P IðxÞjABð Þ …
YR

r…1
P IðxÞjABrð Þ‰ �HrðxÞ

… N �i � IðxÞ; �ið Þ;

ð13Þ

where AB … ðAB1 ; . . . ; ABR Þ, HrðxÞ is the support indicator
for the rth region, and i is the index of the region that
contains x, i.e., HiðxÞ … 1. Implicitly, in (13), we assume that
�Br does not depend on r and condition on IðxÞ belonging
to the background; otherwise, a �Bi term would be
necessary. This is an expression we will use in the following
when convenient.

3.3 EM Criterion for Object versus Background
Segmentation

We now build a lower bound on the likelihood of the image
observations under the mixture of the object and background
models. For the sake of simplicity, we formulate it for the case

of jointly segmenting and analyzing a single object; the
generalization to multiple objects is straightforward.

We split the bound in (8) into object and background-
related terms. Since our models are formulated in the
continuous domain but EM considers a discrete set of
observations, we denote below with xn the image coordi-
nate corresponding to observation index n.

We first consider the part of the EM bound in (8) that
involves the object hypothesis, O. This can be expressed in
terms of the column of Qn;k that relates to O, QO, and the
object parameters AO … ðs; t; �OÞ that include the AAM
parameters s and t and the prior probability �O of assigning
an observation to the object if it falls within its support.
Using these, we write the related part of the bound as

LBðI; QO; AOÞ …
X

n
Qn;O log P ðInjAOÞ þ log P ðzn;OjAOÞ

� �
:

ð14Þ

Here, P ðInjAOÞ … P ðIðxnÞjs; tÞ is the observation likelihood
under the appearance model of (12) and zn;O is the hidden
variable vector that assigns the observation n to hypothesis O.

The term P ðzn;OjAOÞ equals the prior probability of zn;O
under the AAM model and constrains the AAM to only
model observations in the template interior. Specifically, we
have

P ðzn;OjAOÞ … H S�1ðxn; sÞ
� �

�O: ð15Þ

In words, hypothesis O can take hold of observation n only
if S�1 brings it inside the object’s interior. In that case, the
prior probability of obtaining it is �O. This brings shape
information directly into the segmentation without introdu-
cing additional terms to a segmentation criterion as is done,
e.g., in [11], [43]. We therefore see AAMs as providing a
natural means to introduce shape-related information in the
segmentation.

For the background model, we adopt the mixture model-
ing approach described in the previous section and write

LBðI; QB; ABÞ …
X

n;r
Qn;Br ‰log P InjABrð Þ

þ log P zn;Br jABr

� �
�:

ð16Þ

As in (14), QB are the columns of Qn;k related to the
background hypotheses and AB are the corresponding
parameters. The first summand is the likelihood of the
observations under the rth background submodel. The
second summand is a prior distribution over the assignments
that we use to balance the complexity of the foreground and
background models. Specifically, the AAM often has a larger
reconstruction error than the background model since it
explains a heterogeneous set of observations with a varying
set of intensities. Instead, the background regions are
determined using bottom-up cues and have almost constant
intensity, thereby making it easier to model their interiors. We
therefore assign observations to the object model more easily
by setting P ðzn;Br jABr Þ … �Br to a low value; this gives rise
later to “MDL” or “balloon” terms.

We combine these two terms with a scaled version of the
entropy-related term of (7) and obtain the following lower
bound on the log likelihood of the data:
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LBðI; Q; AÞ …
X

n

X

h2fO;B1;...;Brg

Qn;h
�

log P ðInjAhÞ

þ log P ðzn;hjAhÞ �
1
�

log Qn;h
�
;

ð17Þ

where Q … fQO; QBg and A … fAO; ABg. The last summand
favors high-entropy distributions and leads to soft assign-
ments. Since �

P
n;h Qn;h log Qn;h � 0, for all � � 1, we have

a lower bound on the log likelihood: For � … 1, we have the
original EM bound of (7), while, in the winner-take-all
version of EM described in [35], we set � ! 1, so the
entropy term vanishes and all assignments become hard.
This is also the common choice for image segmentation.

We can now proceed to the description of the E- and M-
steps; they are both derived so as to minimize (17) with
respect to Q and A, respectively.

4 E-STEP: OBJECT-BASED SEGMENTATION

In what follows, we present two alternatives to implement-
ing the E-step; each constitutes a different approach to
finding the background regions and minimizing the EM
criterion of (17).

