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Locally narrow-band images can be modeled as two-dimensional (2D) spatial AM–FM signals with several ap-
plications in image texture analysis and computer vision. We formulate an image-demodulation problem and
present a solution based on the multidimensional energy operator Fs f d  k=fk2 2 f=2f . This nonlinear op-
erator is a multidimensional extension of the one-dimensional (1D) energy-tracking operator Cs f d  s f 0 d2 2

ff 00, which has been found useful for demodulating 1D AM–FM and speech signals. We discuss some interest-
ing properties of the multidimensional operator and develop a multidimensional energy-separation algorithm
to estimate the amplitude envelope and instantaneous frequencies of 2D spatially varying AM–FM signals.
Experiments are also presented on applying this 2D energy-demodulation algorithm to estimate the instanta-
neous amplitude contrast and spatial frequencies of image textures bandpass filtered by means of Gabor filters.
The attractive features of the multidimensional energy operator and the 2D energy-separation algorithm are
their simplicity, efficiency, and ability to track instantaneously varying spatial-modulation patterns.
1. INTRODUCTION
Image textures of the locally narrow-band type can be
modeled as two-dimensional (2D) spatial AM–FM signals,

f sx, yd  asx, ydcosffsx, ydg , (1)

that are 2D sines containing both amplitude modulation
(AM) and frequency modulation (FM). That is, they have
a spatially varying amplitude asx, yd and a spatially vary-
ing instantaneous frequency vector vsx, yd  =fsx, yd.
Of course, given a signal f , the amplitude and phase
signals a and f can be defined in an infinite number of
ways. However, only certain interpretations of them are
meaningful in modeling locally narrow-band images. In
particular, the amplitude is used to model local image
contrast, and the frequency vector contains rich informa-
tion about the locally emergent spatial frequencies.
Thus it is reasonable to assume that the amplitude asx, yd
and the frequency vector vsx, yd are locally narrow-band
signals and hence locally smooth. Such modulation mod-
els have been proposed by Bovik et al.1 and have been
applied to a variety of image processing and vision prob-
lems. In Refs. 1 and 2 these models are not applied
directly to the whole (possibly wideband) image. In-
stead they are used on its bandpass-filtered versions that
are outputs from a filter bank consisting of 2D Gabor fil-
ters. Some useful consequences of the bandpass filtering
are an increased noise tolerance and the enforcement of
some smoothness on the amplitude and frequency signals.
The motivation for using Gabor filters is their attaining
the lower limit of joint space-frequency resolution uncer-
tainty and their ability to model early filtering stages of
human vision.3

An important problem in modeling image modulations
with spatial AM–FM signals is to estimate the 2D am-
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plitude and frequency signals with computational vision
algorithms that have low complexity and small estima-
tion error. In this paper we develop such an efficient ap-
proach for demodulation of 2D AM–FM signals based on a
multidimensional energy operator introduced by Maragos
et al.4 and on a related 2D energy-separation algorithm.
Our work has been inspired by similar work for one-
dimensional (1D) signal and speech processing, in which
a 1D energy-tracking operator5,6 was used to develop a 1D
energy-separation algorithm7 with applications to speech
and AM–FM signal demodulation.8 –10

We begin in Section 2 by summarizing the basic ideas
behind the 1D energy operator and energy separation.
Then in Section 3 we introduce an energy operator
for multidimensional continuous-domain signals, derive
many of its useful properties, and show how it can be used
to estimate the parameters of multidimensional sinus-
oids. Extending the theoretical analysis to multidimen-
sional AM–FM signals, we derive an algorithm that can
demodulate a multidimensional AM–FM signal and esti-
mate its amplitude envelope and instantaneous frequen-
cies. By using the multidimensional framework, we also
generalize the energy operator to vector-valued image sig-
nals. For 2D signals, if we replace the partial derivatives
in the 2D energy operator with one-sample differences,
we obtain a discrete-domain 2D energy operator, which
is identical to the one developed by Yu et al.11 for digital
image edge detection and was also used in Ref. 12 for im-
age enhancement. In Section 4 we repeat the theoretical
analysis for the 2D discrete-energy operator and derive
a related 2D discrete AM–FM demodulation algorithm.
Finally, Section 5 discusses our experiments in using the
2D discrete-energy operator and energy-separation algo-
rithm to demodulate image textures into spatially varying
amplitude and frequency image components.
1995 Optical Society of America
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2. ONE-DIMENSIONAL ENERGY
OPERATOR AND ENERGY SEPARATION
In their work on nonlinear modeling of speech produc-
tion13 Teager and Teager developed a nonlinear differ-
ential operator C for 1D continuous-time signals f std,
defined as

