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ABSTRACT | Tropical geometry is a relatively recent field in

mathematics and computer science, combining elements of

algebraic geometry and polyhedral geometry. The scalar arith-

metic of its analytic part preexisted in the form of max-plus

and min-plus semiring arithmetic used in finite automata,

nonlinear image processing, convex analysis, nonlinear

control, optimization, and idempotent mathematics. Tropical

geometry recently emerged in the analysis and extension

of several classes of problems and systems in both classical

machine learning and deep learning. Three such areas include:

1) deep neural networks with piecewise linear (PWL) activation

functions; 2) probabilistic graphical models; and 3) nonlinear

regression with PWL functions. In this article, we first sum-

marize introductory ideas and objects of tropical geometry,

providing a theoretical framework for both the max-plus

algebra that underlies tropical geometry and its extensions

to general max algebras. This unifies scalar and vector/signal

operations over a class of nonlinear spaces, called weighted

lattices, and allows us to provide optimal solutions for

algebraic equations used in tropical geometry and generalize

tropical geometric objects. Then, we survey the state of the

art and recent progress in the aforementioned areas. First,

we illustrate a purely geometric approach for studying the

representation power of neural networks with PWL activations.
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Then, we review the tropical geometric analysis of parametric

statistical models, such as HMMs; later, we focus on the

Viterbi algorithm and related methods for weighted finite-state

transducers and provide compact and elegant representations

via their formal tropical modeling. Finally, we provide optimal

solutions and an efficient algorithm for the convex regression

problem, using concepts and tools from tropical geometry

and max-plus algebra. Throughout this article, we also outline

problems and future directions in machine learning that can

benefit from the tropical-geometric point of view.

KEYWORDS | Graphs; lattices; max-plus algebra; neural net-

works; regression; tropical geometry.

I. I N T R O D U C T I O N
Tropical geometry is a relatively recent field in math-
ematics and computer science that combines elements
from algebraic geometry and polyhedral geometry. The
scalar arithmetic of its analytic part preexisted in the
form of max-plus and min-plus semiring arithmetic used
in finite automata, nonlinear image processing, convex
analysis, nonlinear control, optimization, and idempotent
mathematics. In max-plus arithmetic, the real number
addition and multiplication are replaced by the max and
sum operations, respectively. The name “tropical semi-
ring” initially referred to the min-plus semiring and was
used in finite automata [57], [99], speech recognition
using graphical models [82], and tropical geometry [68],
[80]. However, nowadays, the term, tropical semiring, may
refer to both the max-plus and its dual min-plus arith-
metic, whose combinations with corresponding nonlinear
matrix algebra and nonlinear signal convolutions have
been used in operations research and scheduling [25];
discrete event systems, max-plus control, and optimiza-
tion [1], [2], [6], [15], [22], [37], [39], [48], [78],
[110]; convex analysis [65], [85], [94]; morphological
image analysis [49], [73], [79], [95], [96]; nonlinear
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difference equations for distance transforms [11], [71];
nonlinear PDEs of the Hamilton–Jacobi type for vision
scale spaces [14], [50]; speech recognition and nat-
ural language processing [56], [82]; neural networks
[18], [19], [34], [40], [83], [89], [93], [103], [114],
[115]; and idempotent mathematics (nonlinear functional
analysis) [63], [64].

The goal of this article is threefold: 1) to provide a brief
background from tropical geometry and its underlying
max-plus algebra; 2) to summarize its applications in three
areas of machine learning (neural networks, graphical
models, and nonlinear regression); and 3) to provide
recent progress and some extensions using a generalized
max algebra. Parts 1) and 2) provide tutorial information
and survey state-of-the-art results. Some recent progress
from the authors is included in parts 2) and 3).

We begin in Section II with elementary ideas and objects
of tropical geometry. Section III provides the required
theoretical background on max-plus algebra, its underly-
ing nonlinear vector spaces called weighted lattices, and
monotone operators in the form of lattice duality pairs
called adjunctions (also known as residuation pairs). This
section also provides some tools from a generalized max-�
algebra to extend tropical geometrical objects. Further-
more, in Section IV, we show that adjunction pairs lead
to optimal solutions of max-plus and general max-� equa-
tions, as nonlinear projections on weighted lattices. Then,
the concepts and tools of the previous sections are applied
to analyzing and/or providing solutions for problems in the
following three broad areas of machine learning.

A. Neural Networks With Piecewise Linear (PWL)
Activations (See Section V)

Tropical geometry recently emerged in the study of deep
neural networks (DNNs) and variations of the perceptron
operating in the max-plus semiring. Standard activation
functions employed in DNNs, including the ReLU activa-
tion and its “leaky” variants, induce neural network layers
that are PWL convex functions of their inputs and create a
partition of space well described by concepts from tropical
geometry. Following [18] and [19], we illustrate a purely
geometric approach for studying the representation power
of DNNs—measured via the concept of a network’s “linear
regions”—under the lens of tropical geometry.

B. Probabilistic Graphical Models and
Algorithms (See Section VI)

As we review in Section VI-A, a novel application of
tropical geometry is its usage in [86] for analyzing para-
metric statistical models, including hidden Markov mod-
els (HMMs) and restricted Boltzmann machines (RBMs).
Furthermore, among the max-sum and max-product algo-
rithms used in graphical models, a prime representative
is the Viterbi algorithm. This can also be viewed in
the general setting of weighted finite-state transducers
(WFSTs) [56], [82] which have found extensive use in
speech recognition and other decoding schemes. Practical
reasons led researchers to adopt a tropical version of these

algorithms in order to resolve numerical issues that arose
from using sum-product algebras. However, as we explain
in Section VI-B, tropicalization is not restricted merely as a
numerical tool; further tropical modeling of the algorithms
as in [106] and [107] leads to a compact and elegant
representation, while highlighting geometric properties.

C. Piecewise Linear Regression (See Section VII)

Fitting PWL functions to data is a fundamental
regression problem in multidimensional signal modeling
and machine learning since approximations with PWL
functions have proved analytically and computationally
very useful in many fields of science and engineering.
We focus on functions that admit a convex representation
as the maximum of affine functions (e.g., lines and
planes), represented with max-plus tropical polynomials.
This allows us to use concepts and tools from tropical
geometry and max-plus algebra to optimally approximate
the shape of curves and surfaces by fitting tropical
polynomials to data, possibly in the presence of noise; this
yields polygonal or polyhedral shape approximations. For
this convex PWL regression problem, we provide optimal
solutions with respect to �p error norms, derived using
monotone operator adjunctions that are projections on
weighted lattices, and an efficient algorithm based on
preliminary work in [76].

Finally, in Section VIII, extending preliminary work
in [75], we generalize tropical geometry using the max-�
algebra and weighted lattices framework of [74], as sum-
marized in Section III-B, with an arbitrary binary opera-
tion � that distributes over max, and apply it to optimal
convex PWL regression for fitting max-� tropical curves
and surfaces to arbitrary data.

II. E L E M E N T S O F T R O P I C A L
G E O M E T R Y
After some notation and definitions from tropical and
related semirings, we first present some simple examples of
tropical1 curves and surfaces that result from tropicalizing
the polynomials that analytically describe their Euclidean
counterparts. Then, we explain this tropicalization as
a dequantization of real algebraic geometry. Finally,
Newton polytopes and tropical halfspaces are defined with
examples.

Notation: For maximum (or supremum) and minimum
(or infimum) operations, we use the well-established
lattice-theoretic2 symbols of ∨ and ∧. We use roman letters

1The adjective “tropical” was coined by French mathematicians,
including Dominique Perrin and Jean-Eric Pin, to honor their Brazilian
colleague Imre Simon who was one of the pioneers of min-plus algebra
as applied to automata. However, we give it an alternative and substantial
meaning in connection with its Greek origin word that
comes from the Greek word , meaning “turn” or “changing the
way/direction,” to literally express the fact that tropical curves and
surfaces bend and turn.

2We do not use the notation (⊕,⊗) for (max,+) or (min,+),
which is frequently used in max-plus algebra, because, in functional
analysis and image processing: 1) the symbol ⊕ is extensively used for
the Minkowski set addition and max-plus signal convolution and 2) ⊗ is
unnecessarily confusing compared to the classic symbol + of addition.
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for functions, signals, and their arguments, and Greek
letters mainly for operators. Also, we use boldface roman
letters for vectors (lower case) and matrices (capital).
If M = [mij ] is a matrix, its (i, j)th element is denoted as
mij or [M ]ij . Similarly, x = [xi] denotes a column vector,
whose ith element is denoted as [x]i or simply xi. We also
use the set notation [n] := {1, . . . , n}.

