
Contents lists available at ScienceDirect
Signal Processing: Image Communication

Signal Processing: Image Communication 38 (2015) 15–31
http://d
0923-59

n Corr
E-m

marago
journal homepage: www.elsevier.com/locate/image
A perceptually based spatio-temporal computational
framework for visual saliency estimation

Petros Koutras n, Petros Maragos
School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Athens 15773, Greece
a r t i c l e i n f o

Available online 20 August 2015

Keywords:
Spatio-temporal visual frontend
3D Gabor filters
LAB color space
Visual saliency
Eye-tracking database
x.doi.org/10.1016/j.image.2015.08.004
65/& 2015 Elsevier B.V. All rights reserved.

esponding author.
ail addresses: pkoutras@cs.ntua.gr (P. Koutra
s@cs.ntua.gr (P. Maragos).
a b s t r a c t

The purpose of this paper is to demonstrate a perceptually based spatio-temporal com-
putational framework for visual saliency estimation. We have developed a new spatio-
temporal visual frontend based on biologically inspired 3D Gabor filters, which is applied
on both the luminance and the color streams and produces spatio-temporal energy maps.
These volumes are fused for computing a single saliency map and can detect spatio-
temporal phenomena that static saliency models cannot find. We also provide a new
movie database with eye-tracking annotation. We have evaluated our spatio-temporal
saliency model on the widely used CRCNS-ORIG database as well as our new database
using different fusion schemes and feature sets. The proposed spatio-temporal compu-
tational framework incorporates many ideas based on psychological evidences and yields
significant improvements on spatio-temporal saliency estimation.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

In biological vision systems there exist significant
neurobiological and psychophysical evidences that the
first stages of visual information processing include many
feature detection processes. Since various stages of biolo-
gical vision systems involve spatio-temporal processing
and nature has a tendency to represent information in
optimal ways, efficient perception-inspired spatio-tem-
poral processing as well as easily computable features that
can compactly represent salient structure in moving ima-
ges should be one of the important early goals of video
processing.

Visual attention is a cognitive mechanism employed by
humans, animals and artificial systems for selecting the
most important part of information from a visual stimulus
and then perform more complex and demanding processes.
s),
This field has been for years an active research subject
for psychophysics and cognitive scientists, because atten-
tion mechanisms play a dominant role in human visual
system.

Attention may have two modes, a top-down expecta-
tion-driven, and a bottom-up stimulus-driven, and so
there is often a confusion between attention and visual
saliency. Visual attention is a wider concept, which often
includes many topics, such as top-down cognitive infor-
mation processing, memory, object searching, task
demands or expectations. On the other hand, visual sal-
iency is a bottom-up process and is based on the sensory
cues of a stimulus that make certain image or video
regions more conspicuous. In addition to its cognitive and
biological nature, several computational frameworks have
also been proposed for modeling visual saliency [1],
because it plays a significant role in many computer vision
applications, such as object and action recognition [2–5]
and movie summarization [6–8].

We propose a spatio-temporal computational frontend
for visual saliency, which is suitable for estimating spatio-
temporal events in video streams. Its design is built upon
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many ideas from biological and perceptual image proces-
sing, related to human vision modeling. During the past
decades several computational approaches have been
developed for visual saliency estimation in the spatial
domain, which had incorporated many advanced techni-
ques for processing the luminance and color modalities.
More recently there appeared models for spatio-temporal
estimation in video stimuli that are mainly based on
simple motion estimation or spatio-temporal filtering
rather than using only the classic static cues (intensity,
color, orientation). Our approach is designed for spatio-
temporal estimation and incorporates advances in both
static and spatio-temporal pathways. A brief summary of
biologically inspired feature detection methods as well as
the spatial and spatio-temporal computational models is
given in Section 2.

Our framework exhibits unification and computational
economy in at least three important ways: it produces
both spatio-temporal and static energy volumes by using
the same multi-scale filterbank based on quadrature
Gabor filters in three dimensions (space and time). In
addition, the same framework can be applied for two dif-
ferent modalities, i.e. the image luminance and color
stream modalities, producing independent spatio-tem-
poral energy volumes. For the color stream we have
incorporated many modern ideas such as LAB color space
or PCA analysis. Further, our spatio-temporal framework
can provide motion information in different scales and
directions without having to process it as a separate cue or
use a small number of frames like other video saliency
approaches require. In this way, our approach achieves to
detect both the fastest changes in the video stimuli (e.g.
flicker) and the slowest motion changes related to action
events. The produced energy maps can be integrated into a
single spatio-temporal saliency map, by using different
energy mixtures and fusion schemes. The complete model
and the filtering details are analyzed in Section 3.

Our computational approach is evaluated in two dif-
ferent ways. At first we employed simple spatio-temporal
stimuli, where our method manages to detect time-vary-
ing events that static saliency method cannot find. The
second application is the prediction of human eye fixations
while the subjects watch video stimuli, using a single
spatio-temporal saliency map. We use two databases with
eye-tracking data annotation: the CRCNS-ORIG [9] and our
newly created Eye-Tracking Movie Database (ETMD). The
latter was collected for the purposes of the presented
study and comprises short video clips from Hollywood
movies along with eye tracker data for 10 subjects. In
Section 4 we describe the evaluation procedure and our
experimental results in both these databases. In general,
our method for spatio-temporal saliency estimation is
quite promising as it achieves higher performance than
many other state-of-the-art saliency models.
2. Background/related work

Assuming that visual information processing by several
classes of optical neurons can be modeled by linear
operators, there was a hot debate in the perceptual and
neurophysiological research community during the 1960s
and 1970s as to whether the early stages of visual infor-
mation processing in primates can be modeled as spatial
local feature detectors or as filterbanks in the frequency
domain. From the side of spatial processing, Hubel and
Wiesel [10,11] found in cat's and monkey's visual cortex
simple cells whose behavior they described as approxi-
mately linear feature detectors with line-, edge- or bar-
shaped receptive fields that exhibited scale and orienta-
tion selectivity. Since then these results have been con-
firmed and refined by many other researchers [12–14].
From the side of frequency domain, several researchers
have argued, based on psychophysical experiments, that
the early visual system can be approximately modeled
using Fourier analysis ideas [15–17], mainly in one-
dimension (1D) until Daugman [18] proposed a two-
dimensional (2D) spatial filtering and Fourier analysis. In
another experimental direction, Pollen and Ronner [19]
found that adjacent simple cells in the visual cortex are
tuned to the same spatial frequency and orientation, but
their responses are in quadrature.

Daugman [20] also observed that, from a mathematical
viewpoint, the antagonism between the spatial and fre-
quency domain interpretations of visual information pro-
cessing is illusionary, since neurons in the retina or visual
cortex can both resemble filterbanks of bandpass filters, or,
equivalently, convolutions with neuron responses that
have excitatory or inhibitory regions in their center-sur-
round receptive fields. He further extended the existing 1D
Gabor theory [21,22] and proposed the 2D oriented Gabor
filters as optimal models for simple cell impulse responses,
where ‘optimality’ here means having minimal space–fre-
quency uncertainty. Since then, Gabor filters in quadrature
pairs have been extensively used in many early computer
vision tasks, e.g. in 2D spatial texture analysis [23] and in
spatio-temporal models for motion [24] and optical flow
estimation [25,26].

For the modeling of receptive fields (RFs) of cells in the
visual system in parallel to the use of Gabor filters, a few
other approaches were also proposed such as Difference of
Gaussians (DOG) filters by Wilson and Bergen [27] and the
Derivatives of Gaussians (GD) (or in discrete form Difference
of Offsets of Gaussians (DOOG)) by Young [28,29]. The for-
mer has limited applicability and was used mainly for
isotropic center-surround RFs and edge detection [30]. The
latter found a wider acceptance and was used for modeling
the RFs of simple cells in primate visual systems, by
applying Gaussian Derivatives up to tenth order instead of
Gabor filters. As Koenderink and van Doorn [31] proved,
for high orders the Gaussian derivatives become approx-
imate Gabor filters. Later, the GD model was extended to
spatio-temporal vision [32].

In addition, all the above filter models come at multiple
scales (corresponding to the various frequency channels) and
may be either isotropic (e.g. in the retina) or oriented (e.g. in
the visual cortex). Moreover, there have also been other per-
ception-inspired models for feature detection that are non-
linear and based on ideas of phase congruency and quadrature
energy, as in Morrone et al. [33,34]. Filterbanks with 2D spatial
filters in quadrature pairs of the Gabor, GD, or similar type
followed by nonlinear operations like energy computation or
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half-wave rectification have been widely used in texture ana-
lysis [35,23,36] and boundary detection [37].

In parallel with the research in feature detection models,
Treisman and Gelade [38] pointed out which visual features
are important and how they can be integrated in human
visual attention. Later, Koch and Ullman [39], based on
these features, proposed a visual saliency model and
introduced the spatial saliency map, which describes which
image regions are more conspicuous. These two theories
became the basis of many cognition-inspired attention
models [40–43], while Itti et al. [44] provided an imple-
mentation of a bottom-up computational model for spatial
visual saliency using three feature channels: intensity, color,
and orientation. This model was later extended into a spa-
tio-temporal model for visual saliency estimation in video
streams by the use of two additional features: motion and
flicker [45]. These computational models have found a wide
acceptance and many other cognition-related approaches
aiming at either spatial [2,46–48] or spatio-temporal ana-
lysis [49–51] have been based on them. In the same biolo-
gical-inspired concept, the adaptive whitening saliency
model [52] used spatial 2D log-Gabor filters and dec-
orrelated the multiscale filter responses using PCA analysis
in order to obtain a final saliency map in images.