Cs f dstd 
n

f f 0stdg2 2 f stdf 00std , (2)

where f 0  dfydt and f 00  d2fydt2. The discrete-time
counterpart of C is the operator

Cds f dsnd 
n

f 2snd 2 f sn 2 1df sn 1 1d (3)

for discrete-time signals f snd. Both operators were first
introduced systematically by Kaiser.5,6 C is an energy-
tracking operator because it can track the energy of
simple harmonic oscillators that produce sinusoidal os-
cillatory signals; this energy is proportional to both the
amplitude squared and the frequency squared of the os-
cillation. Hence we shall refer to C and Cd as the 1D
energy operators.

The energy operators are very efficient in instanta-
neously estimating the modulating signals of 1D AM–FM
signals. Specifically, Maragos et al.8,9 showed that the
energy operators can approximately estimate the enve-
lope of AM signals and the instantaneous frequency of
FM signals. For 1D AM–FM signals,

f std  astdcosffstdg , (4)

they have also found that the energy operator tracks the
energy product

Chastdcosffstdgj ø a2stdv2std , (5)

where vstd  dfstdydt is the instantaneous (angular) fre-
quency. This approximate result is valid (i.e., the ap-
proximation error is negligible) if the time-varying
amplitude astd and frequency vstd do not vary too fast
in time or too greatly in value compared with the carrier.
A usual way that this can happen is when the amount
of modulation is small and the bandwidths of the am-
plitude and the frequency modulating signals are much
smaller than the carrier frequency. Further, by applying
C to the derivative f 0std and combining the energy output
with Eq. (4), Maragos et al. also developed an energy-
separation algorithm7,10 (ESA) that separates the energy
product [Eq. (4)] into amplitude and frequency compo-
nents. Thus the ESA fully demodulates the AM–FM
signal by estimating its amplitude envelope jastdj and
instantaneous frequency vstd. Similar results and al-
gorithms have been derived for discrete-time AM–FM
signals.10

The energy operator and the ESA are very efficient
for AM–FM demodulation. So far their major applica-
tion has been the instantaneous tracking of modulations
in speech resonances, which are modeled as AM–FM
signals8 –10; such a model was motivated by several nonlin-
ear fluid-dynamic phenomena during speech production.13

The effects of noise and Gabor or other signal prefiltering
on the performance of the energy operator and the ESA
have been studied in detail in Ref. 14.
3. CONTINUOUS-DOMAIN
MULTIDIMENSIONAL ENERGY OPERATOR
Let f sxd be a d-dimensional real-valued signal with a con-
tinuous argument x  sx1, . . . , xdd [ Rd, d  2, 3, . . . .
Then we define the d-dimensional energy operator by

Fs f dsxd 
n

k=f sxdk2 2 f sxd=2fsxd , (6)

where
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Thus the output of the F is a sum of energy components.
Each energy component is the output of the 1D energy
operator C applied along each of the d directions xk.
Hence, in analogy with the 1D case, we shall refer to F as
the multidimensional energy operator. Next we derive a
few of its properties.

Let us apply F to the product and the sum of two
d-dimensional signals f sxd and gsxd. Expressing Fs f d
as Fs f d  f ? f 2 f=2f , where s?d denotes inner product,
and using the general facts

=s fgd  g=f 1 f=g ,

=2s fgd  g=2f 1 f=2g 1 2s=f d ? s=gd

yields the product rule

Fs fgd  f 2Fsgd 1 g2Fs f d . (9)

The sum rule is also simple to derive:

Fs f 1 gd  Fs f d 1 Fsgd 1 2s=f d ? s=gd 2 f=2g 2 g=2f .