Our initial approach in [21], described in Section 4.1,
utilizes an initial oversegmentation to both determine the
background model and implement the E-step. This is
efficient and modular since any image segmentation
algorithm can be used at the front end. Still, it does not
fully couple the segmentation and analysis tasks since the
initial segmentation boundaries cannot be modified. We
therefore subsequently propose an alternative in Section 4.2
that utilizes curve evolution for the E-step, incorporating
smoothness priors and edge information. This yields super-
ior segmentations but comes at the cost of increased
computation demands; these can be overcome using
efficient algorithms such as [38].

4.1 Fragment-Based E-Step
As suggested in [2], [32], an initial oversegmentation of the
image can efficiently recover most object boundaries.
Adopting this approach, in our work, we use the
morphological watershed algorithm [4]. Specifically, we
use the Brightness-Gradient boundary strength function in
[29] to obtain both edges and markers; we extract the latter
from the local minima of the boundary strength function.
As shown in Fig. 5, this gives us a small set of image
fragments that we use in two complementary ways.

First, we define a background distribution by modeling
the image intensities within each fragment with a normal
distribution. We thereby build our piecewise-constant
background model with a set of fixed regions.

Second, since these regions are highly cohesive, we treat
them as “bundled” observations—or “atomic regions” in [2]
and “superpixels” in [32]. We thus use a fragment-based
E-step that uniformly assigns an image fragment to either
the object or the background hypothesis. This reduces the
number of assignment variables considered from the
number of pixels to the number of fragments.

We now consider the part of the EM criterion involving
observations in region Rr by limiting the summation in (17)
to n 2 Rr. We can simplify its expression by noting first that

only the background submodel Br built within region r is
active and then using a common value Qr;k for the related
assignment variables Qn;k, n 2 Rr. Further, since only the
object and a single background hypothesis are entailed, we
set qr … Qr;O … 1 � Qr;Br for simplicity. We can thus rewrite
the considered part of (17) as

LBðI; qr; AÞ …
X

n2Rr

qr log P ðInjAOÞ þ log P ðzn;OjAOÞ
� �

þ ð1 � qrÞ log P ðInjABr Þ þ log P ðzn;Br jABr Þ
� �

�
1
�

qr log qr þ ð1 � qrÞ logð1 � qrÞ‰ �:

Substituting from (15) and maximizing with respect to qr
gives

1
�

log
qr

1 � qr
� � …

1
jRrj

X

n2Rr

log
P ðInjAOÞH S�1ðxn; sÞð Þ

P ðInjABr Þ
;

ð18Þ

where � … log �O
�Br

and jRrj is the cardinality of region r. We
treat � as a design parameter that allows us to determine
how easily we assign fragments to the object. Finally, we
use the notation log P ðIjOÞ

P ðIjBÞ for the right-hand side of (18), so
the optimal qr is given by a sigmoidal function:

qr …
1

1 þ exp �� log P ðIjOÞ
P ðIjBÞ þ �

h i� � : ð19Þ

For all experiments, we use the values � … 10 and � … 1,
estimated by tuning the system’s performance on a few
images. We note that a different front-end segmentation
algorithm might require different values for � and �. For
example, if the segments returned were significantly
smaller, a lower value for � would be needed: As argued
in Section 3.3, in that case, the background model would
generally be more accurate, so we would need to make it
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Fig. 5. Fragment-based E-step. We break the image into fragments
using the watershed algorithm, as shown in (a). The background model
uses a Gaussian distribution within each fragment and its prediction,
shown in (b), is constant within each fragment. During the E-step, the
occupation of fragments is determined based on whether the object
synthesis Iðx; s; tÞ reconstructs the image better than the background
model. The gray value indicates the degree to which a fragment is
assigned to the object. (a) Watershed segmentation. (b) Background
synthesis. (c) Fragment-based E-step.
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even easier for the foreground model to acquire a part. To
avoid manual tuning, one can therefore use the simple
learning-based approach we had initially used in [21] to
estimate � and � from ground-truth data.

On the left of each column pair in Fig. 7, we demonstrate
top-down segmentation results for faces and cars that
validate our system’s ability to segment objects of varying
shape and appearance. We show the border of the region
that is obtained by thresholding the results of the E-step for
the object corresponding to the strongest bottom-up
hypothesis.