Although the early methods for visual saliency drew
inspiration from biological models of the human vision
system, later approaches for saliency estimation were based
on a Bayesian framework [53] and took advantage of the
feature statistics of the images, such as Bayesian surprise
over space or time [9,54] and salient object detection [55].
Zhang et al. [56] proposed a general framework for saliency
using natural (SUN) scene statistics, while later they exten-
ded their model by including spatio-temporal features [57].
Several information theoretic measures have also been used
like entropy of local features distributions [3]. Bruce and
Tsotsos [58] proposed a model based on self-information
from a prior local model for calculating saliency in image
regions and later extended their model to a spatio-temporal
version [59]. Hou and Zhang [60] proposed the incremental
coding length as a measurement of the perspective entropy
gain of each visual feature in order to achieve attention
selectivity in both static and dynamic stimuli. Gao and
Vasconcelos [61,62] computed visual saliency based on the
mutual information between features and image regions.
They used DOG and Gabor filters to measure the dis-
criminative power of features in center-surround image
regions. Later their initial model was combined with motion
information to estimate spatio-temporal saliency in
Fig. 1. Overall process for spatio-temporal saliency estimation. First the origin
transformed into LAB space or a PCA transformed color space. Then follows th
luminance and color stream channels. The resulting energy volumes are combine
map.
dynamic scenes [63]. Seo and Milanfar [64] used local
regression kernels, in images or videos, and matrix cosine
similarity to measure the self-resemblance of an image
regionwith its local surroundings. Riche et al. [65] employed
Gabor filtering in a PCA transformed color space and com-
puted visual saliency as the rare regions of the image using
both local and global contrast.

In another class of approaches, saliency is estimated in
the frequency domain by frequency- or phase-selective
tuning of the saliency map [66–68]. Such models are based
on Fourier or discrete cosine transforms [66,69] while the
quaternion Fourier transform is also used for combining
color, intensity and motion features [70,71,68]. Fourier
spectrum in spatio-temporal domain is also applied on
video slices along x–t and y–t planes to separate fore-
ground motion objects from backgrounds [72].

Most saliency methods have been developed mainly for
still images. At present, there has not been much work on
spatio-temporal saliency models. Instead, some static
methods have been extended to a spatio-temporal version
by using additional features related to temporal information
or motion. For example, in [45,9,48] differences between
the spatial orientation maps are employed as temporal
features for saliency detection in videos. In [64] the authors
extended their self-resemblance method by employing 3D
local steering kernels for action and saliency detection in
videos. In [73] a spatio-temporal filtering using temporal
weighted sum is proposed for abnormal motion selection in
crowed scenes, while [74] combine camera motion infor-
mation with static features to study the differences
between static and dynamic saliency in videos.

Recently, machine learning techniques have been
adopted to detect saliency for still images [75] or videos
[76–78] employing both low-level features, such as
orientation, color, intensity and optical flow motion and
high level features, such as face and object recognition.
Moreover, probabilistic learning techniques based on bot-
tom-up saliency and gist descriptors are also employed for
task-specific [79] or multi-task [80] eye-tracking predic-
tion in spatio-temporal stimuli. Further reviews of addi-
tional approaches for visual saliency estimation can be
found in [81,82,1].
3. Spatio-temporal visual frontend

Our energy-based model for spatio-temporal visual sal-
iency estimation is more relevant to the cognition-inspired
al video is cut into small temporal segments and the RGB color space is
e Spatio-Temporal Dominant Analysis (STDA), which is applied both on
d under different fusion schemes to form a single spatio-temporal saliency



Fig. 2. Spatio‐Temporal Dominant Analysis (STDA) which contains three individual stages: spatio-temporal Gabor filtering, quadrature pair energy
computation and dominant energy selection and the Temporal Moving Average (TMA) applied on the raw energies.
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saliency methods, based on Koch & Ullman theory. It uses
biologically plausible spatio-temporal filters, like oriented
3D Gabor filters, in order to extract visual features which are
composed into a single saliency map. The overall process is
shown in Fig. 1. In a first phase the initial RGB video volume
is transformed into the LAB space or into a PCA transformed
space and split into two streams: luminance and color
stream. Then follows the main process step, called Spatio-
Temporal Dominant Analysis (STDA), which is applied both on
luminance and color stream channels. (Recall that a separate
motion cue is not needed since relevant information is
indirectly provided by our spatio-temporal processing.) The
last stage includes the fusion process in which different
fusion methods and features mixtures are employed in
order to produce a single spatio-temporal saliency map.

3.1. Preprocessing and color modeling

Let the 3-value vector x y tI , ,RGB( ) be the RGB volume
representation of the whole initial video, where x y, are
frame-based spatial coordinates and t is the time index
corresponding to each frame. The first preprocessing step
is to cut the original video volume into successive seg-
ments, in order to avoid memory overloads during the
spatio-temporal Gabor filtering. Each video segment con-
sists of 128 frames, which correspond to 4–5 s duration for
typical video rates. This is sufficient for our temporal
analysis since the lowest temporal frequencies used can-
not model more slowly changing events.

Then, follows the color modeling where we use a color
space in which luminance and chromaticity components
can be well separated, instead of the RGB color space in
which the three color components (R, G, B) are highly cor-
related. Specifically in our first approach we choose the CIE-
LAB L a b, ,( )⁎ ⁎ ⁎ color space because this space, compared
with other color spaces like HSI or YCbCr, has the additional
property to be perceptually uniform. The CIE-LAB space is
created from a nonlinear transformation on CIE-XYZ color
space [83]. In our second approach for the color modeling
we use the principal component analysis (PCA), which is
inspired by neurophysiological evidences about the neural
responses. First, we apply PCA in the initial RGB color vector.
Then we divide each component with the root of its
eigenvalue in order to have a decorrelated and whitened
representation I x y t i, , , 1, 2, 3i( ) = of the color space [52].

In the resulting video volume x y tI , ,LAB( ) or I x y t, ,i( ) the
first component (Ln or I1) expresses the perceptual
response to luminance, while a b,⁎ ⁎ (or I I,2 3) describe the
color information. In order to describe the color stream in
videos by a single measure with positive values regardless
to the specific color, we use the L2 norm of the compo-
nents I I,1 2 that are related with color

C x y t I I, , 1PCA 1
2

2
2( ) = + ( )

In the case of LAB color space we employed an approach
that models the double color opponent cells that exist in
primary visual cortex V1 and has been used in color con-
stancy applications [84]. Instead of using the R G B, ,
components, we use the chromaticity components a b,( )⁎ ⁎

that indirectly include the R G− and B Y− differences.
The responses of the double opponent cells DO DO,a b can
be computed as a weighed sum of single opponent cells'
responses SO SO,a b with different scales

DO x y SO x y w SO x y, , , , , 2a a a1 2σ σ( ) = ( ) − · ( ) ( )

DO x y SO x y w SO x y, , , , , 3b b b1 2σ σ( ) = ( ) − · ( ) ( )

where ,1 2σ σ are the scales of the center and surround
receptive fields (RF) respectively and w 0, 1∈ [ ] controls
the contribution of the surround cell. Cells with w¼1
respond only to color contrast while cells that have small
w values enhance more the color regions of an image. We
select w¼0.6 in order to have both edges and regions in
the color stream. We have assumed 32 1σ σ= since it is
found by neurophysiological experiments that the sur-
round receptive field is about 3 times larger than the
center RF [85]. The responses of the single opponent cells
can be implemented as a 2D Gaussian filtering

SO x y a G x y

SO x y b G x y

, , , , ,

, , , , 4

a RF

b RF

σ σ

σ σ

( ) = ⁎ ( )

( ) = ⁎ ( ) ( )

⁎

⁎
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where GRF is a 2D Gaussian function with standard
deviation s. The resulting color stream that expresses both
the color intensity and the contrast is giving by

C x y t DO x y t DO x y t, , , , , , 5ab a b
2 2( ) = ( ) + ( ) ( )

Finally, for each video segment x y tI , ,LAB( ) or I x y t, ,i( ) we
keep the first component as the luminance stream and
color stream C x y t C x y t, , , ,ab PCA( ) ( ( )). These two visual
information streams are forwarded to the main stage of
our frontend, the STD analysis, for spatio-temporal energy
feature extraction.

3.2. Spatio-Temporal Dominant Analysis

In this subsection we will describe the core stage of our
perception-inspired frontend for visual saliency. As shown
in Fig. 2, STDA can be divided into tree individual stages.
The first stage consists of the spatio-temporal Gabor fil-
tering, while the others include postprocessing procedures
like quadrature pair energy computation and dominant
energy selection followed by an optional Temporal Moving
Average (TMA) applied on the resulting raw energies. We
note that the same STDA method is applied without
changes to both luminance and color stream modalities.

3.2.1. 3D Gabor filtering
The first step of STDA is the filtering process of the

video volume. Among the filtering approaches that have
been proposed based on psychophysical experiments, the
two with the wider acceptance are the Gabor filters and
the Gaussian Derivatives (GD). We choose to use oriented
Gabor filters in a spatio-temporal version, due to their
biological plausibility and their uncertainty-based optim-
ality [21,20]. In addition, for high order derivatives the GD
filters are approximations of the Gabor filters [31].

GD filters combined with their Hilbert transform (quad-
rature pair) are widely used in many spatial and spatio-
temporal tasks [37,86], mainly because they can be imple-
mented in an efficient way since they are steerable [87].
Gabor filters, or the other hand, are not strictly mathemati-
cally steerable but as Heeger [25,26] showed they can
become separable, which means that a high dimensional
Gabor filter can be built from 1D Gabor impulses responses.

In addition, 3D spatio-temporal filtering is also applied
in [64] by employing a 3D extension of the Local Steering
Kernel (LSK) [88]. These kernels are nonlinear and describe
temporal voxel differences based on spatial and temporal
gradient information inside a local 3D neighborhood.
However, their nonlinear nature requires a lot of proces-
sing time and memory storage for the feature extraction.
Thus, a small space–time neighborhood (e.g. 3�3�3) is
usually employed and the video resolution is down-sam-
pled to a single and very coarse spatial scale. In [73] a low-
pass spatial filter with a weighted temporal average is
employed for the spatio-temporal filtering of motion fea-
tures extracted with optical flow.