(10)

As a special case, applying F to a signal f sxd plus constant
c yields

Ff f sxd 1 cg  Fs f dsxd 2 c=2f sxd . (11)
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For a multidimensional exponential signal the output of
the energy operator is identically zero:

Ffexpsc ? xdg  0 , (12)

where c  sc1, . . . , cdd is an arbitrary constant vector and
c ? x 

Pd
k1 ckxk. Combining Eq. (12) with Eq. (9) im-

plies that we can extend all the results in this paper to
signals that contain an arbitrary constant scaling factor A
and/or a multiplicative exponential component, because

FfA expsc ? xdf sxdg  A2 exps2c ? xdFf f sxdg . (13)

A. Cosines with Constant Amplitude and
Constant Frequencies
Applying F to a d-dimensional cosine

f sxd  A cossvc ? x 1 ud (14)

with constant phase offset u, constant amplitude A, and
constant-frequency vector

vc  svc,1, . . . , vc,dd (15)

yields

FfA cossvc ? x 1 udg  A2

√
dP

k1
vc,k

2

!
 A2kvck

2. (16)

Thus when F is applied to a multidimensional cosine
it yields the product of the amplitude squared and the
frequency-vector norm squared.

Now to estimate the individual d 1 1 parameters jAj,
vc,1, . . . , vc,d we also apply F to the d partial derivatives

≠f
≠xk

sxd 
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≠xk
 2Avc,k sinsvc ? x 1 ud

(17)

of cosine f . Then, by Eq. (16),

F

√
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!
sxd  sAvc,kd2kvck
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for all k  1, . . . , d. By combining Eqs. (16) and (18) we
obtain the following d 1 1 equations for exact estimation
of the absolute amplitude and d absolute frequencies:

jvc,kj 

"
F

√
≠f
≠xk

!,
Fs f d
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, k  1, 2, . . . , d , (19)

jAj  Fs f d

,"
dX

k1

F

√
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. (20)

We call the above equations the multidimensional contin-
uous energy-separation algorithm (CESA). They are an
extension of the 1D CESA developed in Refs. 7 and 10.

In 1D cosines xstd  cossv1t 1 ud it does not matter
whether v1 is positive or negative; we can always assume
that it is positive, because even if v1 , 0 we can write
xstd  cossjv1jt 2 ud and hence absorb the negative sign
in the phase offset u. However, in 2D cosines f sx, yd 
cossv1x 1 v2y 1 ud the relative signs of v1 and v2 matter,
because they control the direction of the frequency vector,
which can lie in any of the four quadrants. Without loss
of generality we can always assume that v1 is positive.
But we need to know whether v2 is positive or negative,
and the 2D ESA can give us only its absolute value.

B. AM–FM Signals
Consider the real-valued d-dimensional AM–FM signal

f sxd  asxdcosffsxdg , (21)

where asxd is the spatially varying amplitude, fsxd is the
phase signal,

vsxd 
n

=fsxd  fv1sxd, . . . , vdsxdg (22)

is the spatially varying d-dimensional instantaneous-
frequency vector, and

vksxd 
n ≠f

≠xk
sxd (23)

is the kth instantaneous angular-frequency signal. As-
suming for each k that vksxd is either nonnegative or non-
positive (but not of mixed sign) for all x, we can express
it as

vksxd  vc,k 1 vm,kqksxd , (24)

where vc,k is a constant-center frequency (usually re-
ferred to as the carrier frequency), qksxd [ f21, 1g is the
kth normalized frequency-modulating signal, and vm,k

is the maximum deviation of vk from its center value.
Henceforth we assume that 0 # vm,k # jvc,kj.

Applying F to f yields

Ffa cossfdg  a2kvk2 2 1/2a2 sins2fd=2f 1 cos2sfdFsad .

(25)

For demodulation the desired term in Eq. (25) is a2kvk2.
We view the rest of the terms as approximation error
and show next that they are negligible under realistic
assumptions.

Assume that asxd is band limited in a circular frequency
sphere of radius va. That is, if Asud is its d-dimensional
Fourier transform, then Asud  0 for kuk . va. Then if
we define the mean spectral absolute value of a as

ma 
1

s2pdd

Z va

2va

. . .
Z va

2va

jAsudjdu1 . . . dud , (26)

it can be shown that for each k

jasxdj # amax # ma , (27)É
≠a
≠xk

É
# vama , (28)É

≠2a
≠xk

2

É
# va

2ma , (29)

jFsadsxdj # 2dva
2ma

2 , (30)

where amax  supxjasxdj. Assume also that each fre-
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quency signal vksxd is band limited with bandwidth
vf ,k , jvc,kj. Then we can consider the approximation