A. Tropical Semirings

Compared with the classical real number ring (R,+,×),
the max-plus semiring (Rmax,∨,+) consists of the set
Rmax = R∪{−∞} equipped with an idempotent “addition”
that is the maximum operation and a generalized “mul-
tiplication” that is the extended real addition. Similarly,
we consider the dual min-plus semiring (Rmin,∧,+), where
Rmin = R∪{+∞}. Both tropical semirings are special cases
of dioids [39]. From a different viewpoint that we follow
in this article, if we combine both the maximum and min-
imum operations, we obtain the complete lattice (R,∨,∧)

of extended real numbers R = R ∪ {−∞,+∞}. Further-
more, as done more generally in Section III-B, we can com-
bine the max-plus and min-plus scalar arithmetic into an
algebraic structure called complete lattice-ordered double
monoid (clodum), which consists of the extended reals R

equipped with the maximum (∨), minimum (∧), addition
(+), and dual addition (+′) operations. The operations +

and +′ are, respectively, the “lower addition” and “upper
addition” used in convex analysis [85]. They are identical
for finite reals and differ only when combining −∞ with
+∞; in all cases, they are commutative:

a+ b = a+′ b ∀a ∈ R ∀b ∈ R

a+ (−∞) = −∞, a+′ (+∞) = +∞ ∀a ∈ R. (1)

In idempotent mathematics [64], convex optimiza-
tion [13], and the theory of dioids [39], the following Log-
Sum-Exp approximation is often used for the max and min
operations:

a �θ b := θ · log
�
ea/θ + eb/θ

�
= φ−1

θ [φθ (a) + φθ (b)]

a �θ b := (−θ) log
�
e−a/θ + e−b/θ

�
(2)

where φθ(a) := exp(a/θ), and θ > 0 is usually called a
“temperature” parameter. In the limit as θ → 0, we obtain
the max and min operations

lim
θ↓0

a �θ b = max (a, b)

lim
θ↓0

a �θ b = min (a, b). (3)

This approximation and limit is the Maslov dequantiza-
tion [77] of real numbers and generates a whole family of
semirings Sθ = (Rmax,�θ,+) and θ > 0, whose operations
are the generalized “addition” �θ and “multiplication” +.

Each of the semirings Sθ is isomorphic to the semiring
(R≥0,+,×) of nonnegative real numbers R≥0 equipped
with standard addition and multiplication. This isomor-
phism is enabled via the bijection a 	→ φθ(a) from Rmax

onto R≥0. To see this, let x = φθ(a) = exp(a/θ) and
y = φθ(b) = exp(b/θ). Then, for any a, b ∈ Rmax,

φθ (a �θ b) = x+ y, φθ (a+ b) = x · y.

B. Examples of Tropical Polynomial Curves and
Surfaces

1) Tropical Polynomial Curves: Consider the analytic
expressions for a Euclidean line and parabola

p1 (x) = ax+ b, p2 (x) = ax2 + bx+ c. (4)

“Tropicalization,” that is, replacing sum with max and
multiplication with addition, yields the corresponding
max-plus tropical polynomials

pmax
1 (x) = max (a+ x, b)

pmax
2 (x) = max (a+ 2x, b+ x, c) . (5)

The equations for the min-plus case are identical as in (5)
by replacing max with min. The graphs of all the above can
be seen in Fig. 1.

2) Tropical Polynomial Surfaces: Consider the equa-
tions of the following tropical planes represented as 2-D
max-plus and min-plus polynomials of degree 1:

f (x, y) = max (x, 2 + y, 7)

g (x, y) = min (5 + x, 7 + y, 9) (6)

whose graphs can be seen as surfaces in Fig. 2(a) and (b).
Next, to the general Euclidean conic polynomial

pconic (x, y) = ax2 + bxy + cy2 + dx+ ey + f (7)

there corresponds the following two-variable max-plus
tropical polynomial of degree 2:

pmax
conic (x, y) = max (a+2x, b+x+ y, c+ 2y, d+ x, e+ y, f) .

(8)

Its min-plus version is shown in Fig. 2(c).

C. Tropicalization via Dequantization of Algebraic
Geometry

The algebraic side of tropical geometry [68] results from
a transformation of analytic Euclidean geometry where the
traditional arithmetic of the real field (R,+,×) involved in
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Fig. 1. Euclidean and tropical 1-D polynomial curves of first and second degrees. (a) Euclidean line. (b) Max-plus line. (c) Min-plus line.

(d) Euclidean parabola. (e) Max-plus parabola. (f) Min-plus parabola.

the analytic expressions of geometric objects is replaced by
the arithmetic of the max-plus or min-plus semiring. A geo-
metric explanation and visualization of this transformation
is obtained from Viro’s graphing of polynomial curves on
log–log paper [111]. Consider the monomial curve v =

cua, c > 0, on the positive quadrant of the (u, v)-plane and
consider the log–log transformation of both coordinates
composed with a uniform scaling by θ > 0: x = θ log u and
y = θ log v. Then, on the (x, y)-plane, the curve becomes
the line y = b/θ + ax, where b = log c. If we have a
K-term polynomial curve v = P (u) =

�K
k=1 cku

ak with
ck = exp(bk) > 0 and ak ∈ R (i.e., a posynomial [12]),
then we convert it to

Pθ (x) = θ log

�
K�

k=1

exp (bk/θ) exp (akx/θ)

�
. (9)

As θ ↓ 0, this yields, via the Maslov dequantization, a K-
term 1-D max-plus tropical polynomial

lim
θ↓0

Pθ (x) = p (x) =
K

max
k=1

{bk + akx} . (10)

While each Pθ(x) is a smooth function, their limit p(x) is a
max-affine function and represents a PWL convex function.
If we perform dequantization with negative exponents,
we obtain a min-plus polynomial that is a PWL concave
function.

The above procedure extends to multiple dimensions
or higher degrees and shows us the way to tropicalize
any classical d-variable polynomial (linear combination of
power monomials)

�
k cku

ak1
1 , . . . , u

akd
d defined over R

d
>0,

where ck > 0 and ak = [ak1, . . . , akd]
T is traditionally

Fig. 2. (a) and (b) Surfaces (graphs) of the two tropical planes defined in (6). (a) Max-plus plane f. (b) Min-plus plane g. (c) Surface of the

2-D min-plus tropical polynomial function (tropic conic) p(x,y) �min(a� 2x,b� x� y,c� 2y,d� x,e� y, f) and its tropical quadratic curve.

(c) is inspired by [68, Fig. 1.3.2].
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Fig. 3. Tropical curve of the max-polynomial p(x,y) �max(2x,y,c)

left and its dual min-polynomial p′(x,y� �min(2x,y,c) right.

(a) Max-plus curve. (b) Min-plus curve.

some nonnegative integer3 vector, but, herein, we allow
ak ∈ R

d: replace the sum with max and log the individual
monomials. Thus, a general d-variable max-plus polyno-
mial p : R

d → R has the expression

p (x) =
K�

k=1

aT
k x + bk, x = [x1, . . . , xd]

T . (11)

We define the rank of a tropical polynomial p as the
number of affine terms involved in the maximum; here,
K = rank(p). Its graph is a max of K hyperplanes with
intercepts bk = log ck ∈ R and real slope vectors ak ∈ R

d.
The degree of p is |a| = maxk ‖ak‖1, where ‖ak‖1 =

|ak1|+ · · ·+ |akd|. Thus, the curves or surfaces of real alge-
braic geometry become via dequantization the graphs of
convex PWL functions represented by tropical polynomials.

D. Tropical Curves and Newton Polytopes

To the zero set of a classical polynomial, there corre-
sponds the tropical curve or hypersurface of a max-plus
tropical polynomial p : R

d → R :

V (p) :=
�

x ∈ R
d : more than one terms of p (x)

attain the max
	
. (12)

The above also defines the tropical curve of min-plus
polynomials by replacing max with min. Thus, V(p) con-
sists of the singularity points (of nondifferentiability) of
p(x). Examples are shown in Fig. 3 for degree-1 tropical
polynomials and in Fig. 2(c) for a degree-2 polynomial.

Another interesting geometric object related to a
max-plus polynomial p is its Newton polytope, which is
the convex hull [denoted by conv(·)] of the set of points
corresponding to its slope coefficient vectors

Newt (p) := conv ({ak : k = 1, . . . , rank (p)}) . (13)

3Traditionally, “tropical polynomials” assume that the parameters
aki are nonnegative integers. If we also allow negative integers, we get
“Laurent tropical polynomials.” As in [15], we allow any real coeffi-
cients; this may be called “tropical posynomials” [16].

This satisfies several important properties [18]:

Newt (p1 ∨ p2) = conv (Newt (p1) ∪ Newt (p2)) (14)

Newt (p1 + p2) = Newt (p1) ⊕ Newt (p2) (15)

where ⊕ denotes Minkowski set addition, as defined
in (21). Examples are shown in Fig. 4. Thus, the Newton
polytope of the sum (resp. max) of two tropical polyno-
mials is the Minkowski sum (resp. the convex hull of the
union) of their individual polytopes.

E. Tropical Halfspaces and Polytopes

In pattern analysis problems on Euclidean spaces R
d,

we often use halfspaces H(a, b) := {x ∈ R
d : aT x ≤ b},

polyhedra (finite intersections of halfspaces), and poly-
topes (compact polyhedra formed as the convex hull of
a finite set of points). Replacing linear inner products
aT x with max-plus versions yields tropical halfspaces [36],
which are defined as the following subsets of R

d
max with

parameters a = [ai], b = [bi] ∈ R
d+1
max :

T (a, b)

:=



x ∈ R

d
max :

max{a1 + x1, . . . , ad + xd, ad+1} ≤
max{b1 + x1, . . . , bd + xd, bd+1}

�
(16)

where min(ai, bi) = −∞ for all i. Thus, for each i,
only one coefficient is needed4 either in the left or in
the right side of inequality (16). Replacing max with
min in (16) yields tropical halfspaces that are min-plus
hyperplanes. Examples of tropical halfplanes are shown
in Fig. 5, forming a planar polytope. It is obvious that their
separating boundaries are tropical lines. Such regions in
multiple dimensions were used in [18], [19], and [113] as
morphological perceptrons.

As an example in the 3-D space, in Fig. 6 we can see
the intersection of the tropical halfspaces corresponding
to the two tropical polynomials in (6). This polytope is
the polyhedral region formed by intersecting the half-space
above the surface of the 2-D max-plus polynomial f

with the half-space below the surface of the min-plus
polynomial g.