On the other hand, our proposed 3D filterbank is based on
linear and biologically inspired Gabor filters which can
describe both the gradient and texture information of the
image in multiple scales as well as spatio-temporal changes
and patterns related with motion and action. Our temporal
analysis is also multi-scaled as we have included Gabor filters
at different scales and spatio-temporal directions and does
not use only a small number of successive frames. With this
approach we can detect both fast changes in the video stimuli
(e.g. flicker) and slow and complex motion changes related
with action events. Spatio-temporal Gabor filtering has also
been employed in [89] but separately in the x t− and y t−
planes and not in a 3D multi-scale and multi-orientation
manner; further, they test their model on synthetic stimuli
and simple videos with elementary motion examples.

So, we apply quadrature pairs of 3D (spatio-temporal)
Gabor filters with identical central frequencies and band-
width. These filters can arise from 1D Gabor filters [21] in a
similar way as Daugman proposed 2D oriented Gabor fil-
ters [18]. An 1D complex Gabor filter consists of a complex
sine wave modulated by a Gaussian window. Its impulse
response with unity norm has the following form:

⎛
⎝⎜

⎞
⎠⎟g t

t
j t g t jg t

1
2

exp
2

exp
6

t c s

2

2 0π σ σ
ω( ) = − ( ) = ( ) + ( )

( )

The above complex filter can be split into one odd(sin)-phase
(gs(t)) and one even(cos)-phase (gc(t)) filters, which form a
quadrature pair filter. Almost all Gabor filters are bandpass
filters whose center frequency coincides with their modulating
frequency t0

ω ; the only exceptionwhere they become lowpass
filters is when 0t0

ω = which makes them Gaussians. Thus, we
can cover the whole spatio-temporal 3D spectral domain with
Gabor filters whose frequency responses are centered around
specific frequencies, including the zero spatial and temporal
frequencies which correspond to the case when we have no
variation in this direction (static information).

The 3D Gabor extension (as for example used for optical
flow in [26]) yields an even (cos) 3D Gabor filter whose
impulse response is

⎡
⎣
⎢
⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤
⎦
⎥
⎥g x y t

x y t

x y t

, ,
1

2
exp

2 2 2

cos 7

c
x y t x y t

x y t

3/2

2

2

2

2

2

2

0 0 0

π σ σ σ σ σ σ

ω ω ω

( ) =
( )

− + +

· ( + + ) ( )

where , ,x y t0 0 0
ω ω ω are the spatial and temporal angular

center frequencies and , ,x y tσ σ σ are the standard deviations
of the 3D Gaussian envelope. Similarly for the impulse
response of odd (sin) filter which we denote by g x y t, ,s( ).
The frequency response of the even (cos) 3D Gabor Filter
will have the following form:

G , , exp /2

/2 /2

exp /2

/2 /2 8

c x y t x x x

y y y t t t

x x x

y y y t t t

1
2

2 2

2 2 2 2

1
2

2 2

2 2 2 2

0

0 0

0

0 0

ω ω ω σ ω ω

σ ω ω σ ω ω

σ ω ω

σ ω ω σ ω ω

( ) = [ − ( ( − )

+ ( − ) + ( − ) )]

+ [ − ( ( + )

+ ( + ) + ( + ) )] ( )



Fig. 3. Isosurfaces of the 3D spatio-temporal filterbank and a top view of a filterbank slice designed at temporal frequency t0ω . Isosurfaces correspond at
70%-peak bandwidth magnitude while different colors are used for different temporal frequencies. We can see that the symmetric lobe of each filter
appeared at the plane defined by the temporal frequency t0ω− in contrast with the 2D case. We also note that the bandwidth of each filter changes
depending on the spatial scale and temporal frequency: (a) filterbank at t0ω (top view); (b) filterbank at t0ω− (top view); (c) spatio-temporal filterbank at
5 different spatial scales, 1 of 8 orientation and 5 temporal frequencies; and (d) spatio-temporal filterbank at 5 different spatial scales, 8 spatial orientations
and 3 of 5 temporal frequencies.
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Thus, the frequency response of an even (cos) Gabor filter
consists of two Gaussian ellipsoids symmetrically placed at
frequencies , ,x y t0 0 0

ω ω ω( ) and , ,x y t0 0 0
ω ω ω( − − − ). Fig. 3

shows isosurfaces of the 3D spatio-temporal filterbank as
well as a top view of a filterbank slice designed at some
temporal frequency t0

ω . Note that the symmetric lobes of
each filter appear at the plane defined by the temporal fre-
quency t0

ω− in contrast with the 2D case. So, if we want to
cover the spatial frequency plane at each temporal frequency
we must include in our filterbank both positive and negative
temporal frequencies. Further, the bandwidth of each filter
varies with the spatial scale and temporal frequency.

The 3D filtering is a time consuming process due to the
complexity of all required 3D convolutions. However, Gabor
filters are separable [25], which means that we can filter each
dimension separately using an impulse response having the
form (6). In this way, we apply only 1D convolutions instead
of 3D, which increases the efficiency of the computations.
Then the 3D output can be easily composed from 1D filtering
outputs by using simple trigonometric properties in two steps
(first 2D and then 3D). First, we compose the 2D spatial
output from the impulse responses g x g x g y g y, , ,c s c s( ) ( ) ( ) ( ) for
both the even- and odd-phase filter (we show the equations
only for the luminance modality; the procedure is the same
for color stream)

y x y t I x y t g x g y

I x y t g x g y

, , , ,

, , 9

c
D

c c

s s

2
1

1

( ) = ( ( )⁎ ( ))⁎ ( )

− ( ( )⁎ ( ))⁎ ( ) ( )

y x y t I x y t g x g y

I x y t g x g y

, , , ,

, , 10

s
D

s c

c s

2
1

1

( ) = ( ( )⁎ ( ))⁎ ( )

+ ( ( )⁎ ( ))⁎ ( ) ( )



1 Dominant component analysis on the outputs of Gabor filterbanks
has been used for 2D texture analysis and segmentation in [91,90,92] and
for spatio-temporal action classification in [93,94]. It may include addi-
tional steps of demodulation.
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Then the final 3D output corresponding to spatio-temporal
filtering can be obtained by convolving the above 2D output
with the 1D temporal impulse responses

y x y t y x y t g t y x y t g t, , , , , , 11c
D

c
D

c s
D

s
3 2 2( ) = ( )⁎ ( ) − ( )⁎ ( ) ( )

y x y t y x y t g t y x y t g t, , , , , , 12s
D

c
D

s s
D

c
3 2 2( ) = ( )⁎ ( ) + ( )⁎ ( ) ( )

For an image of size n n n× × and a convolution kernel of
m m m× × the complexity is reduced from n m3 3( · ) that is
required for 3D convolutions to n m3 3( · ) that is required for
three separable 1D convolutions. Moreover, our 3D filterbank
is highly parallelized as the basic operation is a simple 1D
convolution and each 3D filter can be computed indepen-
dently. At this time, the total computational time is about 6–
8 s per video frame using Matlab code without any optimi-
zation for speed up in a 4-core personal computer.

For the spatio-temporal filterbank we used K¼400
Gabor filters (isotropic in the spatial components) which
are arranged in five spatial scales, eight spatial orienta-
tions and ten temporal frequencies. The spatial scales and
orientations are selected to cover a squared 2D frequency
plane in a similar way to the design by Havlicek et al. [90].
Then both center frequencies and Gaussian bandwidths
are divided by the spatial sampling frequencies in order to
get discrete filters with normalized frequency parameters
that can be directly applied at every image size. We note
that this process can lead to anisotropic spatial Gabor fil-
ters for non-square images, although the original design
includes isotropic filters.

We use 10 temporal Gabor filters, five at positive and
five at negative center frequencies due to the 3D spectrum
symmetries. These are linearly spaced to span the nor-
malized frequency axis and each filter's half-peak octave
bandwidth is 0.75 octaves. Gabor filters in the temporal
domain can model time varying patterns in the video, in a
similar way that 2D Gabor describe texture patterns in
video, while the use of different temporal frequencies can
detect motions that have different directions. Fig. 3 shows
spatio-temporal views of our design of this 3D filterbank.
Note that including both positive and negative frequencies
does not increase the filtering complexity because, due to
Gabor filters' separability, no additional convolutions are
needed but only changing the signs at (11) and (12).
Finally, for the static (spatial only) filterbank we use the
same spatial parameters with zero temporal frequency
(L¼40 filters), while for the lowpass filter we use both
spatial and temporal zero frequencies. These three filter-
bank types can generate different features which play an
important role in estimating spatio-temporal visual sal-
iency. The spatio-temporal filterbank can detect motion
activities, while the static one can find significant image
regions which may attract human attention such as spe-
cific texture or strong edges. The low-pass filter can be
related to what many models refer to as “intensity con-
spicuity” and describes video regions that have high values
of luminance or color stream inside a spatio-temporal
window (defined by the 3D Gaussian bandwidth).
3.2.2. Postprocessing
After the filtering process, for each filter i we obtain a

quadrature pair output y x y t y x y t, , , , ,s
D

c
D3 3( ( ) ( )) which

corresponds to the even- and odd-phase 3D filter outputs.
For each filter we can compute the total Gabor energy E(·),
which is invariant to the phase of the input, by taking the
sum of the squared energy of these two outputs
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c
D

s
D

c
D3 3 3 2 3 2( ) ( )( ) = ( ) + ( ) ( )

After applying the above energy operator to each filter we
have K¼400 energy volumes for the spatio-temporal part
(STEi), L¼40 for the static part (SEi) and one for the low-
pass filter (LE0); see Fig. 2. In order to form one volume for
each of these three independent filtering parts we apply
the first step of Dominant Component Analysis1 both to
spatio-temporal and static energy volumes. Specifically, for
each voxel x y t, ,( ) we keep its maximum value between all
existing energy volumes

STDE STE SDE SEmax , max
14i K

i
i L

i
1 1

= = ( )≤ ≤ ≤ ≤

Instead of keeping only the dominant energy we can keep
the N highest spatio-temporal energies for each voxel and
afterwards compute the average or the min value of them.
This makes our analysis more robust to noise but requires
N times more memory and storage space. In our experi-
ments N assumes values in the range 1, 6[ ]. For the low-
pass energy we apply a simple center-surround difference
in order to enhance regions which have significantly dif-
ferent values from their background. At each voxel of the
video segment we subtract from its low-pass energy value
LE x y t, ,0( ( )) the average value of the entire low-pass
energy volume

LE x y t LE x y t LE x y t, , , , , , 150 0( ) = ( ) − ( ) ( )

Finally, we have three raw energy volumes for each
luminance and color stream: spatio-temporal dominant
energy STDE (see Figs. 5b and e and 6b and e), static
dominant energy SDE (see Figs. 5c and f and 6c and f) and
lowpass energy LE (see Figs. 5d and g and 6d and g). These
raw energy volumes can be used as feature pools for
composing a single saliency map under different fusion
schemes.