The segmentations are generally appealing, correctly
capturing the pose of the object categories considered while
excluding unpredictable locations like beards for faces or
pedestrians for cars. However, jagged boundaries can occur
due to the E-values of some fragment falling below the

threshold. Further, inaccuracies of front-end segmentation
propagate to the top-down segmentation, as is more
prominent for the car images where the low-level cues are
unreliable; these problems led us to consider the segmenta-
tion scheme presented next.

4.2 Curve Evolution-Based E-Step
In this second approach to implementing the E-step, a small
set of deformable regions constitutes our background
model, as shown in Fig. 6. Their boundaries evolve so that
each region occupies a homogeneous portion of the image
while at the same time the boundary of the object region
evolves to occupy the parts explained by it. This is the
common curve evolution approach to image segmentation
[8], [53] that is typically driven by the minimization of
variational criteria. These criteria can incorporate smooth-
ness and edge-based terms, thereby addressing the pro-
blems of the previous method.

Our contributions consist of using the variational
interpretation of EM to justify the use of such methods in
our setting and introducing AAMs as shape priors for
segmentation.

4.2.1 Region Competition and EM Interpretation
Region Competition is a variational algorithm that opti-
mizes a probabilistic criterion of segmentation quality.
Using K regions Rk and assuming that the observations
within region k follow a distribution P ð�jAkÞ, the likelihood
of the observations for the current segmentation is
considered as a term to be maximized. Combining the
observation likelihood with a prior term that penalizes the
length of the region borders, � … f�1; . . . ; �Kg gives rise to
the Region Competition functional [53]:
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Fig. 6. Curve evolution-based E-step: We represent the object region as
the interior of an evolving contour. To occupy image observations, the
object region changes its boundary by competing with a set of
deformable background hypotheses.

Fig. 7. Top-down segmentations of car and face images using (left) fragment-based and (right) curve evolution-based segmentation. For display, all
background hypotheses are merged in a single region. For the fragment-based segmentation, we threshold the E-step results at a fixed value. We
observe that the curve evolution-based results provide smoother segmentations, which accurately localize object borders.
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Jð�; AÞ …
XK

k…1

�
2

Z

�k

ds �
Z Z

Rk

log P IðxÞjAkð Þdx; ð20Þ

where � controls the prior’s weight. The calculus of
variations yields the evolution law for the kth border:

@�k

@t
… ���N þ log

P IðxÞjAkð Þ
P IðxÞjAmð Þ

N ; ð21Þ

where P ðIðxÞjAmÞ is the log likelihood of IðxÞ under the
competing neighboring hypothesis m, � is the kth border
curvature, and N is its outward normal unit vector. A
region boundary moving according to (21) assigns observa-
tions to the region that predicts them better while
maintaining the borders smooth, as it minimizes the
functional (20).

There is an intuitive link between Region Competition
and EM: The E-step is similar to curve evolution, where
observations are assigned to region hypotheses, and the
M-step is similar to updating the parameters of the region
distributions. The difference is that instead of a generic EM
clustering scheme that treats an image as an unordered set
of pixels, Region Competition brings in useful geometric
information and considers only hard assignments of
observations to hypotheses.

The formal link we build relies on using the varia-
tional interpretation of EM to restrict the distributions
considered during the minimization of (17) with respect
to Qn;k. Specifically, we consider only binary winner-take-
all [35] distributions over assignments. Denoting the set
of observations that are assigned to hypothesis k as
Rk … fn : Qn;k … 1g, the first term of (17) writes

X

n

X

k
Qn;k log P ðInjAkÞ …

X

k

X

n2Rk

log P ðInjAkÞ; ð22Þ

which is a discretization of the area integral in (20).
Further, we can introduce the arc-length penalty of (20)

into our EM criterion by appropriately constructing the
prior on the hidden variables, i.e., the second term in (8).
For this, we introduce a Boolean function bðzN n Þ whose
argument is the window of assignment vectors in the
neighborhood N n of n. b indicates whether observations
around n are assigned to different hypotheses, i.e., if n is on
a boundary; we use b to write the length-based prior:

P ðZÞ …
1
Z

Y

n
exp �bðzN n Þ

� �
; ð23Þ

where Z is a normalizing constant. We could also consider
object specific terms, but we assume P ðZjAÞ … P ðZÞ for
simplicity. Since Q is factorizable and

P
k Qn;k … 1, we have

�
X

Z
QðZÞ log P ðZjAÞ …

X

n

X

k
Qn;kbðzN n Þ þ c

…
X

n
bðzN n Þ þ c;

which is, apart from the constant c … log Z, a discretized
version of the arc-length penalty used in Region Competition.