We note from Figs. 5 and 6 that the number of trop-
ical boundaries required to form polytopes, which could
serve as decision regions in pattern classification problems,
is smaller than the number of linear boundaries. See,
for instance, the polytope RP in Fig. 5(b). This obser-
vation remains valid in higher dimensions too, namely
decision regions can be formed with fewer tropical lines or

4The general expression (16) of a tropical half-space includes as
special cases expressions {x :

�

i
ai + xi ≤ b} which seem as a direct

tropical analog of the expression {x :
�

i aixi ≤ b} for Euclidean
halfspaces. For example, it is shown in [36] that {x : max(a +x, c) ≤
max(b + x, d)} = {x : max(a + x, c) ≤ d} if a > b.
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Fig. 4. Newton polytopes of (a) two max-polynomials p1(x,y) �max(x� y, �x� y,x� 2y) and p2(x,y) �max(0,−x,y,y− x) (polytopes),

(b) their max p1 ∨ p2 [Newton (max)], and (c) their sum p1 � p2 [Newton (sum)].

hyperplanes than their Euclidean counterparts. Intuitively,
the nonlinearity of a tropical half-space lets us to form
more complex decision regions with possibly fewer para-
meters.

III. E L E M E N T S O F M A X-P L U S
A L G E B R A , W E I G H T E D L AT T I C E S ,
A N D M O N O T O N E O P E R AT O R S
A. Lattices and Monotone Operators

Signals and vectors can be viewed as elements of com-
plete lattices (L,∨,∧), where L is the set of lattice elements
equipped with two binary operations, ∨ and ∧, which
denote the lattice supremum and infimum, respectively.
Each of these operations induces a partial ordering ≤, for
example, for any X,Y ∈ L, X ≤ Y ⇐⇒ Y = X ∨ Y .
The lattice operations satisfy many properties, including
associativity, commutativity, idempotence, and compatibil-
ity with the partial ordering. Completeness means that the
supremum and infimum of any (even infinite) subset of L
exists and belongs to L. Examples of complete lattices used
in image processing include: 1) the lattice of Euclidean
shapes, that is, subsets of R

d, equipped with the set union
and intersection, and 2) the lattice of functions f : E →
R with (arbitrary) domain E and values in R, equipped

Fig. 5. Regions Rc≥ and Rc≤ formed by min-plus tropical

halfspaces in R
2, where c denotes the color of the tropical boundary

and ≥ (resp. ≤) the set of points above (resp. below) the boundary.

(a) Red boundary is the min-plus tropical line y �min(1�x,2) (single

region). (b) Green and blue boundaries are, respectively, the tropical

lines y �min(4� x,1) and y �min(x− 3,3) (multiple regions). RP is

the polytope formed by the intersection of three tropical halfplanes.

with the pointwise supremum and pointwise infimum of
extended real-valued functions.

1) Monotone Operators: For data processing, we also
consider operators ψ : L → M between two complete
lattices. A lattice operator ψ is called increasing if it is
order preserving, that is, if, for any X,Y ∈ L, X ≤
Y =⇒ ψ(X) ≤ ψ(Y ). Given two operators ψ and φ,
we will write ψ ≤ φ ⇔ ψ(X) ≤ φ(X) ∀X. Examples of
increasing operators are the lattice homomorphisms that
preserve suprema and infima. If a lattice homomorphism
is also a bijection, then it becomes an automorphism. Four
fundamental types of increasing operators are: dilations δ
and erosions ε that satisfy, respectively, δ(

�
i

Xi) =
�
i

δ(Xi)

and ε(

i

Xi) =

i

ε(Xi) over arbitrary (possibly infinite)

collections; openings α that are increasing, idempotent
(α2 = α), and antiextensive (α ≤ id), where id denotes
the identity operator; and closings β that are increasing,
idempotent, and extensive (β ≥ id).

A lattice operator ψ is called decreasing if it is order-
inverting, that is, X ≤ Y =⇒ ψ(X) ≥ ψ(Y ). Dual homo-
morphisms interchange suprema with infima and, hence,
are decreasing operators. For example, antidilations,
denoted as δa

, satisfy δa
(
�
i

Xi) =

i

δa
(Xi). A lattice dual

automorphism is a bijection that interchanges suprema

Fig. 6. Intersection of halfspaces of the 2-D max-plus and min-plus

tropical polynomials in (6).
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with infima. For example, a negation ν is a dual automor-
phism that is also involutive, that is, ν2 = id.

2) Residuation and Adjunctions: An increasing operator
ψ : L → M between two complete lattices is called
residuated [8], [9] if there exists an increasing operator
ψ� : M → L such that

ψψ� ≤ id ≤ ψ�ψ. (17)

Here, ψ� is called the residual of ψ, is unique, and is the
closest to being an inverse of ψ. Specifically, the residu-
ation pair (ψ,ψ�) can solve inverse problems of the type
ψ(X) = Y either exactly since X̂ = ψ�(Y ) is the greatest
solution of ψ(X) = Y if a solution exists, or approx-
imately since X̂ is the greatest subsolution in the sense
that

X̂ = ψ� (Y ) =
�

{X : ψ (X) ≤ Y } . (18)

On complete lattices, an increasing operator ψ is residu-
ated (resp. a residual ψ�) if and only if it is a dilation
(resp. erosion). The residuation theory has been used
for solving inverse problems (mainly in matrix algebra)
over the extended max-plus semiring (R,∨,+) or other
idempotent semirings as lattices are made complete [6],
[23], [25], [26].

A pair (δ,ε) of two operators δ : L → M and ε : M →
L between two complete lattices is called adjunction if

δ (X) ≤ Y ⇐⇒ X ≤ ε (Y ) ∀X ∈ L, Y ∈ M. (19)

In any adjunction, δ is a dilation and ε is an erosion. The
double inequality (19) is equivalent to the inequality (17)
satisfied by a residuation pair of increasing operators if
we identify the residuated map ψ with δ and its residual
ψ� with ε. Furthermore, from (19) or (17), it follows
that any adjunction (δ,ε) automatically yields an opening
α = δε and a closing β = εδ, where the composition of
two operators is written as an operator product. Viewing
(δ,ε) as an adjunction instead of a residuation pair has
the advantage of the additional geometrical intuition and
visualization afforded by the dilation and erosion operators
in image and shape analysis.

Given a dilation δ, there is a unique erosion

ε (Y ) = δ�
(Y ) =

��
X ∈ L : δ (X) ≤ Y

	
(20)

such that (δ,ε) is an adjunction and conversely. Thus,
dilations and erosions on complete lattices always come
in pairs. In any adjunction (δ,ε), ε is called the adjoint
erosion of δ, whereas δ is the adjoint dilation of ε.

Example 1: Two adjunctions used in nonlinear image
processing and shape analysis are the following:

1) A morphological set adjunction is the pair of
Minkowski set addition ⊕ and subtraction �: for
X,B ⊆ R

d,

δB (X) = X ⊕B :=
�

x + b ∈ R
d : x ∈ X, b ∈ B

	
εB (X) = X �B :=

�
x − b ∈ R

d : x ∈ X, b ∈ B
	
.

(21)

2) A signal adjunction is the supremal (max-plus) con-
volution f ⊕ g of f : R

d → R by g and the infimal
convolution f � g of f(x) by −g(−x) used in mor-
phological image processing:

δg (f) (x) = f ⊕ g (x) := supy {f (y − x) + g (y)}
εg (f) (x) = f � g (x) := infy {f (x − y) − g (y)} .

(22)

B. Max-� Algebra and Weighted Lattices

1) Clodum—Extending Tropical Scalar Arithmetic: A
lattice M is often endowed with an additional binary
operation, called symbolically the “multiplication” �, under
which (M, �) is a semigroup, a monoid, or a group. Such
ordered monoids have been studied in detail in [7], [39],
and [116] and form the algebraic basis of the max-plus
algebra.

Consider now an algebra (K,∨,∧, �, �′) with four binary
operations satisfying the following.
C1: (K,∨,∧) is a complete distributive lattice. Thus,

it contains its least ⊥ :=

K and greatest element

� :=
�
K. The supremum ∨ (resp. infimum ∧)

plays the role of a generalized “addition” (resp. “dual
addition”).

C2: (K, �) is a monoid whose operation � plays the role
of a generalized “multiplication” with identity (“unit”)
element e and is a dilation (i.e., distributes over ∨).

C3: (K, �′) is a monoid with identity e′ whose operation
�′ plays the role of a generalized “dual multiplication”
and is an erosion (i.e., distributes over ∧).

The least (greatest) element ⊥ (�) of K is both the
“zero” element for the “addition” ∨ (∧) and an absorbing
null for the “multiplication” � (�′).

We call the resulting algebra a complete lattice-ordered
double monoid, shortly clodum [72], [74]. Previous studies
on minimax or max-plus algebra have used alternative
names for structures similar to the above definitions that
emphasize semigroups and semirings instead of lattices
[6], [25], [39] (see [74] for similarities and differences).

A clodum K is called self-conjugate if it has a lattice
negation a 	→ a∗ such that

��
i

ai

�∗

=
�
i

ai
∗,

��
i

bi

�∗

=
�
i

bi
∗, (a � b)∗ = a∗ �′ b∗.

(23)
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Table 1 Examples of Scalar Clodums

The suprema and infima in (23) may be over any
collections.