Ffa cossfdg ø a2kvk2 , (31)

with an approximation error

Esxd  Ffa cossfdg 2 a2kvk2 (32)

that is bounded by

jEsxdj #

√
2dva

2 1
1
2

dX
k1

vm,kvf ,kmq
k

!
ma

2, (33)

given that

≠2f

≠xk
2  vm,k

≠qk

≠xk

. (34)

Assuming that amax ø ma (which is true with equality if
a is a cosine or has linear Fourier phase), the realistic
conditions

va ,, min
k

jvc,kj ,
dP

k1
vm,kvf ,k ,, kvck

2 (35)

make the maximum absolute value of the error E much
smaller than the maximum absolute value of the desired
term. Thus, under such conditions, approximation (31)
is valid in the sense that the relative error is ,,1. Note
that conditions (35) imply that the amplitude and fre-
quency signals do not vary too fast in space or too greatly
in value compared with the carriers.

Now let us apply F to the partial derivatives

≠f
≠xk


≠a
≠xk

cossfd 2 avk sinsfd . (36)

Owing to conditions (35), the maximum absolute value of
the second term in ≠fy≠xk has a much larger order of mag-
nitude than does that of the first term. Thus we approxi-
mate ≠fy≠xk ø 2avk sinsfd and apply approximation (31)
to obtain

F

√
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for each k. Combining approximations (31) and (37)
yields the following CESA:24F
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This algorithm can estimate at each location x the am-
plitude envelope and the magnitude of instantaneous fre-
quencies of the spatially varying AM–FM signal.

To recover the sign of the instantaneous-frequency sig-
nals vksxd, we consider their decomposition [Eq. (24)] into
a constant term vc,k, which we usually assume to be equal
to the local mean of vksxd, and a spatially varying term
vm,kqksxd whose magnitude does not exceed jvc,kj. Thus,
if we a priori know the carrier frequencies vc,k, their signs
reveal the signs of the instantaneous-frequency signals
since the latter are assumed to possess a constant sign
equal to that of their mean values (i.e., the carriers).
Such an a priori knowledge of the signs of the carrier
frequencies vc,k can be obtained, for example, in apply-
ing the 2D ESA to bandpass-filtered versions of the orig-
inal signal, in which case the center-frequency vector of
the bandpass filter is taken to be approximately equal to
the carrier-frequency vector (assuming a symmetry of the
bandpass filter around its center frequency).

C. Energy Operators for Vector-Valued Signals
The framework of the multidimensional energy operator
is also useful in developing energy operators for vector-
valued signals.

Consider a 1D vector-valued signal

fstd  f f1std, f2std, . . . , fnstdg , (40)

where all n components are real valued. Define its vector
derivative

f0  s f1
0, f2

0, . . . , fn
0d (41)

and its second derivative f00  sf0 d0. Then we define an
energy operator for vector-valued signals:

Qsfdstd 
n

kf0stdk2 2 fstd ? f00std . (42)

It is simple to show that

Qsfd 
nP

k1
Cs fkd . (43)

Hence the energy of the vector-valued signal is the sum
of the energies of its scalar component signals.

Next we outline several applications of energy operators
for vector-valued signals.

1. Complex Signals
Let fstd be a 1D complex-valued signal. We can define
an energy operator for complex-valued signals f as

Csfdstd 
n

kf0stdk2 2 Reffpstdf00stdg , (44)

where ( )* denotes complex conjugate. This complex
operator has interesting properties and applications to
image texture analysis. Now if we form a vector-valued
signal with n  2, f1  Resfd, and f2  Imsfd, it follows
that

Csfd  QhfResfd, Imsfdgj

 CfResfdg 1 CfImsfdg . (45)

Thus the analysis of the application of energy operators
to complex-valued signals can be reduced to simply ana-
lyzing separately their real and imaginary parts.

2. System of n Oscillators
Let fstd be the position vector tracing a continuous
smooth-motion curve in n-dimensional space, where each
component motion is due to one from a system of n os-
cillators. Then f0std is the velocity vector tangent to the
curve and f00std is the acceleration vector. Then kf0k2 is
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kinetic energy (per unit mass) of the system, and 2f ? f00

is potential energy.