Finally, the entropy term �
P

Z QðZÞ log QðZÞ of (17)
generally favors smooth assignments of observations to the
available hypotheses; since the Region Competition scheme

by design assigns in a hard manner image observations to
regions, this term always equals zero and does not affect the
EM bound. We note that we would end up with the same
result if we set � … 1 in (17) from the start; then, the
entropy term would vanish and the optimal distributions
would be binary.

Summing up, we can see Region Competition as
minimizing a version of (17) that utilizes specific expres-
sions for P ðZjAÞ and QðZÞ. Even though mostly technical,
this link allows us to use well-studied segmentation
algorithms in our system without straying from the original
EM-based formulation.

4.2.2 AAMs as Shape Priors
Coming to our case, the data fidelity terms for both the
object and background hypotheses break into sums over the
image grid, so they directly fit the setting of Region
Competition. A variation stems from the P ðzn;OjAOÞ and
P ðzn;BjABÞ terms that enforce prior information on the
assignment probabilities. As mentioned in the previous
section, P ðzn;OjAOÞ prevents the object from obtaining
observations that do not fall within the template support;
P ðzn;OjABÞ can be a small constant that acts as a penalty on
the background model and helps the foreground model
obtain observations more easily.

By taking into account the P ðzn;OjAOÞ and P ðzn;BjABÞ
terms, we have the following evolution law for the front �
that separates the object O and the background B
hypotheses:

@�
@t

… � ��N þ log
P IðxÞjAOð ÞP znðxÞ;OjAO

� �

P IðxÞjABð ÞP znðxÞ;BjAB
� � N

…
ð15Þ

��� þ log
P IðxÞjAOð ÞH S�1ðx; sÞð Þ

P IðxÞjABð Þ
þ �

� 	
N :

Above � … log �O
�Br

, x is an image location through which the
front passes and nðxÞ is the corresponding observation
index. The term HðS�1ðx; sÞÞ gates the motion due to the
observation likelihood ratio term, log P ðIðxÞjAOÞ

P ðIðxÞjABÞ . Specifically,
it lets the object compete only for observations that fall
within its support, i.e., if HðS�1ðx; sÞÞ … 1. Otherwise, the
observation is assigned to the background.

This constrains the object region to respect the shape
properties of the corresponding category and introduces
shape knowledge in the segmentation. Contrary to other
works such as [11], [43], this does not require additional
shape prior terms but comes naturally from the AAM
modeling assumptions.

Further, as in the previous section, we use a positive
balloon force �, which favors the object region over the
background.

We also use terms that result in improved segmentations,
even if they do not stem from a probabilistic treatment.
Specifically, as in [39], an edge-based term is utilized that
pushes the segment borders toward strong intensity
variations:
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@�
@t

…
�

� �� þ log
P IðxÞjs; tð ÞH S�1ðx; sÞð Þ

P IðxÞjABð Þ

þ � � rG jrIjð Þ � N
	
N ;

ð24Þ

where GðjrIjÞ is a decreasing function of edge strength jrIj.
Curve evolution is implemented using level-set methods

[37], [44], which are particularly well suited for our
problem; their topological flexibility allows holes to appear
in the interior of regions, thereby excluding occluded object
areas. Two competing background fronts are introduced
which form two large clusters for bright and dark regions.
Initialization is random for all but the object fronts that are
centered around the bottom-up detection results. Finally,
we smooth H with a Gaussian kernel of � … 2 for stability.

In Fig. 7, where we compare the top-down segmentations
offered by the two approaches, we observe that curve
evolution yields superior results. The curvature term results
in smooth boundaries, the edge force accurately localizes
object borders, the shape of the objects is correctly captured,
and occluded areas are discarded. Some partial failures,
e.g., the bottom-left car image, can be attributed to the
limited expressive ability of the AAM, which could not
capture the specific illumination pattern. In that respect, the
modularity offered by the EM algorithm is an advantage,
since any better generative model can be incorporated in the
system once available.