Examples of scalar clodums are summarized in Table 1.
The max-plus and max-times clodums have a richer struc-
ture. Specifically, if � = �′ over G = K \ {⊥,�}, where
(G, �) is a group and (G,∨,∧) is a conditionally com-
plete lattice (i.e., every nonempty bounded subset has a
supremum and infimum), then the clodum K becomes
a complete lattice-ordered group, shortly clog. Then, for
each a ∈ G, there exists its “multiplicative inverse” a−1

such that a � a−1 = e. Furthermore, the “multiplication” �
and its self-dual �′ can be extended over the whole K by
involving the nulls, and the clodum becomes self-conjugate
by setting a∗ = a−1 if ⊥ < a < �, �∗ = ⊥, and ⊥∗ = �.
Thus, in a clog K, � and �′ coincide in all cases with only
one exception: the combination of the least and greatest
elements.

All clodum examples of Table 1 have commutative “mul-
tiplications.” An example with noncommutative “multipli-
cations” is the matrix max-� clodum (Kn×n,∨,∧, � , � ′ ),
where Kn×n is the set of n × n matrices with entries
from a clodum K, ∨/∧ denote here elementwise matrix
sup/inf, and � and � ′ denote max-� and min-�′ matrix
“multiplications”

[A � B]ij =

n�
k=1

aik � bkj ,
�
A � ′ B

�
ij

=

n�
k=1

aik �
′ bkj .

(24)

For the max-plus clog (R,∨,∧,+,+′), these matrix “multi-
plications” are denoted by � and �′, defined as

[A � B]ij =

n�
k=1

aik + bkj ,
�
A �′ B

�
ij

=

n�
k=1

aik +′ bkj .

(25)

2) Complete Weighted Lattices—Nonlinear Spaces: Con-
sider a nonempty collection W of mathematical objects,
which will be our space; examples of such objects include
vectors in R

d
or signals f : E → R. Also, consider a clodum

(K,∨,∧, �, �′) of scalars with commutative operations �, �′,
and K ⊆ R. We define two internal operations among
vectors/signalsX,Y in W: their supremum X ∨Y : W2 →
W and their infimum X ∧ Y : W2 → W, which we
denote using the same supremum symbol (∨) and infimum
symbol (∧) as in the clodum, hoping that the differences
will be clear to the reader from the context. Furthermore,

we define two external operations among any vector/signal
X in W and any scalar c in K: a “scalar multiplication”
c � X : (K,W) → W and a “scalar dual multiplication”
c �′ X : (K,W) → W, again by using the same symbols
as in the clodum. Now, we define W to be a weighted
lattice space over the clodum K if it satisfies a set of axioms
postulated in [74], which: 1) makes W a distributive lattice
with respect to its two internal vector operations ∨ and ∧
and 2) endow the external operations � and �′ between
scalars and vectors with associativity and distributivity
properties. These axioms bear a striking similarity with
those of a linear space. One difference is that the vec-
tor/signal addition (+) of linear spaces is now replaced
by two dual superpositions: the lattice supremum (∨) and
infimum (∧); furthermore, the scalar multiplication (×) of
linear spaces is now replaced by two operations � and �′

that are dual to each other. Only one major property of
linear spaces is missing from the weighted lattices: the
existence of “additive inverses.” We define the space W
to be a complete weighted lattice (CWL) if: 1) W is
closed under any (possibly infinite) suprema and infima
and 2) the distributivity laws between the scalar operations
� (�′) and the supremum (infimum) are of the infinite type.

3) Vector and Signal Operators on Weighted Lattices: We
focus on CWLs whose underlying set is a space W of func-
tions f : E → K with values from a clodum (K,∨,∧, �, �′)
of scalars. Such functions include d-dimensional vectors if
E = {1, 2, . . . , d} or d-dimensional signals of continuous
(E = R

d) or discrete domain (E = Z
d). Then, we extend

pointwise the supremum, infimum, and scalar multiplica-
tions of K to functions, for example, for F,G ∈ W, a ∈ K,
and x ∈ E, we define (F ∨ G)(x) := F (x) ∨ G(x) and
(a�F )(x) := a�F (x). Furthermore, the scalar operations
� and �′, extended pointwise to functions, distribute over
any suprema and infima, respectively. If the clodum K is
self-conjugate, then we can extend the conjugation (·)∗ to
functions F pointwise: F ∗(x) := (F (x))∗.

Elementary increasing operators on W are those that
act as vertical translations (in short V-translations)
of functions. Specifically, pointwise � (�′) “multiplica-
tions” of functions in W by scalars in K yield the
(dual) V-translations. A function operator ψ on W is
called V-translation invariant if it commutes with any
V-translation τ , that is, ψτ = τψ; similarly for dual
translations.

More complex increasing operators are combinations
of (dual) V-translations and dilations (erosions), called
dilation V-translation-invariant (DVI) operators δ or
erosion V-translation-invariant (EVI) operators ε. Such
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operators obey a sup-� or an inf-�′ superposition

δ

��
i

ci � Fi

�
=

�
i

ci � δ (Fi)

ε

��
i

ci �
′ Fi

�
=

�
i

ci �
′ ε (Fi) . (26)

On signal spaces, these properties create supremal and
infimal nonlinear convolutions; details can be found
in [74].

Next, we focus on finite-dimensional CWLs that are non-
linear vector spaces W = Kd, equipped with the pointwise
partial ordering x ≤ y, supremum x∨y = [xi∨yi], and infi-
mum x∧y = [xi∧yi] between any vectors x,y ∈ W. Then,
(W,∨,∧, �, �′) is a CWL. Elementary increasing operators
are the vector V-translations τ a(x) = a � x = [a � xi] and
their duals τ ′

a(x) = a �′ x, which “multiply” a scalar a
with a vector x elementwise. A vector transformation on
W is called (dual) V-translation-invariant if it commutes
with any vector (dual) V-translation. Each vector x =

[x1, . . . , xd]
T can be expressed as the max of V-translated

impulse vectors qj = [qj(i)], where qj(i) = e at i = j

and ⊥ else, or as the min of dual V-translated impulses
q′

j = [q′j(i)], where q′j(i) = e′ at i = j and � else. Based
on these vector representations, the following theorem
establishes that all V-translation-invariant dilations and
erosions of vectors are max-� and min-�′ matrix-vector
“products,” respectively.

Theorem 1 [74]: Consider mappings between two
finite-dimensional CWLs.

1) Any vector transformation between two
finite-dimensional CWLs, that is, from Kn to Km is
DVI iff it can be represented as a matrix-vector max-�
product δA(x) := A � x, where A = [aij ] ∈ Km×n

with aij = [δ(qj)]i, i = 1, . . . ,m and j = 1, . . . , n.
2) Any vector transformation from Kn to Km is EVI

iff it can be represented as a matrix-vector min-�′

product εA(x) := A � ′ x where A = [aij ] with
aij = [ε(q′

j)]i.

Given such a vector dilation δ(x) = A � x : Kn →
Km, there corresponds a unique erosion ε : Km → Kn

(equal to the residual operator δ�
) so that (δ,ε) is a vector

adjunction, that is, δ(x) ≤ y ⇐⇒ x ≤ ε(y). We can
find the adjoint vector erosion by decomposing both vector
operators based on scalar operators (η, ζ) that form a scalar
adjunction on K:

η (a, v) ≤ w ⇐⇒ v ≤ ζ (a,w) . (27)

If we use as scalar “multiplication” a commutative binary
operation η(a, v) = a � v that is a dilation on K, its scalar
adjoint erosion becomes

ζ (a,w) = sup {v ∈ K : a � v ≤ w} (28)

which is a (possibly noncommutative) binary operation on
K. Then, the original vector dilation δ(x) = A � x is
decomposed as

�
δ (x)

�
i
=

n�
j=1

η (aij , xj) =
n�

j=1

aij � xj , i = 1, . . . ,m

(29)

whereas its adjoint vector erosion (i.e., the residual δ�

of δ) is decomposed as

�
δ�

(y)
�

j
= [ε (y)]j =

m�
i=1

ζ (aij , yi) , j = 1, . . . , n. (30)

Furthermore, if K = (∨,∧, �, �′) is a clog, then ζ(a,w) =

w �′ a∗, and hence

ε (y)=A∗ � ′ y, [ε (y)]j =
m�

i=1

yi �
′ aij

∗, j = 1, . . . , n
(31)

where A∗ = [aji
∗] is the adjoint matrix (i.e., conjugate

transpose) of A = [aij ].

IV. S O LV I N G M A X-� E Q U AT I O N S A N D
O P T I M I Z AT I O N
A. �∞ Optimal Solutions of Max-Plus Equations

Consider the max-plus clog (R,∨,∧,+,+′), a matrix
A ∈ R

m×n
, and a vector b ∈ R

m
. The set of solutions

of the max-plus equation

A � x = b (32)

over R is either empty or forms an idempotent semigroup
under vector ∨ because, if x1 and x2 are two solutions,
then x1 ∨ x2 is also a solution. A related problem in
applications of the max-plus algebra to scheduling is when
a vector x represents start times, a vector b represents fin-
ish times, and the matrix A represents processing delays.
Then, if (32) does not have an exact solution, it is possible
to find the optimum x such that we minimize a norm of
earliness subject to zero lateness

Minimize ‖A � x − b‖p s.t. A � x ≤ b (33)

where ‖ ·‖p denotes some �p-norm. Both problem (32) and
the constrained minimization problem (33) for p = 1 or
p = ∞ have been solved by Cuninghame–Green [25].