3. Multispectral Images
Multispectral images with n spectral channels can be rep-
resented by 2D vector-valued signals fsx, yd. The case
n  2 can be used for complex-valued 2D images. The
energy operator Q can be extended directly to 2D vector-
valued signals by replacement of the vector derivative f0

with the n 3 2 matrix derivative f≠fiy≠xj g, i  1, . . . , n,
where x1  x and x2  y, the Euclidean norm for vectors
with the Frobenious norm for matrices, and the vector 2nd
derivative f00 with the vector Laplacian s=2f1, . . . , =2fnd.
4. DISCRETE-SPACE ENERGY
OPERATOR FOR IMAGE SIGNALS

In general, if we replace derivatives in F with one-sample
differences we obtain a discrete-space energy operator.
For notational simplicity we restrict our discussion to 2D
signals, e.g., still images.

The alternative interpretation, Eq. (7), of F as a sum of
energy components along different directions allows us to
extend it to discrete-space signals f sm, nd. Specifically,
replacing each of these energy components with outputs
from 1D discrete-time energy operators Cd yields the fol-
lowing 2D discrete-space energy operator:
Fig. 1. (a) Perspective plot of original 2D AM–FM signal

f sm, nd  0.5

241 1 0.5 cos
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√
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2

!35, m, n  1, . . . , 100;

(b) intensity image of the AM–FM signal f ; (c) original amplitude envelope asm, nd; (d) original instantaneous frequency V1sm, ndyp;
(e) original instantaneous frequency V2sm, ndyp; (f ) amplitude envelope estimated with the DESA; (g) frequency V1yp estimated with
the DESA; (h) frequency V2yp estimated with the DESA.
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Fds f dsm, nd 
n

Cd,1s f dsm, nd 1 Cd,2s f dsm, nd , (46)

Fds f dsm, nd  2f2sm, nd 2 f sm 2 1, ndf sm 1 1, nd
2 f sm, n 2 1df sm, n 1 1d , (47)

where

Cd,1s f dsm, nd 
n

f 2sm, nd 2 f sm 2 1, ndf sm 1 1, nd (48)

applies the 1D energy operator vertically on all columns of
f , whereas Cd,2 operates on the rows. Expression (47) is
identical to the discrete operator developed in Ref. 11 for
digital image edge detection. Note that this is only one
among many possible approaches to discretizing F. Re-
placing spatial derivatives in F with various 2D difference
schemes yields a variety of 2D discrete-energy operators.

Applying Fd to a 2D sinusoid with constant amplitude
and frequencies yields

FdfA cossV1m 1 V2n 1 udg  A2fsin2sV1d 1 sin2sV2dg .
(49)
Consider now a discrete AM–FM signal

f sm, nd  asm, ndcosffsm, ndg . (50)

Its vertical instantaneous frequency (in radians per
sample)

V1sm, nd 
n ≠f

≠m
 Vc,1 1 Vm,1q1sm, nd (51)

has center frequency Vc,1 and maximum frequency de-
viation Vm,1 # jVc,1j. The frequency-modulating signal
q1sm, nd is assumed to be a mathematical function with
a known computable integral. The same assumption is
made for the horizontal frequency signal V2  ≠fy≠n.
All discrete-space frequencies are assumed to be in
f2p, pg. Further, all frequency signals are assumed
to be of constant sign, i.e., either nonnegative or non-
positive for all sm, nd. We henceforth assume that a is
band limited with bandwidth Va and that both frequency
signals are finite weighted sums of sinusoids and band
limited with bandwidth Vf . (Our results also apply to
the case in which the frequency signals are linear ramps;
see the 1D case.10) Then under the realistic assumptions

Va ,, min
k

jVc,kj, Vf ,, 1, Vm,k ,, jVc,kj , (52)

it follows from relation (46) and with procedures as in the
1D case in Ref. 9 that

Fdhasm, ndcosffsm, ndgj ø a2sm, nd hsin2fV1sm, ndg

1 sin2fV2sm, ndgj . (53)

Now replacing the partial derivatives of Section 3 with
symmetric three-sample differences in each direction
yields the 2D signals,

g1sm, nd  f f sm 1 1, nd 2 f sm 2 1, ndgy2 , (54)

g2sm, nd  f f sm, n 1 1d 2 f sm, n 2 1dgy2 , (55)
which are also 2D AM–FM signals with amplitude and
instantaneous frequencies that do not vary too fast or too
much compared with the carriers Vc,k. Hence (see also
Ref. 10 for the 1D case)

Fdfg1g ø a2 sin2fV1gsss sin2fV1g 1 sin2fV2gddd , (56)