Alternatively, these energy volumes can become fur-
ther smoothed by applying a temporal moving average
(TMA). Thus, each frame energy is computed as the mean
inside a temporal window which includes T successive
frames whose total duration is 1 s. In this way, we inte-
grate visual events which take place close in time, in a
similar way that humans are believed to do. A spatial
Gaussian smoothing can also be applied, in order to find
more compact and dense energy regions.
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4. Spatio-temporal visual saliency

With the above described visual frontend, we obtain six
energy volumes which quantitatively describe different
aspects of visual saliency and thus provide a spatio-tem-
poral feature set. In order to obtain a single spatio-tem-
poral saliency map we combine these volumes using dif-
ferent fusion schemes. These can be categorized based on
the applied fusion method or the specific feature subset
used.

For fusion we have experimented with three widely
used functions: min, max, mean, which correspond to
different approaches in feature integration. Using the max
we search for video regions that are salient in at least one
energy map, the min keeps as salient those voxels which
have high energy value in all energy volumes, whereas the
mean lies somewhere in the middle. In the first step, we
apply the selected fusion function to the dynamic volumes
(luminance STDE and color STDE) and static volumes
(luminance SDE, color SDE, luminance LE and color LE)
independently. Then, we normalize both resulting
volumes in the range 0, 1[ ]. Finally, we fuse the normalized
static and dynamic volumes by employing the same
function used in the first step.
Fig. 4. Two synthetic spatio-temporal stimuli with the saliency maps created b
detects the spatio-temporal events: (a) stimuli A and (b) stimuli B.
We have selected five feature subsets which are defined
by which energy volumes we keep: (1) only luminance
STDE, (2) luminance STDE and color stream STDE,
(3) luminance STDE and color LE, (4) luminance and color
stream STDE, luminance and color stream SDE, (5) all six
energy volumes. The motivation behind these choices is
that the luminance STDE describes the motion better,
which is important for spatio-temporal saliency, while
color information can be integrated both dynamically
(STDE) or statically (LE). The use of all six energies means
that both luminance and color stream are integrated into
the final saliency map in a spatio-temporal (Lum.STDE, Col.
STDE) as well as a spatially or temporally static (Lum.SDE,
Col.SDE, Lum.Low, Col.Low) way.

For the qualitative evaluation of our spatio-temporal
frontend we have created several simple stimuli where a
time-varying event takes place among other spatial salient
objects. In Fig. 4 we see two examples of these spatio-
temporal stimuli. We also provide the saliency maps cre-
ated by three state-of-the-art spatial saliency models
(AWS [52], GBVS [48], Hou et al. [66]) as well as our spatio-
temporal dominant energy (STDE). The general static
background consists of some green and blue circles among
many red circles. In stimulus A we have included a
y three state-of-the-art static saliency models. We also see our STDE that



Fig. 4. (continued)

Fig. 5. Example frames of the six energy volumes computed using our frontend on the video beverly01 from CRCNS-ORIG database. The beams of the slide
on the right is detected by both luminance and color STDE, while the yellow “slide” is detected by only the Low-pass color energy.
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Fig. 6. Example frames of the six energy volumes computed using our frontend on the Lord of the Rings (Clip 1) from our Eye-Tracking Movie Database
(ETMD). The galloping horse is perfectly detected by the luminance STDE.
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blinking red circle whereas stimulus B contains a moving
gray circle with low contrast. We see that all spatial sal-
iency models detect as salient objects only the green and
blue circles since they do not contain any temporal infor-
mation. On the other hand our approach, which includes
STDE, can detect both the spatial and the two time-varying
events due to the multi-scale temporal filtering.

4.1. Evaluation on CRCNS-ORIG database

In order to quantitatively evaluate our proposed sal-
iency estimation model we employ the widely used
database CRCNS-ORIG by Itti et al. [9], which contains 50
short-length color video (about 25 minutes total playtime)
with human eye-tracking annotation. Fig. 5 shows exam-
ple frames of all six energies computed using our frontend
from the video beverly01 of the CRCNS-ORIG database. We
note that the beams of the “slide”, which is introduced on
the screen right after camera movement, are detected by
both luminance and color STDE as these could be con-
sidered as spatio-temporal texture patterns. On the other
hand the yellow “slide” is detected only by the low-pass
color energy because, despite the fact that it moves, it
retains a flat structure in the spatial domain. So this region
is filtered by the spatial part of the 3D Gabor filter. The
luminance SDE, as we can also see, models static texture
patterns or edges while the luminance low-pass energy
detects regions that have higher absolute luminance in
relation to the frame's average.

We have tried to keep the same evaluation framework
as in [82]. We compared our results according to the three
evaluation scores, as they are described in [82]: Correla-
tion Coefficient, Normalized Scanpath Saliency, Area Under
Curve. Despite the spatio-temporal character of our
method these three measures are computed at each frame
separately.

Correlation Coefficient (CC) expresses the relationship
between the model's saliency map and the saliency map
created by centering a 2D gaussian at each viewer's eye
fixation. Normalized Scanpath Saliency (NSS) is computed
on the model's saliency map, after zero mean normal-
ization and unit standardization, and shows how many
times over the whole map's average is the model's saliency
value at each human fixation. For NSS computation we
subtract from the saliency map its average value and then
divide with its standard deviation. Then the values of this
normalized saliency map at each viewer fixation position
consist the NSS values. As final NSS value we take the
mean over all viewers fixations, while a negative NSS
shows that the model cannot predict saliency region better
than random selection. Area Under Curve (AUC) is defined
by the area under the receiver operating characteristic
(ROC) curve [95]. For our evaluation we consider saliency
as a binary classification problem, in which saliency
regions are included in the positive class while non-salient
pixels form the negative set. Model's saliency values are
the single features. After thresholding these values we take
an ROC curve and subsequently the AUC measure. Instead
of selecting the negative points uniformly from a video
frame we use the shuffled AUC [56], which can be more
robust across center-bias issue. According to shuffled AUC,
we select the negative points from the union of all viewers’
fixations across all other frames except the frame for
which we compute the AUC. For more details about the
above evaluation scores the reader is referred to [82,1].

The results for the different fusion functions and fea-
ture subsets using both raw and TMA energies are shown
in Tables 1 and 2. We see that the raw energies perform in
general better than the TMA. The mixture containing all
energies gives the highest value for AUC score, while
mixtures including luminance STDE and color low-pass
yield large values w.r.t. CC and NSS. The fusion schemes
using the mean have better performance and achieve
higher values for the shuffled AUC. On the other hand, the
min-based scheme for the luminance STDE and color low-
pass feature mixture gives the best CC and NSS scores. In
addition, the fusion schemes including only the dynamic
volumes STDE can achieve a fairly good performance,



Table 1
Evaluation scores for the CRCNS-ORIG database using LAB color space.

Evaluation score Correlation coefficient (CC) Normalized scanpath saliency (NSS) Shuffled area under curve (AUC)
Fusion function Fusion function Fusion function

Features MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN

Energy type Feature subsets

Raw Lum.STDE 0.103 – – 0.895 – – 0.570 – –

Raw Lum.STDE/Col.STDE 0.097 0.092 0.091 0.840 0.801 0.789 0.572 0.571 0.561
Raw Lum.STDE/Col.Low 0.101 0.084 0.108 0.885 0.731 0.935 0.569 0.557 0.565
Raw STDE/SDE 0.077 0.062 0.073 0.664 0.536 0.627 0.572 0.561 0.554
Raw All 6 energies 0.094 0.058 0.085 0.808 0.501 0.735 0.571 0.541 0.558

TMA Lum.STDE 0.103 – – 0.894 – – 0.567 – –

TMA Lum.STDE/Col.STDE 0.096 0.093 0.088 0.828 0.799 0.762 0.568 0.567 0.556
TMA Lum.STDE/Col.Low 0.105 0.088 0.107 0.905 0.762 0.920 0.566 0.556 0.560
TMA STDE/SDE 0.078 0.065 0.068 0.670 0.561 0.585 0.568 0.559 0.549
TMA All 6 energies 0.095 0.063 0.080 0.813 0.537 0.685 0.567 0.544 0.553

Table 2
Evaluation scores for the CRCNS-ORIG database using PCA transformed color space.