Theorem 2 [25]: If (32) has a solution, then5

x̂ = A∗ �′ b =

�
m�

i=1

bi − aij

�
(34)

5To cover all cases of combining finite and infinite scalar numbers
in the max-plus clog (R,∨,∧,+,+′), we should write the subtractions
bi − aij in (34) as bi +′ (−aij ) and use the rules (1).
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is its greatest solution and the optimum solution to
problem (33).

The proof results since x̂ is the greatest solution of A �
x ≤ b, as shown in [15] and [25]. It can also be directly
seen from the adjunction (δ,ε) where

A � x = δ (x) ≤ b ⇐⇒ x ≤ ε (b) = A∗ �′ b. (35)

The solutions of (32) and of (33) for the �∞ case
have been further analyzed in [15] both algebraically and
combinatorially. It is also possible to search and find sparse
solutions of either the exact equation (32) or the approx-
imate problem (33), as done in [109], where sparsity
here means a large number of −∞ values in the solution
vector.

Furthermore, there is actually a stronger result that
is not biased to be a subsolution of (32) but pro-
vides the unconstrained optimal solution of the following
problem:

Minimize ‖A � x − b‖∞. (36)

Theorem 3 [15], [25]: If 2μ = ‖A � x̂ − b‖∞ = ‖A �
(A∗ �′ b) − b‖∞ is the �∞ error corresponding to the
greatest subsolution of A�x = b, then the unique solution
of (36) is

x̃ = μ+ x̂ = μ+ A∗ �′ b. (37)

The computational complexity to find both optimal solu-
tions x̂ and x̃ is O(mn).

B. Projections on Weighted Lattices

The optimal subsolution of (33) can be viewed as a non-
linear “projection” of b onto the column space of A [26].
To understand this, note first that any adjunction (δ,ε)

automatically yields two lattice projections, an opening
α = δε and a closing β = εδ, such that

α2 = α ≤ id ≤ β = β2
.

We call them “projections” because, in analogy to projec-
tion operators on linear spaces, they preserve the structure
of the lattice space w.r.t. the partial ordering, and they are
idempotent.

Projections on idempotent semimodules6 have been
studied in [23] for the general case and with more details
in [2] and [26] for the max-plus case to which we focus

6Idempotent semimodules are like vector spaces with vector “addi-
tion” ∨ whose vector and scalar arithmetic are defined over idempotent
semirings. If, in our definition of a weighted lattice, one focuses only
on one vector “addition,” say the supremum, and its corresponding
scalar “multiplication,” then the weaker algebraic structure becomes an
idempotent semimodule over an idempotent semiring (K,∨, �). This
has been studied in [23], [39], and [64].

herein. Let X = R
n

be viewed as a complete idempotent
semimodule over the complete max-plus semiring Rmax ∪
{∞} = R, and let S be a complete subsemimodule of X .
Then, a canonical projector on S is defined as the nonlinear
map [23]

PS : X → S , PS (x) :=
�

{v ∈ S : v ≤ x} . (38)

Its definition implies that PS is a lattice opening, that is,
increasing, antiextensive, and idempotent. Furthermore,
there is a concept of “distance” on such semimodules,
which allows to use a nonlinear projection theorem for
best approximations. Specifically, let us consider a distance
between two vectors x and y defined via the range semi-
metric [25]

dH (x,y) = max
i

(xi − yi) − min
i

(xi − yi) , x,y ∈ R
n

(39)

also known, in a more general form, as the Hilbert projec-
tive metric [23]. Then, for any vector x ∈ X , PS(x) is the
best approximation (but not necessarily unique) of x by
elements of S in the sense that PS(x) is an element of S
attaining the shortest distance from x, that is, [2], [23]

dH (x, PS (x)) = dH (x,S) (40)

where the distance between a vector x and the subspace S
is defined by dH(x,S) := inf{dH(x,v) : v ∈ S}. Note
the analogy with Euclidean spaces R

n where the linear
projection of a point x ∈ R

n to a linear subspace S is given
by the unique point y ∈ S such that x − y is orthogonal
to S .

Now, if we consider the optimization problem (33) and
define the subsemimodule S in (38) as the max-plus span
of the columns of matrix A, then the canonical projection
of b onto it equals

PS (b) = A � x̂ = A �
�
A∗ �′ b

�
≤ b (41)

which is a lattice opening δ(ε(b)) ≤ b from (35).

C. �p Optimal Solutions of Max-� Equations
Herein, we generalize the results of Section IV-A from

max-plus to max-� algebra. Consider a scalar commutative
clodum (K,∨,∧, �, �′), a matrix A ∈ Km×n, and a vector
b ∈ Km. We consider the set of solutions of both the exact
max-� equation

A � x = b (42)

as well as its approximate solutions that are optimal solu-
tions of the following constrained minimization problem:

Minimize ‖A � x − b‖p s.t. A � x ≤ b (43)
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where ‖ · ‖p is any �p norm with p = 1, 2, . . . ,∞. By using
adjunctions, we provide next a more general result (than
Theorem 2) for the general case when K is a general
clog or just a clodum (which may have no inverses for its
“multiplication” operations).

Theorem 4 [74]: Consider the vector dilation δ(x) =

A � x : Kn → Km, and let ε be its adjoint vector erosion.

1) If (42) has a solution, then

x̂ = ε (b) =

�
m�

i=1

ζ (aij , bi)

�
(44)

is its greatest solution, where ζ is the scalar adjoint
erosion of � as in (28).

2) If K is a clog, the solution (44) becomes

x̂ = A∗ � ′ b =

�
m�

i=1

bi �
′ aij

∗
�
. (45)

3) The solution to the optimization problem (43) for any
�p norm ‖ · ‖p is generally (44) or (45) in the case of a
clog.

A main idea for solving (43) is to consider vectors x

that are subsolutions in the sense that δ(x) = A � x ≤ b

and find the greatest such subsolution x̂ = ε(b), which
yields either the greatest exact solution of (42) or an
optimum subsolution in the sense of (43). To prove the
latter, note that, since y = δ(ε(b)) is the greatest lower
estimate (GLE) of b, bi − yi is nonnegative and minimum
for all i, and hence, the norm ‖b−y‖p is minimum for any
p = 1, 2, . . . ,∞.

Unfortunately, the type of unconstrained �∞ optimal
solution offered by Theorem 3 in the max-plus case does
not generally carry over to a general clodum, as shown for
the max–min clodum in [27].

V. T R O P I C A L G E O M E T R Y O F N E U R A L
N E T W O R K S W I T H P W L A C T I V AT I O N S
In this section, we present some applications of concepts
and techniques from tropical geometry in studying neural
networks with PWL activations. Early connections between
tropical geometry and neural networks were sketched
in [18] and later developed in greater detail in [19]
and [114]. Tools from tropical geometry (in particular,
the Maslov dequantization) have also been used to design
neural networks that approximate convex and log–log
convex data [16] and general continuous functions over
convex sets [17]. For the remainder of the section, we pri-
marily develop the tropical–geometric characterization of
neural network layers following [19] and [114] and
describe other applications near its end.

A central motivation for the use of tropical geometry
in the study of neural networks is characterizing their
expressive power. Tools used for this purpose range from
the Vapnik–Chervonenkis (VC) dimension to the activation

pattern of a neural network. The seminal work of [84]
and [88] proposed studying the expressive power of net-
works whose output is a PWL function via the number
of its inference regions (also interchangeably called linear
regions)—defined to be the maximally connected partitions
of the input space, in which the output of the network is a lin-
ear function. Intuitively, networks with many linear regions
can represent more complicated functions compared to
networks with only a few regions of linearity. Upper and
lower bounds on the number of linear regions of ReLU net-
works have been derived in, for example, [4], [84], [88],
and [98], using arguments from combinatorics and/or
polyhedral geometry. As tropical geometry is centered
around the study of PWL curves and surfaces, it emerges
as a natural tool for tackling this problem.

A. Geometric Characterization of NN Layers

Motivated by the approach of [86], we seek a similar
characterization of the geometry of a neural network in
terms of the vertices of the appropriate Newton polytopes.
With such a characterization at hand, we will then proceed
to derive a simple geometric algorithm for enumerating the
number of these vertices given a fixed network, to serve as
a proxy for its expressive power. Our initial observation
is that all PWL activation functions used in practice are
tropical polynomials:

Example 2 (ReLU/Leaky ReLU): Given input v = wT x +

b with w,x ∈ R
d, a rectifier linear unit computes

ReLU (v) = max (0, v) . (46)

A commonly used variation is the Leaky ReLU [67], which
computes (for some α ∈ (0, 1))

LReLUα (v) = max (v, αv) . (47)

Since the number of affine pieces in the expression of an
ReLU/LReLU unit is just 2, we deduce that the latter are
tropical polynomials of rank 2.

Example 3 (Maxout): Given W ∈ R
d×K and b ∈

R
K ,x ∈ R

d

maxout (x) = max
j∈[K]

�
W T

j x + bj
�

(48)

where we denote Wj for the jth column of W . Thus,
a maxout unit is a tropical polynomial of rank K since its
expression is a maximum of K affine pieces.

These connections were observed in [18]. In particu-
lar, the authors showed that, for a single maxout unit,
the number of linear regions it determines is equal to
the number of vertices in the upper hull of its extended
Newton polytope, defined as

ENewt (p) := conv ({(bj ,aj) : j ∈ [K]}) (49)
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Fig. 7. P �� conv({v1, . . . ,v5}). The upper hull, Pmax, is depicted in

light blue.

where p(x) is given in the form of (11). For a polytope P ,
its upper hull is defined as

Pmax := {(λ,x) : λ = sup {t ∈ R : (t,x) ∈ P}} . (50)

A simple example is shown in Fig. 7.
Proposition 1 [18]: The linear regions defined by a

PWL function p of the form (11) are in bijection with the
number of vertices in ENewtmax(p).