Fdfg2g ø a2 sin2fV2gsss sin2fV1g 1 sin2fV2gddd , (57)

where a, V1, V2 are spatially varying signals. Combin-
ing approximations (53), (56), and (57) yields a discrete
energy-separation algorithm (DESA):

arcsin

√(
Fdf f sm 1 1, nd 2 f sm 2 1, ndg

4Fdf f sm, ndg

)
1/2

!
ø jV1sm, ndj , (58)

arcsin

√(
Fdf f sm, n 1 1d 2 f sm, n 2 1dg

4Fdf f sm, ndg

)
1/2

!
ø jV2sm, ndj , (59)
2Fdf f sm, ndg
hFdf f sm 1 1, nd 2 f sm 2 1, ndg 1 Fdf f sm, n 1 1d 2 f sm, n 2 1dgj1/2

ø jasm, ndj . s60d
The DESA can estimate at each location the amplitude
envelope and the magnitude of the two instantaneous-
frequency signals of a spatial AM–FM signal. Its con-
straint is that 0 # jV1j, jV2j # py2; i.e., it can estimate
frequencies up to one fourth of the sampling frequency.
The signs of V1 and V2 can be found from the signs of their
corresponding carrier frequencies. The DESA in this pa-
per is a 2D extension of the 1D algorithm called DESA-2
in Ref. 10.

Fig. 2. Frequency responses (represented as intensities) of the
2D Gabor filters used in the filter bank. There are 40 filters
arranged in a polar waveletlike tesselation on eight rays, with
five filters per ray, plus one filter centered at sV1, V2d  s0, 0d.
Each of the 41 filter responses in the figure has been indepen-
dently scaled for maximum dynamic range in the available gray
levels (from Ref. 1).
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Fig. 3. (a) Intensity image I of a 256 3 256 pixel texture (sea fan); (b) energy FsI d of the intensity image; (c) energy FsI 2 I d of the
zero-mean image; (d) bandpass-filtered image f  I p g, where g is the impulse response of a Gabor filter with the passband centered
at horizontal and vertical frequencies of 27.2 and 27.2 cycles per image, respectively; (e) bandpass image energy Fs f d; (f ) amplitude
envelope of f estimated with the DESA; (g) instantaneous frequency V1 of f estimated with the DESA; (h) instantaneous frequency V2
of f estimated with the DESA; (i) frequency vectors sV1, V2d, decimated and scaled, superimposed on the bandpass image. hImages in
(f )– (h) have been filtered by means of a 3 3 3 median. All image plots are normalized so that intensities are in [0, 255].j
If the AM–FM signal has constant amplitude A and
constant frequencies Vc,1 and Vc,2, then the DESA equa-
tions provide an exact estimate of the absolute amplitude
jasm, ndj  jAj and the absolute frequencies jV1sm, ndj 
jVc,1j and jV2sm, ndj  jVc,2j.

Figure 1 shows the application of the 2D energy opera-
tor and the DESA on a synthetic 2D AM–FM signal.
The rms estimation error for the amplitude signal es-
timation, normalized by the rms of the true amplitude,
was 2.5%. The relative rms errors for the estimated fre-
quency signals were 1.5% and 1%. We see that, as the
theory predicts, the DESA can estimate the instantaneous
amplitude and frequency signals of a spatial AM–FM
signal that had relatively large amounts of modulation
(50% AM, 20% FM in V1, and 10% FM in V2) with very
small estimation error and with very low computational
complexity.