5 M-STEP—PARAMETER ESTIMATION

In the M-step, the model parameters are updated to account
for the observations assigned to the object during the E-step.
The generative models we use assume a Gaussian noise
process so that parameter estimation amounts to weighted
least squares minimization, where the weights are provided
by the E-step: Higher weights are given to observations
assigned with high confidence to the object and vice versa.

This approach faces occlusions by discounting them
during model fitting. The typical AAM approach, e.g., [40],
either considers that occluded areas are known or utilizes a
robust norm to reduce their effect on fitting. Instead,
viewing AAMs in the generative model/EM setting tackles
this problem by allowing alternative hypotheses to explain
the observations, without modifying the AAM error norm.

5.1 EM-Based AAM Fitting Criterion
In order to derive the update equations for the object
parameters AO … ðs; tÞ, we ignore the entropy-related term
of the EM criterion (17) since it does not affect the final
update. Further, the support-related term HðS�1ðx; sÞÞ of
(11) is hard to deal with inside the logarithm: It can equal
zero and introduce infinite values in the optimized
criterion. To avoid this, we notice that any observation
falling outside the support cannot be assigned to the object,
by default. Therefore, we multiply the object weights
delivered by the E-step with the indicator function, which
has the desired effect of taking the object support into
account. The quantity maximized is thus

CEMðs; tÞ …
X

x
EðxÞH S�1ðx; sÞ

� �
log P IðxÞjAOð Þ

þ 1 � EðxÞH S�1ðx; sÞ
� �� �

log P IðxÞjABð Þ;
ð25Þ

where EðxÞ … QnðxÞ;O are the results of the previous E-step,
obtained according to one of the two schemes in the previous
section. Introducing the constant c …

P
x log P ðIðxÞjABÞ and

gathering terms, we rewrite (25) as

CEMðs; tÞ …
X

x
EðxÞH S�1ðx; sÞ

� �
log

P IðxÞjAOð Þ
P IðxÞjABð Þ

þ c: ð26Þ

Ignoring c, which is unaffected by the optimization of the
foreground model and working on the template coordinate
system, this criterion writes

CEMðs; tÞ …
X

x
EðxsÞHðxÞDðx; sÞ log

P IðxsÞjAOð Þ
P IðxsÞjABð Þ

; ð27Þ

where we introduce the notation xs … Sðx; sÞ. Since the
deformation x ! SðxÞ locally rescales the template domain,
the determinant of its Jacobian, Dðx; sÞ, commeasures (26)
and (27), which are viewed as discretizations of area
integrals. Finally, modeling both the foreground and back-
ground reconstruction errors as a white Gaussian noise
process, we write (27) as

CEMðs; tÞ …
X

x
EðxsÞHðxÞDðx; sÞ

� IðxsÞ � T ðx; tÞð Þ2� IðxsÞ � BðxsÞð Þ2
h i

;
ð28Þ

where T is the object-based synthesis and B is the image
reconstruction using the background model. The multi-
plicative factor from the standard deviation of the noise
process is omitted since it does not affect the final
parameter estimate.

The standard least squares AAM criterion of (11) can be
transcribed using this notation as

CLSðs; tÞ …
X

x
HðxÞ IðxsÞ � T ðx; tÞð Þ2: ð29Þ

Comparing (28) and (29), we observe three main deficien-
cies of the latter: First, the segmentation information of
EðxsÞ is discarded, forcing the model to explain potentially
occluded areas. Second, the fidelity of the foreground and
background models to the data are not compared; in the
absence of strong edges, this leads to mismatches of the
image and model boundaries. Third, the magnification or
shrinking of template points due to the deformation is
ignored, while it is formally required by the generative
model approach.