Proof Sketch: The function computed by the tropical
polynomial at each x is the value of the following linear
program:

p (x) := max{b+ aT x : (b,a) ∈ ENewt (p)}. (51)

It is straightforward to show that maximizers to (51) can-
not exist outside ENewt(p); an appeal to the fundamental
theorem of linear programming completes the proof.

Proposition 1 is limited as it only characterizes a single
PWL unit. However, it forms the basis for a geometric
characterization of an entire NN layer. In particular, we can
view each layer as a collection of tropical polynomials.
Recall that the tropical hypersurface V(p) of a tropical
polynomial p is the set of points x at which p(x) is
nondifferentiable. Given a collection p1, . . . , pm, the union�

i V(pi) contains all the points x for which at least one of
the polynomials is nondifferentiable. Thus, each region of
linearity of a neural network layer corresponds to an open
cell induced by

�
i V(pi).

We may now appeal to a fundamental duality result
from tropical geometry, restated in the language necessary
for our application. For a proof, see [19, Proposition 1] and
the discussion following [114, Definition 3.2].

Proposition 2: Let p1, . . . , pm : R
d → R denote a collec-

tion of tropical polynomials. Moreover, let V(p) denote the
tropical hypersurface of a polynomial p. Then, the number
of open cells induced by

�m
i=1 V(pi) is equal to the number

of vertices in Newt(p1) ⊕ · · · ⊕ Newt(pm).
An illustration appears in Fig. 8. By Proposition 2 and

the preceding discussion, we have reduced the problem of
counting linear regions to that of counting the number of
vertices of Minkowski sums of Newton polytopes. However,

as the tropical polynomials involved may also involve
monomials with constant terms, we need to apply a
“lifting” argument to treat the pi’s as functions on R

d+1

and apply Proposition 2. The resulting Minkowski sum is
precisely

ENewt (p1) ⊕ · · · ⊕ ENewt (pm) = ENewt

�
m�

i=1

pi

�
. (52)

Thus, it suffices to count the number of vertices in the
upper hull of the Minkowski sum of (52). Based on this
observation, one may appeal to standard results on the
number of vertices of Minkowski sums.

Theorem 5 [41]: Let P1, . . . , Pk be polytopes in R
d, and

let m denote the number of their nonparallel edges. Then,
the number of vertices of P1⊕· · ·⊕Pk is bounded above by

2

d−1�
j=0

�
m− 1

j

�
. (53)

Moreover, the bound of (53) is tight when 2k > d.
When P1, . . . , Pm are the extended Newton polytopes of

ReLU units, the number of nonparallel edges is at most m
since each polytope is a line segment. When P1, . . . , Pm

are generic maxout units of rank k, each polytope has at
most K vertices; hence, the number of nonparallel edges
is at most m ·

�
k
2

�
= m · (k(k − 1))/2. Since Theorem 5

gives upper bounds for the total number of vertices, it is
not clear a priori how loose these bounds are for the
number of vertices in the upper hull; when each Pi is the
Minkowski sum of line segments, a symmetry argument
can be invoked to yield bounds for the upper hull. The
results are summarized in the following.

Corollary 1: The number N d
m of linear regions of a

neural network with a single hidden layer of m neurons
and d inputs is upper bounded as follows.

1) In the case of ReLU/LReLU activations, we have

N d
m ≤

d�
j=0

�
m

j

�
. (54)

The bound in (54) is tight if all the line segments
generating the extended Newton polytopes, as well
as their projections to the last d coordinates, are in
general position.

2) In the case of Maxout activations of rank k, we have

N d
m ≤ min



km, 2

d�
j=0

�
m k(k−1)

2

j

��
. (55)

Similar upper bounds are straightforward to derive for
convolutional layers [19]. Upper bounds for multilayer
networks—which are most common in practice—are also
available. However, for multilayer networks, these bounds
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Fig. 8. Visualization of Proposition 2 for p1(x,y) �max(x,y,0) and p2(x,y) �max(x� y,0). On the left, Newt(p1)⊕Newt(p2) has five

vertices, equal to the number of open cells formed by V (p1)∪ V (p2) (corresponding to linear regions of the polynomial p ≡ p1 � p2), shown

on the right.

are not a direct result of the equivalence between neural
network layers and Newton polytopes. In particular, it is
unclear how the composition of two neural network lay-
ers acts on their Newton polytopes and whether or not
the resulting object admits a similar correspondence with
linear regions of the output. The following upper bound
applies to multilayer ReLU networks.

Proposition 3 [114, Th. 6.3]: Consider a ReLU network
with L layers of size n1, . . . , nL and inputs of dimension d.
If n� ≥ d, � = 1, . . . , L− 1, the number of linear regions of
the network is upper bounded by

L−1�
�=1

d�
j=0

�
n�

j

�
. (56)

Example 4: Suppose that we are given inputs of dimen-
sion d = 5. Consider the two following cases.

1) One hidden layer with n1 = 20: Applying the formula
from (54), the number of linear regions generated by
this network is at most

�d
j=0

�
20
j

�
= 21 700.

2) Two hidden layers with n1 = n2 = 10: Using (56),
the number of linear regions generated by this net-
work is at most

�
d�

j=0

�
10

j

��2

= 407 044.

We see that distributing m = 20 hidden units over 2
layers instead of forming a “wide” layer increases the
expressiveness of the resulting network by at least one
order of magnitude.

Note that naively chaining L − 1 applications of Corol-
lary 1 gives a strictly worse bound than that of Proposi-
tion 3, as the size of the intermediate inputs for each layer
can be arbitrarily larger than d. However, since the dimen-
sion of the input to the neural network is d, the “effective”
dimension of each intermediate output can be at most d as
well.

We conclude this section with a discussion of other
research directions intimately related to PWL neural net-
works and their implications.

1) Lower Bounds: Earlier studies have provided
almost-matching lower bounds for the number of
linear regions of a multilayer network. In particular,
Montufar et al. [84] showed—via a constructive proof—
that the number of linear regions of a DNN is on the order
of Ω((d/W )(L−1)W · dW ) when each layer consists of W
units.

The lower bound is rather existential in nature; it merely
exhibits a function with a large number of linear regions
representable by a DNN, instead of providing sufficient
conditions (as a function of network parameters) for
networks to attain this lower bound. Nevertheless, it is
another argument in favor of choosing deep versus shallow
architectures for learning, piling on a wealth of existing
theoretical, and/or empirical evidence; for example, Tel-
garsky [105] followed a different approach, constructing
a “hard” family of functions that are representable by net-
works of constant width and polynomial depth but cannot
be approximated by shallow networks of subexponential
width. Similarly, Arora et al. [4] exhibited a family of
hard functions that require a superexponential number of
hidden units when represented by a shallow ReLU DNN,
as opposed to a polynomial number of units for a deep
ReLU DNN, resulting in a lower bound exponentially larger
than that of [105], as well as a continuum (instead of a
countable family) of hard functions. Subsequent work [90]
employed a different measure of expressive power called
“trajectory length,” which measures changes in the output
of a network as its input is varied on a 1-D path, to arrive
at a similar conclusion.

2) Generative Priors in Signal Recovery: In addition to
the depth versus width discourse, the number of linear
regions of neural networks plays an important role in sig-
nal recovery with generative priors; a motivating example
is that of compressed sensing, where one observes a set of
measurements

y = Ax� + η

where x� ∈ R
d is an unknown signal to be recovered,

η is observation noise, and A is a known design matrix,
typically consisting of standard Gaussian elements, with
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far fewer rows than columns. The resulting problem is
underdetermined and calls for further assumptions to be
placed on x� (for a comprehensive review of compressed
sensing, see [31]).

The most common assumption in the literature is that x�

is sparse, in which case, the information-theoretic require-
ment for recovery is k � d measurements, where k is
the number of nonzero entries of x�. However, known
tractable algorithms exhibit a computational-statistical gap
for certain problems (such as sparse phase retrieval or
low-rank matrix recovery), in the sense that their sample
complexity scales quadratically, instead of linearly, in k.
To overcome this, researchers have proposed replacing
sparsity with a less restrictive assumption; in particular,
that x� lies in the range of a ReLU network G : R

k →
R

d; in other words, x� = G(z�) for some latent vector
z�. This assumption places a so-called generative prior
on x� [10], [44].

Generative priors are known to “close” the
statistical-computational gap in several applications
of interest. Developing the theory behind this crucially
relies on the fact that the output of an ReLU network lies
in the union of linear subspaces, the number of which is
sufficiently bounded for reasonable architectures. Tight
upper bounds on the number of linear regions of ReLU
networks enable precise statements about the sample
complexity of recovery algorithms under a generative
prior.

B. Counting Linear Regions in Practice
In this section, we provide a geometric algorithm

for approximating the number of linear regions of a
neural network layer after a brief overview of existing
approaches.

1) Mixed-Integer Formulations: A number of works have
used mixed-integer programming (MIP) formulations to
obtain empirical bounds on the number of linear regions;
Serra et al. [98] showed that deep rectifier networks are
mixed-integer representable when the input is restricted
to a polytope. Their proof is constructive and crucially
depends on a mixed-integer formulation, as summarized
in the following.