Evaluation score Correlation coefficient (CC) Normalized scanpath saliency (NSS) Shuffled area under curve (AUC)
Fusion function Fusion function Fusion function

Features MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN

Energy type Feature subsets

Raw Lum.STDE 0.112 – – 0.970 – – 0.578 – –

Raw Lum.STDE/Col.STDE 0.119 0.112 0.118 1.037 0.971 1.026 0.594 0.591 0.585
Raw Lum.STDE/Col.Low 0.120 0.102 0.126 1.044 0.888 1.096 0.588 0.582 0.572
Raw STDE/SDE 0.098 0.083 0.096 0.850 0.717 0.829 0.598 0.583 0.576
Raw All 6 energies 0.117 0.081 0.114 1.006 0.699 0.989 0.601 0.575 0.580

TMA Lum.STDE 0.111 – – 0.955 – – 0.574 – –

TMA Lum.STDE/Col.STDE 0.118 0.111 0.117 1.024 0.958 1.011 0.590 0.586 0.582
TMA Lum.STDE/Col.Low 0.122 0.105 0.126 1.059 0.909 1.089 0.586 0.581 0.567
TMA STDE/SDE 0.100 0.087 0.092 0.861 0.748 0.788 0.594 0.580 0.570
TMA All 6 energies 0.119 0.086 0.109 1.020 0.737 0.941 0.598 0.578 0.574
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partly because in video viewing temporal information has
a significantly greater influence to the human attention
than the static components. Moreover, we see that the use
of the PCA transformed color space gave better results
than the LAB color space. Despite the fact that the LAB
color space is perceptually inspired, the PCA gives uncor-
related color streams adapted to each image content. In
addition, there are physiological evidences that many
processes in the human brain are closely related with the
decorrelation of the input stimulus.

In Table 3 we see results after employing different
functions in our dominant energy analysis. Specifically, we
kept the N¼4, 6 more dominant energy volumes and then
we applied three different functions: mean, max, min. We
have also used our best fusion scheme: mean fusion
function, all energies as feature subset and raw energies.
We see improvement to all evaluation metrics for both the
mean and the min function. The results for the max
function are by default the same regardless the number of
dominant energies. So, taking the min (or mean) among N
more dominant energies may be more robust to noise and
computational errors than the classic dominant analysis
but it requires more computational resources as well. In
addition, the use of N¼6 volumes seems to yield an
additional increment to the results when we use the min
function.

In order to compare our proposed method with other
methods we have evaluated 15 state-of-the-art methods
with publicly available code. In our comparisons we have
included three spatio-temporal models that are related
with the three basic approaches for visual saliency:
(1) cognitive inspired [45,48], (2) statistical framework
[64] and (3) frequency domain analysis [71,68]. Their
results are presented in Table 4 together with our meth-
od's version that includes: dominant energy analysis using
max function, PCA approach for the color stream, mean
fusion function, all six energies as feature subset, raw
energies and a gaussian spatial smoothing. Table 4 also
presents the scores achieved by a Gaussian blob centered
at the center of the image.

According to our evaluation results our visual frontend
outperforms the other saliency estimation methods. Some
of them are cognitively inspired [44,2] or use recent ideas
about visual saliency, such as information theory measures



Table 3
Evaluation Scores for the CRCNS-ORIG database. In the comparison the following are included: three different functions (mean, max, min) applied at N 4, 6=
more dominant energy volumes, PCA color space, mean fusion function, all six energies as feature subset and raw energies.

Evaluation score Correlation coefficient (CC) Normalized scanpath saliency (NSS) Shuffled area under curve (AUC)
Applied function Applied function Applied function

Number of dominant energies (N) MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN

N¼4 0.118 0.117 0.121 1.022 1.006 1.040 0.604 0.601 0.605
N¼6 0.119 0.117 0.122 1.029 1.006 1.053 0.604 0.601 0.607

Table 4
Comparison with state-of-the-art methods in the CRCNS-ORIG database. In our method are included: dominant energy analysis using min function, PCA
color space, mean fusion, all six energies as feature subset and raw energies.

Method's name/citation Spatial or spatio-temporal Learning Correlation
coefficient (CC)

Normalized scanpath
saliency (NSS)

Shuffled area
under curve (AUC)

Our method Spatio-temporal NO 0.122 1.053 0.607
Our method þ AWS Spatio-temporal NO 0.128 1.110 0.621
AIM: Bruce and Tsotos [58] Spatial YES 0.106 0.900 0.598
AWS: Diaz et al. [52] Spatial NO 0.108 0.936 0.608
GBVS: Harel et al. [48] Spatial NO 0.169 1.454 0.574
GBVS: Harel et al. [48] Spetio-temporal NO 0.173 1.504 0.590
Hou and Zhang [66] Spatial NO 0.108 0.930 0.603
Itti et al. 1 [44,48] Spatial NO 0.122 1.039 0.565
Itti et al. 1 [45,48] Spetio-temporal NO 0.131 1.123 0.582
Itti et al. 2 [44,2] Spatial NO 0.056 0.525 0.527
Itti et al. 2 [45,2] Spetio-temporal NO 0.084 0.795 0.547
Judd et al. [75] Spatial YES 0.165 1.401 0.565
PQFT: Guo et al. [71,68] Spetio-temporal NO 0.118 1.059 0.590
SDSR: Seo and Milanfar [64] Spetio-temporal NO 0.104 0.904 0.584
SUN: Zhang et al. [56] Spatial YES 0.075 0.633 0.573
Torralba [53] Spatial NO 0.091 0.779 0.585
Gaussian Blob [82] Spatial NO 0.152 1.268 0.500
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[53,58,56], ICA analysis with precomputed basis using
datasets of natural images [58,56] and saliency estimation
in the frequency domain [66], but they do not process the
videos in the temporal direction as they are originally
designed for static images. Our proposed method also
outperforms the three state-of-the-art spatio-temporal
models that include a temporal information channel but
estimate motion by computing differences between 2D
orientation maps of successive frames [45,48] or using a
small number of (e.g. 2–3) frames, instead of applying
spatio-temporal filtering at different scales and orienta-
tions as in our proposed frontend. Regarding the shuffled
AUC score, which is robust across center-bias issue, our
method scores as well as the AWS method. On the other
hand, our method outperforms the AWS w.r.t. CC and NSS
scores. The AWS method uses spatial 2D log-Gabor filters
and decorrelates the multiscale filter responses using PCA
analysis [52] in order to obtain the final saliency map. In
our method, we use simpler ideas like dominant energy
analysis and separable Gabor filters and process the video
volume simultaneously in three dimensions (spatial and
temporal). The combination of our method with the static
AWS method gives a significant improvement in the AUC
score.
We have to note that many of the methods we have
evaluated are designed and used for still images. Therefore
applying them at each video frame in video sequences
becomes a time consuming process in most cases (e.g.
[75]). Our proposed method is designed for videos and is
purely bottom up since it is based on perceptually inspired
spatio-temporal features and uses simple and fast fusion
techniques instead of machine learning or other advanced
and complex methods for feature integration. Finally, we
note that the employed evaluation measures, which were
widely used in the literature, are designed for static ima-
ges; so the frame by frame evaluation of the visual saliency
in a video stimuli is not always the best choice.

4.2. Eye-Tracking Movie Database (ETMD)

In our general effort to deal with the movie summar-
ization problem it would be useful if we could evaluate our
visual saliency model on a database that contains longer
and more complex video clips. For this reason, we have
developed a database comprising video clips from Holly-
wood movies which we have enriched with eye-tracking
human annotation: the Eye-Tracking Movie Database
(ETMD). Specifically, we cut two short video clips (about
3–3.5 min) from each one of six Oscar-winning movies of
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various genres: Chicago, Crash, Departed, Finding Nemo,
Gladiator, Lord of the Rings – The return of the King. We
tried to include scenes with high motion and action as well
as dialogues. These clips were annotated with eye-tracking
data by 10 different people (annotation data from at least
eight people were collected for each clip). We asked them
to see in full screen these clips both in grayscale and in
color, while an eye-tracking system recorded their eyes
fixations on the screen. Specifically, we have used the
commercial Eye Tracking System TM3 provided by Eye-
TechDS. This device uses a camera with infrared light and
provides a real time continuous gaze estimation, defined
as fixation points on the screen. The tracker's rate has been
selected to be synchronized with the video frame rate in
order to have one fixation point pair per frame. For visual
saliency problems a weighted average between two eye
fixations is provided, which is defined either by the mean,
if both eyes are found by the eye-tracker, or only by the
detected eye's fixation. If neither eye is detected or the
fixations lie out of screen boundaries, fixation gets a zero
value. Fig. 7 shows examples of the fixation points at frame
#500 for each of the 12 movie clips. We see that in most
cases the fixation points of all viewers lie in general close
to each other. By analyzing the eye-tracking data we pro-
vide in Table 5 useful statistics regarding the database,
such as the number of frames, total duration and valid
CHI Clip 1 CHI Clip 2

DEP Clip 1 DEP Clip 2

GLA Clip 1 GLA Clip 2

Fig. 7. Examples of the fixation points at frame no. 500 for each of the 12 movie
clip, while with red n are the points for the grayscale version. Best viewed in col
(f) DEP Clip 2; (g) FNE Clip 1; (h) FNE Clip 2; (i) GLA Clip 1; (j) GLA Clip 2; (k)
fixation points per frame, and find correlations among the
different viewers and between the color and grayscale
version of each movie clip. We see that the fixations are
generally correlated both between the different users and
the version (color or grayscale) of each movie clip. How-
ever, in some movies, such as CHI, the fixations data are
highly correlated while other clips (FNE Clip 2, LOR Clip 2)
have lower correlation values.

We have applied and evaluated our computational
model on this novel database in a similar way as we did for
the CRCNS-ORIG database. Fig. 6 shows example frames of
all six model's energies computed on the video Lord of the
Rings (Clip 1) from our new Eye-Tracking Movie Database
(ETMD). We note that the white galloping horse is per-
fectly detected by only the luminance STDE, since its color
information is negligible. The Luminance/color SDE and
Low-pass energies model static objects or regions in the
video sequence, like the rock in the bottom-left and the
clouds in the air.