5.2 Shape Fitting Equations
In the following, we provide update rules for AAM fitting
going from (29) to (28), by gradually introducing more
elaborate terms. As in [30], we derive the optimal update
based on a quadratic approximation to the cost; we provide
details in the Appendix, which can be found in the
Computer Society Digital Library at http://doi.ieeecom
putersociety.org/TPAMI.2008.158.
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Perturbing the shape parameters by �s, we have

I Sðx; s þ �sÞð Þ � I Sðx; sÞð Þ þ
XNS

i…1

dI
dsi

ðx; sÞ�si; ð30Þ

dI
dsi

ðx; sÞ …
@I Sðx; sÞð Þ

@x
@Sx

@si
þ

@I Sðx; sÞð Þ
@y

@Sy

@si
; ð31Þ

where NS is the number of shape basis elements. To write (30)
concisely, we consider raster scanning the image whereby I
becomes an N � 1 vector, where N is the number of
observations, dI

ds becomes an N � NS matrix, while �s is
treated as an NS � 1 vector. We can thus write (30) as

Iðs þ �sÞ … IðsÞ þ
dI
ds

�s; ð32Þ

where IðsÞ denotes the vector formed by raster scanning
IðSðx; sÞÞ; this is a notation we use in the following for all
quantities appearing inside the criteria being optimized. For
simplicity, we also omit the s argument from IðsÞ.

To write the quadratic approximation to the perturbed
cost CLSðs þ �s; tÞ, we introduce E … I � T and denote by 	
the Hadamard product, ðaijÞ 	 ðbijÞ … ðaijbijÞ. We thereby
write

CLSðs þ �s; tÞ … CLSðs; tÞ þ J �s þ
1
2

�sT H�s;

J … 2‰H 	 E�T
dI
ds

; H … 2 H 	
dI
s


 �T dI
ds

;
ð33Þ

where J is the Jacobian of the cost function and H is its
Hessian. For terms like H 	 dI

ds , where H is N � 1 and dI
ds is

N � NS , H is replicated NS times horizontally. From (33),
we get the update of the forward additive method [30]:
�s� … �‰J H�1�T .

Further, introducing the E-step results yields the follow-
ing criterion:

X

x
EðxsÞHðxÞ IðxsÞ � T ðx; tÞð Þ2… ‰E 	 H 	 E�T E; ð34Þ

for which the Jacobian and Hessian matrices become

J … 2ðH0 	 EÞT dI
ds

þ ET dE
ds

	 H 	 E

 �

; ð35Þ

H … 2 H0 	
dI
ds

þ 2
dE
ds

	 H 	 E
� 	T dI

ds
; ð36Þ

where H0 … E 	 H. Multiplication with E forces the fitting
scheme to lock onto the areas assigned to the object and
results in thenew terms ET ðdE

ds 	 H 	 EÞ and 2ðdE
ds 	 H 	 EÞT ðdI

dsÞ.
These account for the change caused by �s in the
probability of assigning observations to template points.

A more elaborate expression results from incorporating
the deformation’s Jacobian in the update; as it does not
critically affect performance, we only report it in the
Appendix, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
TPAMI.2008.158.

Finally, we consider the reconstruction error of the
background model, EB … I � B, where B is the matrix

formed by raster scanning the background synthesis BðxsÞ.
We thus obtain the cost function and Jacobian and Hessian
matrices for the original EM criterion (28):

CEMðs; tÞ … ðH 	 EÞ 	 E‰ �T ‰E� � ðH 	 EÞ 	 EB‰ �T ‰EB�; ð37Þ

J … J E � J EB ; H … HE � HEB ; ð38Þ

where J E and HE are as in (35) and (36) and J EB and HEB

are their background model counterparts. Since the mini-
mized term is no longer convex, instabilities may occur. An
optimal scaling of the update vector is therefore chosen
with bisection search, starting from one.

5.3 Appearance Fitting Equations
The appearance parameters are estimated by considering
the part of the EM criterion that depends on the model
prediction:

CEMðs; tÞ …
X

x
WðxÞ IðxsÞ � T 0ðxÞ �

XNT

i…1
tiT iðxÞ

" #2

; ð39Þ

where NT is the number of appearance basis
elements, and W ðxÞ combines all scaling factors:
WðxÞ … Dðx; sÞHðxÞEðSðx; sÞÞ: This yields the weighted
least squares error solution:

t� … W 	 ðI � T0Þ‰ �T T
h i

; TT ðW 	 TÞ
� ��1; ð40Þ

where T is the N � NT array formed by the appearance
basis elements.

Finally, a prior distribution learned during model
construction is introduced in the updates of both the s
and t parameters. For an independent Gaussian distribu-
tion, the Jacobian and Hessian matrices are modified as

J 0
i … J i þ 	

pi

�2
i

; H0
i;i … Hi;i þ 	

1
�2

i
; ð41Þ

where i ranges over the number of parameter vector
elements, pi is the ith element of the parameter estimate
at the previous iteration, �i is its standard deviation on the
training set, and 	 controls the trade-off between prior
knowledge and data fidelity.