Fix i and � to index a neuron iwithin a layer �, we denote
as h� the vector containing the output of the �th layer, and
let h0 = x be the input to the neural network. The MIP
from [98] enforces the following constraints for all i, � :

�����������������

W �
i h�−1 + b�i = h�

i − h̄�
i

h�
i ≤Mz�

i

h̄�
i ≤M

�
1 − z�

i

�
h�, h̄� ≥ 0

z�
i ∈ {0, 1}.

(57)

Let us parse the constraints in (57). First, z�
i is an indicator

that reveals whether neuron i in layer � is active or

not. M is an unspecified, sufficiently large constant that
enforces h�

i to be 0 when zi = 0. If h�
i denotes the output

of the neuron, h̄�
i is a complementary “output” that satisfies

h̄�
i = max(0,−W �

i h�−1 − b�i). In [98, Th. 11], it is shown
that, for a fixed x and as long as |W �

i h�−1 + b�i | ≤ M ,
enforcing the constraints in (57) for every neuron returns
a feasible solution, yielding the output of the rectifier
network. Given that result, we can allow x to vary over
the input domain X and enumerate the integer solutions z

of the following MIP:

Maximize f

s.t. (57) holds ∀i, �
f ≤ h�

i +
�
1 − z�

i

�
M ∀i, �

x ∈ X . (58)

However, enumerating solutions of a mixed-integer pro-
gram can be computationally intractable. To address this
issue, a probabilistic algorithm was proposed in [97]
to produce lower bounds to the number of possible
solutions.

2) Enumeration via Reverse Search: The MIP-based
approach above makes the simplifying assumption that
the input domain is bounded, which helps determine a
lower bound for M so that (58) is a valid formula-
tion. Even though Serra et al. [98] discuss the issue of
unbounded input domains, it tends to complicate algo-
rithm design. In contrast, treating the enumeration prob-
lem from the scope of Newton polytope vertices applies
to general domains. It is known that extreme points
of Minkowski sums of polytopes are sums of extreme
points of the individual polytopes; moreover, enumerat-
ing vertices of Minkowski sums of polytopes in vertex
representation is possible via the so-called reverse search
method [5], [35].

The resulting algorithm for vertex enumeration has run-
time

O (δ · LP (d, δ) ·N) , δ :=
m�

i=1

δi

where N is the number of vertices, Pi ⊂ R
d, i = 1, . . . ,m,

are the polytopes in the Minkowski sum, δi denotes the
maximal degree of the vertex adjacency graph of Pi,
and LP(d, δ) denotes the complexity of solving a linear
program (LP) in d variables and δ constraints. The above
implies straightforward bounds for exact counting of linear
regions of ReLU/maxout layers. For ReLUs, δi = 2 for all i,
so δ = 2m. In the latter case, denoting ki for the rank of
the i-th unit, δ =

�
i ki.

Unfortunately, reverse search requires solving a pro-
hibitive number of LPs, rendering the above approach
impractical. We attack this problem from a different angle,
by considering the “dual” problem of counting vertices of
convex polytopes by sampling.
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C. A Geometric Algorithm
We present a randomized method for “sampling” the

extreme points of the upper hull of a polytope P = P1 ⊕
· · · ⊕ Pm. We generate K standard normal vectors, that
is, gk

i.i.d.∼ N (0, Id), and compute (gk)T vi for all extreme
points vi. We record the minimizers/maximizers for each
polytope Pj and repeat the trial. Denoting by Vi ∈ R

ki×d

the matrix whose rows contain the coordinates of each
vertex of Pi, the above procedure essentially counts the
number of unique tuples giving the row indices of the
extrema of Vigk for all i.

From our discussion motivating the use of the reverse
search method, it is clear that the resulting number is a
lower bound on the number of vertices in the Minkowski
sum. The resulting Algorithm 1 leverages the techniques
in [28]. This method and its specialization to upper
hulls work for general polytopes, whereas the MIP-based
methods in the literature are only presented for rectifier
networks. On the other hand, it should be noted that
MIP formulations can be used to enumerate the number
of linear regions of deep neural networks; in contrast,
it is unclear how to adapt our geometric algorithm or
the reverse search method for neural networks with more
than one layer. Finally, we note that adapting Algorithm 1
for counting vertices in upper hulls of Minkowski sums
is described in [19, Sec. 4.1]. The idea for extending
the technique to the upper hull is simple: to ensure that
the maximizers of the linear forms lie on the upper hull,
we restrict ourselves to samples with a positive first coor-
dinate. The final guarantee is similar to the one given
in Proposition 4, though stated in terms of a restricted
normal cone.

Algorithm 1 Sampling Points in the Convex Hull
Input: polytopes P1, . . . , Pm in vertex representation
Iext := ∅.
for j = 1, . . . , K do

Sample gj ∼ N (0, Id)
Compute zi := Vigj , ∀i ∈ [m].

Collect

{
zmax := (argmaxz1, . . . , argmaxzm)
zmin := (argminz1, . . . , argminzm)

Iext := Iext ∪ {zmax, zmin}
end for

Algorithm 1 provides a nontrivial lower bound to the
number of extreme points of the resulting Minkowski sum
with high probability, as shown in Proposition 4.

Proposition 4: Let N denote the number of vertices of
P = P1 ⊕ · · · ⊕ Pm, a failure probability δ, and define

�N :=

�
log

�
1

maxi (1 − 2ω (NP (vi)))

��−1

where ω(NP (vi)) is the solid angle of the
normal cone NP (vi) of the ith vertex. Then, for
K ≥ �N log(N/δ) in Algorithm 1, the algorithm

Fig. 9. Polytopes P and Q and their solid angles. All the solid

angles of P (left) are bounded away from zero. On the other hand,

for Q (right), we have ω(NQ(vi))� 1.

records all the vertices with probability at
least 1 − δ.

Proof Sketch: The key idea in the proof is the follow-
ing: extreme points of Minkowski sums are also extreme
points of individual summands. Consequently, missing a
“configuration” of minimizers across our trials is equivalent
to missing an extreme point v of the Minkowski sum.

Moreover, it is not hard to see (e.g., [19, Corollary 1])
that the solid angles of the normal cones of the vertices of
a polytope P form a probability distribution, with

ω (NP (vi)) = Pg∼N (0,Id) (g ∈ NP (vi)) (59)

the probability that g is in the normal cone at vi and,
consequently, vi being the minimizer of the linear function
x 	→ xT g. The rest follows from a coupon collector-style
argument; a detailed proof is available in [19, Sec. 4].

Example 5: Suppose that P has all-equal solid angles,
that is, ω(NP (vi)) = (1/N), for all i, in which case,�N = log(N/(N − 2))−1. Rewriting logN/(N − 2) =

log(1 + 2/(N − 2)) and combining with the inequality
log(1 + x) ≤ x, we see that

�N ≥ N − 2

2
⇒ K ≥

�
N

2
− 1

�
log (N/δ)

is necessary to achieve probability failure at most δ. Note
that this shows that Algorithm 1 will require at least this
number of samples for any polytope P ; indeed, it is easy
to see that mini ω(NP (vi)) ≤ (1/N) for any polytope with
N vertices.
Our guarantee heavily depends on the cones NP (vi).
If there are vertices that only slightly “extend” out of the
polytope, our required sample size will be a large multiple
of N . Fig. 9 illustrates (nonzonotopal) examples in R

2;
Q has a vertex where the solid angle of the normal cone
is close to 0, in contrast to P that is more “regular.” Never-
theless, the proposed algorithm can be easily parallelized,
only relies on computing inner products, and crucially
utilizes the geometric insights from the Newton polytope
characterization of neural network layers.

D. Other Connections Between Tropical Geometry
and Neural Networks

1) Tropical Polynomial Division and Network Simplifica-
tion: Another problem where tropical geometry can be of
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use is neural network minimization; as neural networks
increase in complexity, so do their needs in computing time
and memory, limiting their use in time-sensitive applica-
tions. Therefore, we seek to reduce the size of a neural
network while maintaining its accuracy. Several methods
have attempted to solve this problem, by removing either
connections between neurons [43] or neurons themselves
[47], [66] from the network. The former is referred to
as weight or unstructured pruning and the latter as chan-
nel/neuron or structured pruning. These studies show that
minimal drops in accuracy (roughly 1% on the VGG-16
architecture) are possible, despite a significant decrease in
network complexity. Note that neural network compression
is distinct from the so-called dropout technique [102]; the
latter is a technique applied during the training stage and
aims to address the problem of overfitting by setting a
random subset of the neurons to zero during each training
epoch.

Tropical geometry can also provide novel methods for
neural network simplification.

1) Given a fixed ReLU network, we can attempt to
construct a smaller neural network whose Newton
polytopes closely approximate the polytopes of the
original network. The resulting algorithm is construc-
tive and relies on the concept of tropical polyno-
mial division [100], which approximates the dividend
using the Newton polytopes of the divisor and quo-
tient. Since this method constructs a network from
scratch, it can be much faster than pruning methods
in practice. It was originally applied to minimize the
second-to-last layer of networks with a single output
neuron in the context of binary classification prob-
lems, with less than 0.5% loss in accuracy even when
only 1% of the hidden units are retained. Extensions
to multiclass problems are considered in [101].

2) A complementary approach appeared in [3]. The
authors first obtain a tropical geometric character-
ization of the decision boundaries of neural net-
works using their Newton polytopes; following that,
they present a regularization method that balances
a sparsity-inducing penalty with an objective that
attempts to preserve the decision boundaries of the
neural network. In contrast to the previous two
approaches, this is a pruning method.