The results for the different fusion schemes using the
PCA transformed color space and the both Raw and TMA
energies are shown in Table 6. Here, we keep the mini-
mum of the N¼6 more dominant spatio-temporal energy
volumes. There is also one additional subset of features:
luminance STDE evaluated on grayscale annotated clips.
CRA Clip 1 CRA Clip 2

FNE Clip 1 FNE Clip 2

LOR Clip 1 LOR Clip 2

clips. With green þ are the fixations points over the color version of each
or: (a) CHI Clip 1; CHI Clip 2; (c) CRA Clip 1; (d) CRA Clip 2; (e) DEP Clip 1;
LOR Clip 1; and (l) LOR Clip 2.



Table 5
Statistics for the Eye Tracking Movie Database (ETMD).

Video clip
name

Number of
frames

Duration
(min)

Number of
viewers

Valid fixations num-
ber per frame

Average correlation
between viewers

Average correlation between
color and grayscale version

CHI Clip 1 5075 03:22 10 9.50 0.506 0.495
CHI Clip 2 5241 03:29 9 8.63 0.430 0.484
CRA Clip 1 5221 03:28 10 9.47 0.335 0.310
CRA Clip 2 5079 03:23 9 8.47 0.406 0.467
DEP Clip 1 4828 03:13 10 9.45 0.520 0.548
DEP Clip 2 5495 03:39 9 8.25 0.473 0.534
FNE Clip 1 5069 03:22 9 8.45 0.372 0.371
FNE Clip 2 5083 03:23 8 7.50 0.292 0.294
GLA Clip 1 5290 03:31 9 8.18 0.423 0.407
GLA Clip 2 4995 03:19 8 7.61 0.354 0.443
LOR Clip 1 5116 03:24 9 8.38 0.452 0.431
LOR Clip 2 5152 03:26 8 7.56 0.294 0.283

Table 6
Evaluation Scores for the Eye-Tracking Movie Database (ETMD) using PCA transformed color space. The evaluation of the luminance STDE was based on eye-
tracking annotation on both a grayscale and color version of each video.

Evaluation score Correlation coefficient (CC) Normalized scanpath saliency (NSS) Shuffled area under curve (AUC)
Fusion function Fusion function Fusion function

Features MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN

Energy type Feature subsets

Raw Lum.STDE (Grayscale
Annot.)

0.113 – – 0.786 – – 0.603 – –

Raw Lum.STDE (Color Annot.) 0.114 – – 0.794 – – 0.601 – –

Raw Lum.STDE/Col.STDE 0.121 0.111 0.127 0.837 0.765 0.886 0.618 0.610 0.615
Raw Lum.STDE/Col.Low 0.145 0.127 0.149 1.016 0.892 1.032 0.630 0.613 0.616
Raw STDE/SDE 0.110 0.093 0.115 0.761 0.640 0.797 0.620 0.604 0.608
Raw All 6 energies 0.128 0.097 0.135 0.886 0.672 0.931 0.629 0.606 0.616

TMA Lum.STDE (Grayscale
Annot.)

0.120 – – 0.827 – – 0.611 – –

TMA Lum.STDE (Color Annot.) 0.120 – – 0.835 – – 0.609 – –

TMA Lum.STDE/Col.STDE 0.130 0.119 0.136 0.897 0.820 0.944 0.629 0.620 0.627
TMA Lum.STDE/Col.Low 0.156 0.135 0.162 1.083 0.944 1.124 0.643 0.625 0.629
TMA STDE/SDE 0.119 0.101 0.120 0.816 0.695 0.828 0.630 0.613 0.616
TMA All 6 energies 0.138 0.106 0.142 0951 0.732 0.977 0.641 0.616 0.625
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Our goal for this addition was to also evaluate our method
without the influence of the color stream.

We see that according to all 3 metrics the TMA energies
perform significantly better than the Raw in this new
dataset. They give smoother energies and so the salient
events in the movies can be determined more accurately.
We can see that the STDE and color low-pass feature
subset has in general the best performance and the mean
fusion performs quite better than the other schemes. The
above results, regarding the TMA energies and the best
feature and fusion scheme, are different than those we
have obtained for the CRCNS-ORIG, in which the all ener-
gies mixture with Raw energies gave the best results. This
could be explained as we consider that an object with high
motion and color intensity may attract human attention
more than the static parts of the scene. Moreover,
regarding the grayscale versus color annotation, we saw
that color based energy volumes can improve the perfor-
mance over using only the luminance STDE and confirms
the need for incorporating color information in a saliency
model. Thus, it seems that the luminance only STDE is
adequate for the grayscale version of annotation, whereas
the availability of color modeling clearly provides helpful
additional information in the case of color annotation. This
can be explained by the fact that despite the apparent
correlation between the fixations points over the two
versions (grayscale or color) of each clip, in many cases the
viewers focus on different places in the video when the
color information is on. We also note that the ETMD is a
quite challenging database due to the existence of many
shot and scene changes in the Hollywood movies. Finally,
movies are highly face-biased, which means that during a
movie the viewer mostly focuses on actors faces.

In order to compare our method's performance with
the other state-of-the-art models we have evaluated the
same visual saliency methods as in the CRCNS-ORIG. Their
results are presented in Table 7 together with our best
method's version that includes: dominant energy analysis
using the minimum of the N¼6 more dominant spatio-
temporal energies, the PCA based color space, mean fusion
function, luminance STDE and color low-pass energy as
feature subset and TMA energies. We see that in this



Table 7
Comparison with state-of-the-art methods in the ETMD database. In our method are included: dominant energy analysis using min function, PCA color
space, mean fusion, luminance STDE and color low-pass as feature subset and TMA energies.

Method's name/citation Spatial or
spatio-temporal

Learning Correlation
coefficient (CC)

Normalized scanpath
saliency (NSS)

Shuffled area
under curve (AUC)

Our method Spatio-temporal NO 0.156 1.083 0.643
AIM: Bruce and Tsotos [58] Spatial YES 0.138 0.919 0.610
AWS: Diaz et al. [52] Spatial NO 0.113 0.788 0.631
GBVS: Harel et al. [48] Spatial NO 0.213 1.435 0.598
GBVS: Harel et al. [48] Spetio-temporal NO 0.202 1.371 0.607
Hou et al. [66] Spatial NO 0.091 0.635 0.599
Itti et al. 1 [44,48] Spatial NO 0.166 1.093 0.549
Itti et al. 1 [45,48] Spetio-temporal NO 0.171 1.140 0.573
Itti et al. 2 [44,2] Spatial NO 0.058 0.429 0.542
Itti et al. 2 [45,2] Spetio-temporal NO 0.070 0.526 0.556
Judd et al. [75] Spatial YES 0.222 1.481 0.602
PQFT: Guo et al. [71,68] Spetio-temporal NO 0.095 0.688 0.558
SDSR: Seo and Milanfar [64] Spetio-temporal NO 0.084 0.587 0.574
SUN: Zhang et al. [56] Spatial YES 0.095 0.656 0.599
Torralba [53] Spatial NO 0.107 0.736 0.612
Gaussian Blob [82] Spatial NO 0.239 1.569 0.500
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movie dataset our perceptually inspired spatio-temporal
method yields a higher performance than any other eval-
uated state-of-the-art saliency model.
5. Conclusion

In this work we have dealt with the problem of spatio-
temporal visual saliency with applications in eye-tracking
annotated videos. We have proposed a new spatio-tem-
poral computational visual frontend for estimating visual
saliency. Our approach performed better than many other
methods over the CRCNS-ORIG database, according to
certain numerical criteria. It yields a quite high perfor-
mance also for our new eye-tracking annotated movie
database, which is an additional contribution of this paper.
Our perceptually inspired spatio-temporal frontend
employs simple fusion schemes on simply computed
energy features, and its overall approach is low-level and
bottom-up without any training process. As future work,
we focus on the reduction of the frontend's complexity
and integration of our bottom-up frontend with the
movies' high level semantic information. Moreover, in our
ongoing work we envision applications of this frontend to
the movie summarization problem.
Acknowledgments

This research work was supported by the project
“COGNIMUSE” which is implemented under the “ARIS-
TEIA” Action of the Operational Program Education and
Lifelong Learning and is co-funded by the European Social
Fund and Greek National Resources. It was also partially
supported by the European Union under the project
“MOBOT” with Grant FP7-600796.

The authors wish to thank all the members of the NTUA
CVSP Lab who participated in the eye-tracking annotation
of the movie database. Special thanks to Nassos Katsa-
manis for his advices during database collection and
detailed comments on the paper.
Appendix A. Supplementary material

Supplementary data associated with this paper can be
found in the online version at http://dx.doi.org/10.1016/j.
image.2015.08.004. Additional information can be found
at: http://cognimuse.cs.ntua.gr.
References

[1] A. Borji, L. Itti, State-of-the-art in visual attention modeling, IEEE
Trans. Pattern Anal. Mach. Intell. 35 (1) (2013) 185–207.

[2] D. Walther, C. Koch, Modeling attention to salient proto-objects, J.
Neural Netw. 19 (9) (2006) 1395–1407.

[3] T. Kadir, M. Brady, Saliency, scale and image description, Int. J.
Comput. Vis. 45 (2) (2001) 83–105.

[4] K. Rapantzikos, Y. Avrithis, S. Kollias, Dense saliency-based spatio-
temporal feature points for action recognition, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2009.

[5] Z. Liu, W. Zou, L. Li, L. Shen, O. le Meur, Co-saliency detection based
on hierarchical segmentation, IEEE Signal Process. Lett. 21 (1) (2014)
88–92.

[6] Y. Ma, X. Hua, L. Lu, H. Zhang, A generic framework of user attention
model and its application in video summarization, IEEE Trans.
Multimed. 7 (5) (2005) 907–919.

[7] A. Money, H. Agius, Video summarization: a conceptual framework
and survey of the state of the art, J. Vis. Commun. Image Represent.
19 (2) (2008) 121–143.