The improvements in fitting quality attained with the
EM-based scheme are shown in Fig. 8. These examples
either have actual occlusions or locally have appearances
that cannot be extrapolated from the training set. The plain
least squares criterion of (29) is forcing the model to explain
the whole of its interior and therefore results in a
suboptimal fit.

Instead, in the EM-based setting, even though the AAM
predicts the appearance for the whole object domain,
certain regions may not get assigned to the model if its
prediction there does not match the image observations. As
the lower values of the E-step results reveal, the model is
thereby freed from explaining occluded regions.

The price to pay for this increased flexibility is that
informative areas like nostrils, teeth, etc., may be discounted
if not modeled adequately well. Still, as the following section
shows, the robustness of the estimated parameters is in
practice more important for the detection task.
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6 SYNERGETIC OBJECT CATEGORY DETECTION

Our goal in this section is to explore how the synergy
between segmentation and recognition improves detection
performance. This is a less explored side of the bottom-up/
top-down idea compared to top-down segmentation and, as
we show with the object categories of faces and cars, it is
equally practical and useful.

6.1 Detection Strategy
6.1.1 Bottom-Up Detection
We use a front-end object detection system to provide us
with all object hypotheses by setting its rejection threshold
to a conservative value. As in [45], we treat these detections
as proposals that are pruned via the bottom-up/top-down
loop. We rely on the point-of-interest-based system in [22],
which represents objects in terms of a codebook of primal
sketch features. This system builds object models by
clustering blobs, ridges, and edges extracted from the
training set and then forming a codebook representation.
During detection, the extracted features propose object
locations based on their correspondences with the codebook
entries. Since any other bottom-up system could be used
instead of this one, we refer to [22] for further details, as
well as to related literature on this quickly developing field,
e.g., [1], [7], [14], [25], [50].

6.1.2 Top-Down and Bottom-Up Combination
For object detection, we complement the bottom-up detec-
tion results with information obtained by the parameters of
the fitted AAM models and the segmentation obtained
during the E-step, as illustrated in Fig. 4. We thus have
three different cues for detection. First, the bottom-up
detection term CBU quantifies the likelihood of interest
point features given the hypothesized object location [22].

Second, the AAM parameters are used to indicate how
close the observed image is to the object category. We
model the AAM parameter distributions as Gaussian
density functions, estimated separately on foreground and

background locations during training. We thereby obtain a
simple classifier:

CAAM … log
P ðs; tjOÞ
P ðs; tjBÞ

; ð42Þ

which decides about the presence of the object based on the
estimated AAM parameters.

Third, we quantify how well the object hypothesis
predicts the image data using the E-step results that give
the probability EðxÞ of assigning observation x to the object.
We build the segmentation-based classifier by computing
the average of EðxÞ over the area that can be occupied by
the object:

CSEG …
P

x H S�1ðxÞð ÞEðxÞP
x H S�1ðxÞð Þ

: ð43Þ

The summation is over the whole image domain and
HðS�1ðxÞÞ indicates whether x can belong to the object.
Using the E-step results in this way prunes false positives,
around which the AAM cannot explain a large part of the
image, thereby resulting in a low value of CSEG.

We combine the three classifiers using the supra-
Bayesian fusion setting [19]. The output Ck of classifier k
is treated as a random variable, following the distributions
P ðCkjOÞ, P ðCkjBÞ under the object and background
hypotheses, respectively. Considering the set of classifier
outputs as a vector of independent random variables,
C … ðC1; . . . ; CkÞ, we use their individual distributions for
classifier combination:

P ðOjCÞ
P ðBjCÞ

… c
P ðCjOÞ
P ðCjBÞ

… c
YK

k…1

P ðCkjOÞ
P ðCkjBÞ

; ð44Þ

where c … P ðOÞ=P ðBÞ.
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Fig. 8. Differences in AAM fitting using the EM algorithm. (a) Input image. (b) Plain least squares (LS) fit. (c) EM-based fit. (d) E-step results. The EM-
based fit outperforms the typical LS fit as the E-step results robustify the AAM parameter estimation. This is accomplished by discounting occlusions
or areas with unprecedented appearance variations, such as the third window and the hair fringe in the bottom row.
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