5. IMAGE-DEMODULATION EXPERIMENTS
The basic assumption behind the ability of the DESA
or the CESA to demodulate 2D AM–FM signals is that
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Fig. 4. (a) Intensity image I of a 240 3 250 pixel texture (wood); (b) energy FsI d of the intensity image; (c) energy FsI 2 I d of the
zero-mean image; (d) bandpass-filtered image f  I p g where g is the impulse response of a Gabor filter with the passband centered
at horizontal and vertical frequencies of 35.5 and 14.7 cycles per image, respectively; (e) bandpass image energy Fs f d; (f ) amplitude
envelope of f estimated with the DESA; (g) instantaneous frequency V1 of f estimated with the DESA; (h) instantaneous frequency V2
of f estimated with the DESA; (i) frequency vectors sV1, V2d, decimated and scaled, superimposed upon the bandpass image. hImages
in (f )– (h) have been filtered by means of a 3 3 3 median. All image plots are normalized so that intensities are in [0, 255].j
its input signal is narrow band. This then prohibits its
direct application to wideband images. A good strat-
egy in the latter case is to bandpass filter the image
and apply the DESA to its narrow-band components, as-
suming these are well modeled by spatial AM–FM sig-
nals. This strategy also applies to globally wideband
images that are locally narrow band. The bandpass pre-
filtering also yields two useful by-products: (1) some
noise immunity (as explained in Ref. 14) and (2) the
signs of the instantaneous-frequency signals from the
signs of their corresponding filters’ center frequencies
(as explained in Subsection 3.B), since the 2D DESA
provides absolute frequencies. For bandpass filters we
use 2D Gabor filters of the wavelet type, designed as
reported in Ref. 1 as a 2D radially symmetric filter
bank, whose frequency responses are shown in Fig. 2.
Each Gabor filter used in our experiments had a one-
octave bandwidth measured radially between the half-
peak points. Figures 3 and 4 show the application of
the 2D energy operator and the DESA on two digi-
tized texture images after they have been filtered by
means of Gabor bandpass filters. From this and other
similar real-image experiments we have observed the
following:
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The energy operator acting on the original nonnegative
image I appears to enhance its contrast. However, if
the energy operator is applied to the zero-mean image
I 2 I , where I is the global image mean, then the result
usually has a much lower contrast and shows some low-
pass spatial-energy activity. For example, compare the
images in Figs. 3(b) and 4(b) with those in Figs. 3(c) and
4(c), respectively. This happens because

FsI d  FsI 2 I d 2 I=2I . (61)

The result is similar in the discrete case:

FdsI dsm, nd  FdsI 2 I dsm, nd

2 I

24 P
si,j d[B

I sm 1 i, n 1 jd 2 4I sm, nd

35 ,

(62)

where B  hs1, 0d, s21, 0d, s0, 1d, s0, 21dj. Thus apply-
ing F to the image I yields the energy of its zero-mean
part minus its Laplacian amplified by the mean. The
Laplacian is a high-pass operator, and hence, if the mean
is large, the second term dominates and makes FsI d ap-
pear mainly as a contrast-enhanced version of I . This
also supports the observations in Refs. 11 and 12 about
the contrast-enhancing abilities of the 2D discrete op-
erator Fd.

Note that, if the energy operator is applied to a wide-
band image as in Figs. 3(a) and 4(a), it may often yield
unstable outputs and many negative values. However,
when applied to the narrow-band (Gabor filtered) im-
ages of Figs. 3(d) and 4(d) it yields fewer negative val-
ues. Since the DESA requires nonnegative energies from
the narrow-band signal and its derivatives, in our com-
puter simulations we set all negative energy values equal
to zero. The estimated energy and amplitude of the
narrow-band images seem to convey low-pass information
mainly of the contrast type. Of greater interest seem to
be the spatial instantaneous-frequency signals, which can
be more easily observed when shown as frequency vectors
(scaled by some magnification factor to enhance visibil-
ity); in Figs. 3(i) and 4(i) we see that the direction of the
frequency vectors is most often perpendicular to the lo-
cal waves in the image. In general, the 2D DESA can
yield realistic estimates of the instantaneous amplitude
and frequencies in a locally narrow-band image. How-
ever, there are also several outlier estimates, which are
caused primarily by instantaneous numerical singulari-
ties of the DESA, e.g., when it is dividing by a very low
energy value. These cause spikes in the estimated am-
plitude and frequency signals, which can be effectively
filtered out by a 2D median filter.

6. CONCLUSION
Locally narrow-band image textures can be modeled by
spatial-modulation models of the AM–FM type with
slowly varying amplitude and frequency signals. The
amplitude signal models intensity contrast variations,
whereas the instantaneous-frequency signals convey in-
formation about the locally emergent frequencies. We
have shown that, if the amplitude and the instantaneous
frequency signals do not vary too fast in space or too much
in value compared with their mean values, then we can
use the 2D energy operator and the 2D DESA to estimate
the parameters of these models. Given the importance
and applicability of these AM–FM image models, the
2D energy operator and the 2D DESA become important
tools for image analysis and computational vision. The
advantages of the DESA are simplicity, efficiency, low
computational complexity, instantaneous adaptation ow-
ing to the differential nature of the energy operators, and
ability to track spatial-modulation patterns.
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