[8] G. Evangelopoulos, A. Zlatintsi, A. Potamianos, P. Maragos,
K. Rapantzikos, G. Skoumas, Y. Avrithis, Multimodal saliency and
fusion for movie summarization based on aural, visual, textual
attention, IEEE Trans. Multimed. 15 (7) (2013) 1553–1568, http://dx.
doi.org/10.1109/TMM.2013.2267205.

[9] L. Itti, P. Baldi, Bayesian surprise attracts human attention, in: Pro-
ceedings of the NIPS, 2005.

[10] D.H. Hubel, T.N. Wiesel, Receptive fields, binocular interaction and
functional architecture in the cat's visual cortex, J. Physiol. 160
(1962) 106–154.

http://dx.doi.org/10.1016/j.image.2015.08.004
http://dx.doi.org/10.1016/j.image.2015.08.004
http://cognimuse.cs.ntua.gr
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref1
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref1
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref1
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref2
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref2
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref2
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref3
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref3
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref3
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref5
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref5
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref5
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref5
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref6
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref6
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref6
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref6
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref7
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref7
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref7
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref7
http://dx.doi.org/10.1109/TMM.2013.2267205
http://dx.doi.org/10.1109/TMM.2013.2267205
http://dx.doi.org/10.1109/TMM.2013.2267205
http://dx.doi.org/10.1109/TMM.2013.2267205
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref10
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref10
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref10
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref10


P. Koutras, P. Maragos / Signal Processing: Image Communication 38 (2015) 15–3130
[11] D.H. Hubel, T.N. Wiesel, Receptive fields and functional architecture
of monkey striate cortex, J. Physiol. 195 (1968) 215–243.

[12] J. Movshon, I. Thompson, D. Tolhurst, Spatial summation in the
receptive fields of simple cells in the cat's striate cortex, J. Physiol.
283 (1978) 53–77.

[13] J. Movshon, I. Thompson, D. Tolhurst, Receptive field organization of
complex cells in the cat's striate cortex, J. Physiol. 283 (1978) 79–99.

[14] R.L.D. Valois, E.W. Yund, N. Hepler, The orientation and direction
selectivity of cells in macaque visual cortex, Vis. Res. 22 (1982)
531–544.

[15] F.W. Campbell, J.G. Robson, Application of Fourier analysis to the
visibility of gratings, J. Physiol. (Lond.) 197 (1968) 551–566.

[16] L. Maffei, A. Fiorentini, The visual cortex as a spatial frequency
analyzer, Vis. Res. 13 (1973) 1255–1267.

[17] H.R. Wilson, S.C. Giese, Threshold visibility of frequency gradient
patterns, Vis. Res. 17 (1977) 1177–1190.

[18] J.G. Daugman, Two-dimensional spectral analysis of cortical recep-
tive field profiles, Vis. Res. 20 (10) (1980) 847–856.

[19] D.A. Pollen, S.F. Ronner, Phase relationships between adjacent sim-
ple cells in the visual cortex, Science 212 (4501) (1981) 1409–1411.

[20] J. Daugman, Uncertainty relation for resolution in space, spatial
frequency and orientation optimized by two-dimensional visual
cortical filters, J. Opt. Soc. Am. A 2 (7) (1985) 1160–1169.

[21] D. Gabor, Theory of communication, IEE J. (Lond.) 93 (1946) 429–457.
[22] S. Marcelja, Mathematical description of the responses of simple

cortical cells, J. Opt. Soc. Am. 70 (11) (1980) 1297–1300.
[23] A.C. Bovik, M. Clark, W.S. Geisler, Multichannel texture analysis

using localized spatial filters, IEEE Trans. Pattern Anal. Mach. Intell.
12 (1) (1990) 55–73.

[24] E.H. Adelson, J.R. Bergen, Spatiotemporal energy models for the
perception of motion, J. Opt. Soc. Am. A 2 (2) (1985) 284–299.

[25] D.J. Heeger, Model for the extraction of image flow, J. Opt. Soc. Am. 4
(8) (1987) 1455–1471.

[26] D.J. Heeger, Optical flow using spatio-temporal filters, Int. J. Comput.
Vis. 1 (4) (1988) 279–302.

[27] H.R. Wilson, J.R. Bergen, A four mechanism model for spatial vision,
Vis. Res. 19 (1979) 19–32.

[28] R.A. Young, Simulation of human retinal function with the gaussian
derivative model, in: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 1986.

[29] R.A. Young, The Gaussian derivative model for spatial vision: I.
Retinal mechanisms, Spat. Vis. 2 (4) (1987) 273–293.

[30] D. Marr, E. Hildreth, Theory of edge detection, Proc. R. Soc. Lond. B
207 (1980) 187–217.

[31] J.J. Koenderink, A. van Doorn, Representation of local geometry in
the visual system, Biol. Cybern. 55 (1987) 367–375.

[32] R.A. Young, R.M. Lesperance, W.W. Meyer, The Gaussian derivative
model for spatial–temporal vision: I. Cortical model, Spat. Vis. 14
(3,4) (2001) 261–319.

[33] M. Morrone, J. Ross, D. Burr, R. Owens, Mach bands depend on
spatial phase, Nature 324 (1986) 250–253.

[34] M. Morrone, D. Burr, Feature detection in human vision: a phase-
dependent energy model, Proc. R. Soc. Lond. B 235 (1988) 221–245.

[35] H. Knutsson, G.H. Granlund, Texture analysis using two-dimensional
quadrature filters, in: Proceedings of the Workshop on Computer
Architectures for Pattern Analysis and Image Database Management,
1983.

[36] J. Malik, P. Perona, Preatentive texture discrimination with early
vision mechanisms, J. Opt. Soc. Am. A 7 (5) (1990) 923–932.

[37] D.R. Martin, C.C. Fowlkes, J. Malik, Learning to detect natural image
boundaries using local brightness, color, and texture cues, IEEE
Trans. Pattern Anal. Mach. Intell. 26 (5) (2004) 530–549.

[38] A. Treisman, G. Gelade, A feature integration theory of attention,
Cognit. Psychol. 12 (1) (1980) 97–136.

[39] C. Koch, S. Ullman, Shifts in selective visual attention: towards the
underlying neural circuitry, Human Neurobiol. 4 (4) (1985) 219–227.

[40] R. Milanese, Detecting salient regions in an image: from biological
evidence to computer implementation (Ph.D. thesis), University of
Geneva, 1993.

[41] S. Baluja, D. Pomerleau, Using a saliency map for active spatial
selective attention: implementation & initial results, in: Proceedings
of the NIPS, 1994.

[42] J.K. Tsotsos, S.M. Culhane, W.Y.K. Wai, Y. Lai, N. Davis, F. Nuflo,
Modeling visual attention via selective tuning, Artif. Intell. 78 (1–2)
(1995) 507–545.

[43] E. Niebur, C. Koch, Control of selective visual attention: Modeling the
where pathway, in: Proceedings of the NIPS, 1995.
[44] L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention
for rapid scene analysis, IEEE Trans. Pattern Anal. Mach. Intell. 20
(11) (1998) 1254–1259.

[45] L. Itti, N. Dhavale, F. Pighin, Realistic avatar eye and head animation
using a neurobiological model of visual attention, in: Proceedings of
the SPIE 48th Annual International Symposium on Optical Science
and Technology, 2003.

[46] S. Frintrop, VOCUS: a visual attention system for object detection
and goal-directed search, Lecture Notes in Computer Science, vol.
3899, Springer, Berlin 2006.

[47] O.L. Meur, P.L. Callet, D. Barba, D. Thoreau, A coherent computational
approach to model bottom-up visual attention, IEEE Pattern Anal.
Mach. Intell. 28 (5) (2006) 802–817.

[48] J. Harel, C. Koch, P. Perona, Graph-based visual saliency, in: NIPS, 2006.
[49] O.L. Meur, P.L. Callet, D. Barba, Predicting visual fixations on video

based on low-level visual features, Vis. Res. 47 (19) (2007)
2483–2498.

[50] S. Marat, T. Ho-Phuoc, L. Granjon, N. Guyader, D. Pellerin, A. Guérin-
Dugué, Modelling spatio-temporal saliency to predict gaze direction
for short videos, Int. J. Comput. Vis. 82 (3) (2009) 231–243.

[51] K. Rapantzikos, Y. Avrithis, S. Kollias, Spatiotemporal features for
action recognition and salient event detection, Cognit. Comput.,
Special Issue on Saliency, Attention, Visual Search and Picture
Scanning 3 (1) (2011) 167–184.

[52] A. Garcia-Diaz, X.R. Fernandez-Vidal, X.M. Pardo, R. Dosil, Saliency
from hierarchical adaptation through decorrelation and variance
normalization, Image Vis. Comput. 30 (1) (2012) 51–64.

[53] A. Torralba, Modeling global scene factors in attention, J. Opt. Soc.
Am. A 20 (2003) 1407–1418.

[54] I. Gkioulekas, G. Evangelopoulos, P. Maragos, Spatial Bayesian sur-
prise for image saliency and quality assessment, in: Proceedings of
the International Conference on Image Processing, 2010.

[55] A. Oliva, A. Torralba, M.S. Castelhano, J.M. Henderson, Top-down
control of visual attention in object detection, in: Proceedings of the
International Conference on Image Processing, 2003.

[56] L. Zhang, M.H. Tong, T.K. Marks, H. Shan, G.W. Cottrell, Sun: a
Bayesian framework for saliency using natural statistics, J. Vis. 8 (7) .
32.1–20.

[57] L. Zhang, M.H. Tong, G.W. Sunday, Saliency using natural statistics
for dynamic analysis of scenes, in: Proceedings of the Thirty-first
Annual Cognitive Science Society Conference, 2009.

[58] N. Bruce, J. Tsotsos, Saliency based on information maximization, in:
Proceedings of the NIPS, 2005.

[59] N.D.B. Bruce, J.K. Tsotsos, Spatiotemporal saliency: towards a hier-
archical representation of visual saliency, in: International Work-
shop on Attention and Performance in Computer Vision, 2008.

[60] X. Hou, L. Zhang, Dynamic visual attention: searching for coding
length increments, in: NIPS, 2009.

[61] D. Gao, N. Vasconcelos, Discriminant saliency for visual recognition
from cluttered scenes, in: Proceedings of the NIPS, 2004.

[62] D. Gao, S. Han, N. Vasconcelos, Discriminant saliency, the detection
of suspicious coincidences, and applications to visual recognition,
IEEE Trans. Pattern Anal. Mach. Intell. 31 (6) (2009) 989–1005.

[63] V. Mahadevan, N. Vasconcelos, Spatiotemporal saliency in dynamic
scenes, IEEE Trans. Pattern Anal. Mach. Intell. 32 (1) (2010) 171–177.

[64] H.J. Seo, P. Milanfar, Static and space-time visual saliency detection
by self-resemblance, J. Vis. 9 (12) (2009) 15.

[65] N. Riche, M. Mancas, M. Duvinage, M. Mibulumukini, B. Gosselin,
T. Dutoit, Rare2012: a multi-scale rarity-based saliency detection
with its comparative statistical analysis, Signal Process.: Image
Commun. 28 (6) (2013) 642–658.

[66] X. Hou, L. Zhang, Saliency detection: a spectral residual approach,
in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2007.

[67] R. Achanta, S. Hemami, F. Estrada, S. Susstrunk, Frequency-tuned
salient region detection, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

[68] C. Guo, L. Zhang, A novel multiresolution spatiotemporal saliency
detection model and its applications in image and video compres-
sion, IEEE Trans. Image Process. 19 (1) (2010) 185–198.

[69] X. Hou, J. Harel, C. Koch, Image signature: highlighting sparse salient
regions, IEEE Trans. Pattern Anal. Mach. Intell. 34 (1) (2012) 194–201.

[70] B. Schauerte, R. Stiefelhagen, Quaternion-based spectral saliency
detection for eye fixation prediction, in: Proceedings of the Eur-
opean Conference on Computer Vision, 2012.

[71] C. Guo, Q. Ma, L. Zhang, Spatio-temporal saliency detection using phase
spectrum of quaternion fourier transform, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2008.

http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref11
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref11
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref11
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref12
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref12
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref12
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref12
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref13
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref13
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref13
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref14
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref14
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref14
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref14
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref15
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref15
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref15
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref16
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref16
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref16
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref17
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref17
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref17
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref18
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref18
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref18
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref19
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref19
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref19
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref20
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref20
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref20
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref20
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref21
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref21
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref22
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref22
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref22
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref23
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref23
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref23
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref23
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref24
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref24
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref24
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref25
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref25
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref25
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref26
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref26
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref26
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref27
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref27
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref27
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref29
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref29
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref29
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref30
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref30
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref30
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref31
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref31
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref31
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref32
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref32
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref32
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref32
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref33
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref33
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref33
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref34
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref34
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref34
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref36
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref36
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref36
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref37
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref37
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref37
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref37
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref38
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref38
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref38
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref39
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref39
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref39
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref42
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref42
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref42
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref42
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref44
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref44
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref44
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref44
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref47
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref47
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref47
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref47
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref49
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref49
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref49
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref49
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref50
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref50
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref50
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref50
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref51
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref51
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref51
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref51
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref51
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref52
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref52
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref52
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref52
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref53
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref53
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref53
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref56
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref56
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref56
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref62
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref62
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref62
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref62
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref63
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref63
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref63
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref64
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref64
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref65
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref65
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref65
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref65
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref65
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref68
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref68
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref68
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref68
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref69
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref69
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref69


P. Koutras, P. Maragos / Signal Processing: Image Communication 38 (2015) 15–31 31
[72] X. Cui, Q. Liu, D. Metaxas, Temporal spectral residual: fast motion
saliency detection, in: Proceedings of the ACM International Con-
ference on Multimedia, 2009.

[73] M. Mancas, N. Riche, J. Leroy, B. Gosselin, Abnormal motion selection
in crowds using bottom-up saliency, in: Proceedings of the Inter-
national Conference on Image Processing, 2011.

[74] T.V. Nguyen, M. Xu, G. Gao, M. Kankanhalli, Q. Tian, S. Yan, Static
saliency vs. dynamic saliency: a comparative study, in: Proceedings
of the ACM International Conference on Multimedia, 2013.

[75] T. Judd, K. Ehinger, F. Durand, A. Torralba, Learning to predict where
humans look, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2009.

[76] W.-F. Lee, T.-H. Huang, S.-L. Yeh, H.H. Chen, Learning-based predic-
tion of visual attention for video signals, IEEE Trans. Image Process.
20 (11) (2011) 3028–3038.

[77] D. Rudoy, D.B. Goldman, E. Shechtman, L. Zelnik-Manor, Learning
video saliency from human gaze using candidate selection, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2013.

[78] S.-H. Lee, J.-H. Kim, K.P. Choi, J.-Y. Sim, C.-S. Kim, Video saliency
detection based on spatiotemporal feature learning, in: Proceedings
of the International Conference on Image Processing, 2014.

[79] A. Borji, D.N. Sihite, L. Itti, Probabilistic learning of task-specific
visual attention, in: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2012, pp. 470–477.

[80] J. Li, Y. Tian, T. Huang, W. Gao, Probabilistic multi-task learning for
visual saliency estimation in video, Int. J. Comput. Vis. 90 (2) (2010)
150–165.

[81] A. Toet, Computational versus psychophysical image saliency: a
comparative evaluation study, IEEE Trans. Pattern Anal. Mach. Intell.
33 (11) (2011) 2131–2146.

[82] A. Borji, D.N. Sihite, L. Itti, Quantitative analysis of human-model
agreement in visual saliency modeling: a comparative study, IEEE
Trans. Image Process. 22 (1) (2013) 55–69.

[83] G. Wyszecki, W.S. Stiles, Color Science, 2nd ed. J. Wiley & Sons, New
York, 1982.

[84] S. Gao, K. Yang, C. Li, Y. Li, A color constancy model with double-
opponency mechanisms, in: Proceedings of the International Con-
ference on Computer Vision, 2013.
[85] R.W. Rodieck, Quantitative analysis of cat retinal ganglion cell
response to visual stimuli, Vis. Res. 5 (12) (1965) 583–601.

[86] K.G. Derpanis, M. Sizintsev, K. Cannons, R.P. Wildes, Efficient action
spotting based on a spacetime oriented structure representation, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2010.

[87] W.T. Freeman, E.H. Adelson, The design and use of steerable filters,
IEEE Trans. Pattern Anal. Mach. Intell. 13 (6) (1991) 891–906.

[88] H. Takeda, S. Farsiu, P. Milanfar, Kernel regression for image pro-
cessing and reconstruction, IEEE Trans. Image Process. 16 (2) (2007)
349–366.

[89] A. Belardinelli, F. Pirri, A. Carbone, Motion saliency maps from
spatiotemporal filtering, in: Attention in Cognitive Systems,
Springer, Berlin Heidelberg, 2009, pp. 112–123.

[90] J.P. Havlicek, D.S. Harding, A.C. Bovik, Multidimensional quasi-
eigenfunction approximations and multicomponent am-fm models,
IEEE Trans. Image Process. 9 (2) (2000) 227–242.

[91] A.C. Bovik, N. Gopal, T. Emmoth, A. Restrepo, Localized measurement
of emergent image frequencies by Gabor wavelets, IEEE Trans. Inf.
Theory 38 (1992) 691–712.

[92] I. Kokkinos, G. Evangelopoulos, P. Maragos, Texture analysis and
segmentation using modulation features, generative models and
weighted curve evolution, IEEE Trans. Pattern Anal. Mach. Intell. 31
(1) (2009) 142–157.

[93] C. Georgakis, P. Maragos, G. Evangelopoulos, D. Dimitriadis, Domi-
nant spatio-temporal modulations and energy tracking in videos:
application to interest point detection for action recognition, in:
Proceedings of the International Conference on Image Processing,
2012.

[94] K. Maninis, P. Koutras, P. Maragos, Advances on action recognition in
videos using and interest point detector based on multiband spatio-
temporal energies, in: Proceedings of the International Conference
on Image Processing, 2014.

[95] D.M. Green, J.A. Swets, Signal Detection Theory and Psychophysics,
Wiley, New York, 1966.

http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref76
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref76
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref76
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref76
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref80
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref80
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref80
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref80
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref812
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref812
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref812
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref812
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref82
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref82
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref82
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref82
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref83
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref83
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref83
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref85
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref85
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref85
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref87
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref87
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref87
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref88
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref88
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref88
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref88
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref90
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref90
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref90
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref90
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref91
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref91
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref91
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref91
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref92
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref92
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref92
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref92
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref92
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref95
http://refhub.elsevier.com/S0923-5965(15)00129-0/sbref95

	A perceptually based spatio-temporal computational framework for visual saliency estimation
	Introduction
	Background/related work
	Spatio-temporal visual frontend
	Preprocessing and color modeling
	Spatio-Temporal Dominant Analysis
	3D Gabor filtering
	Postprocessing


	Spatio-temporal visual saliency
	Evaluation on CRCNS-ORIG database
	Eye-Tracking Movie Database (ETMD)

	Conclusion
	Acknowledgments
	Supplementary material
	References