2) Morphological Neural Networks: Though feedforward
networks with PWL activations have become the de-facto
standard in neural computation, the paradigm of so-called
morphological computation is also closely related to tropical
geometry. In morphological computation, linear operations
are replaced with their tropical versions; thus, the building
blocks of a morphological neural network are replaced
by dilations and erosions instead of linear operations.
In its most elementary version, a morphological (max,+)-
perceptron computes the function

x 	→ wT � x = max
i

{wi + xi} (60)

Fig. 10. Example of tropically separable patterns in R2, using the

weight vector w � [0.075, 0.3]T.

where w ∈ R
d
max is a set of trainable weights. In binary

classification, the decision regions induced by a (max,+)

perceptron are collections of so-called tropical halfspaces.
A (max,+)-perceptron can separate two classes if and only
if a certain tropical polyhedron is nonempty, a condition
that can be checked efficiently for this particular case.

Proposition 5 [18, Proposition 1]: Consider N1 points
from class C1 and N2 points from class C2, forming the
matrices X1 ∈ R

N1×d and X2 ∈ R
N2×d. Then, these points

can be separated by a morphological perceptron of the
form (60) if and only if

{w ∈ R
d
max : X1 � w ≥ 0N1 , X2 � w ≤ 0N2} �= ∅

⇔ X1 �
�
X2

∗ �′ 0
�
≥ 0. (61)

An example of a tropically separable configuration of
points is shown in Fig. 10. Even though the morphological
paradigm dates back almost 3 decades [91], [92], [103],
[113], a recent resurgence of interest has led to new
developments; for example, it was recently shown [83],
[115] that a morphological neural network with a hid-
den layer consisting of dilations and erosions followed
by a linear layer is a universal approximator. In a more
recent publication [34], the authors focus on deep learning
for image processing, treating all nonlinear operations
(e.g., max-pooling) as trainable morphological operators
to complement trainable convolutional operations and
achieve competitive results in tasks, such as boundary
detection using considerably fewer parameters than other
architectures.

VI. T R O P I C A L G E O M E T R Y A N D
G R A P H I C A L M O D E L S
A. Hidden Markov Models

The use of tropical geometry within the framework
of parametric statistics was pioneered by Pachter and
Sturmfels [86]. Specifically, they consider graphical mod-
els that are formally represented by directed acyclic graphs
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with two sets of vertices: the hidden variables X =

(X1, . . . , Xm) and the observed variables Y = (Y1, . . . , Yn).
Moreover, we use s1, . . . , sd to denote the model parame-
ters. Given an observation σ = (σ1, . . . , σn), the observa-
tion probabilities are polynomials of degreeE in the model
parameters, where E is the number of edges of the afore-
mentioned graph. We use fσ (s1, . . . , sd) = Ps1,...,sd(Y =

σ) to denote the observation probability. Pachter and
Sturmfels [86] asked a fundamental question about this
family of models:

How do the solutions to inference problems depend on the
model parameters?

The authors fix the numbers d and n of model parameters
and observations, and furthermore, assume that each of
the observed variables can take � different values. Mathe-
matically, this model is a polynomial map f : R

d → R
�n

,
each of the coordinates being one of the aforementioned
polynomials of degree E. Let ui := − log(si) determine the
associated logarithmic parameter space. Moreover, define

gσ (u1, . . . , ud) :=−max
h

log Ps1,...,sd (X = h | Y = σ) .

(62)

Pachter and Sturmfels [86] show that gσ is PWL and
concave on the logarithmic parameter space, with the
normal cones of Newt(fσ) identifying its domains of
linearity. As the parameters u1, . . . , ud vary, they define
inference functions σ 	→ ĥ, where ĥ is the most likely
tuple of hidden variables given an observation σ. This
leads to the following.

Proposition 6 [86, Proposition 6]: The inference func-
tions σ 	→ ĥ of a graphical model f are in bijection with
the vertices of the Newton polytope of the map f . The
explanations ĥ for a fixed observation σ in a graphical
model are in bijection with the vertices of the Newton
polytope of the polynomial fσ .

This is the main ingredient in [86], which the authors
employ to deduce upper bounds on the number of infer-
ence functions and explanations of graphical models,
by leveraging known bounds on the number of vertices
of Newton polytopes. Finally, they motivate theoretically
the use of the so-called polytope propagation algorithm
to enumerate the vertices of the aforementioned poly-
topes, including an application to inference for biological
sequence analysis [87].

The authors of a later publication [24] study the
Restricted Boltzmann Machine (RBM), a graphical model
that is the building block of deep belief networks [52],
using techniques from algebraic and tropical geometry.
Formally, RBMs are represented by a bipartite graph on
hidden variables h ∈ {0, 1}k and observed variables v ∈
{0, 1}n, with “activation”

ψ (v,h) := exp
�
hT W v + bT v + cT h

�
(63)

which determines a probability distribution

p (v) :=
1

Z

�
h∈{0,1}k

ψ (v,h) , Z :=
�
v,h

ψ (v,h) (64)

where Z is the induced log-partition function. The authors
then define the tropical RBM model by applying the
Maslov dequantization principle to log p(v), leading to the
PWL convex model in (65)

q (v) := max{hT W v + bT v + cT h : h ∈ {0, 1}k}. (65)

Similar to [86], varying the parameters (b, c,W ) deter-
mines a collection of inference functions. Cueto et al. [24]
then obtained the following characterization of an RBM’s
inference functions (recall that a linear threshold function
is a function of the form f(x) = sign(αT x + β)):

Proposition 7 [24, Proposition 5.1]: The inference func-
tions for the RBM in k hidden and n observed variables
are precisely those Boolean functions {0, 1}n → {0, 1}k for
which each of the coordinate functions is a linear threshold
function.

B. Tropical Algorithms on WFSTs

1) Introduction: Weighted Finite State Transducers
(WFSTs) introduce a computational framework that
extends traditional automata, with applications in auto-
matic speech recognition, natural language processing,
computational biology, and more. The workhorse of the
framework is the Viterbi algorithm, a decoding procedure
that performs inference over graphs. The framework also
includes a variety of algorithms aiming to reduce the
computational footprint, which can be split into two cate-
gories: 1) algorithms that respect the initial topology of the
network, refactoring the weights or removing extraneous
transitions and 2) algorithms that fundamentally alter
the structure of the network, via network minimization
or composition. In any case, WFSTs, complete with their
suite of diverse algorithms, present a formal mathemati-
cal framework whose properties have been analyzed for
decades. A simple WSFT is shown in Fig. 11.

WFST algorithms historically employed tropical arith-
metic [81], [82] for practical reasons. However, their
formal modeling using tropical matrix algebra was only
recently explored. A recent work [106] tropicalized the
Viterbi algorithm7 and its pruning variant, both semi-
nal communications algorithms, by expressing the symbol
observation probabilities as a tropical diagonal matrix. A
following work [107] extended the tropicalization to other
instrumental WFST algorithms, namely, epsilon removal
and weight pushing, via the strong and weak transitive
closures of the network.

7The framework of weighted lattices allows us to analyze the
max-product form of the Viterbi algorithm as a nonlinear dynamical
system in state space and extend it to more general forms that accept
control inputs [74].
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Fig. 11. Toy WFST. Transitions are of the form i/o:c, where i is the

input symbol, o is the output symbol, and c is the cost of the

transition. For example, the input sequence dx would be decoded to

DLX with a total cost of 12. Here, the ε-transition denotes the lack of

an input symbol.

In addition, a tropical analog to spectral graph theory
can be found, which studies the existence and characteriza-
tion of solutions to the tropical (sup-)eigenvalue problem.
While mathematically analyzing WFSTs, certain elements
from tropical spectral theory arise, which are introduced
in the next section.

2) Background: A WFST is mainly characterized by the
transition matrix of a network, which we denote A ∈
R

d×d
min , and where each entry aij corresponds to the cost

of transitioning from state i to state j. The initial states
are denoted by π ∈ R

d
min, where each initial state has a

finite cost, and +∞ otherwise. Similarly, emitting (or final)
states are denoted by ρ ∈ R

d
min and have also finite costs

(and +∞ if they are not final states). We define the weak
transitive closure of A as

Γ (A) := A ∧ A2 ∧ · · · ∧ Ad ∧ · · · (66)

and the strong transitive closure as

Δ(A) := I ∧ A ∧ A2 ∧ · · · ∧ Ad ∧ · · · (67)

where Ak =

k times !" #
A �′ . . .�′ A. The minimum cycle mean of A

is defined as

λ (A) = min
c∈C(A)

weight (c)

length (c)

where C(A) is the set of cycles of the network, and
weight(·) and length(·) denote the weight (sum of the costs
along the cycle) and length of a cycle, respectively.

In tropical spectral analysis, the min-plus eigenproblem8

of A consists of finding the eigenvalues λ and eigenvectors
v such that

A �′ v = λ+ v. (68)

8In [15], the discussion revolves around the max-plus eigenprob-
lems; instead, in this section, the analysis will focus on the min-plus
eigenproblems.

The minimum cycle mean λ(A) plays a fundamental role in
the min-plus eigenproblem; indeed, it is the smallest eigen-
value and the only one whose corresponding eigenvectors
may be finite [15]. For the spectral analysis component,
we will heavily rely on the following theorem, which
characterizes the sup-eigenvectors of A, which are defined
as the solutions to:

A �′ v ≥ λ+ v. (69)

Theorem 6 [15, Dual of Theorem 1.6.18]: Suppose
that A has at least one finite entry. If λ ≤ λ(A) and
λ < +∞, then the following holds.

1) A �′ v ≥ λ+ v has a finite solution.
2) The set of finite sup-eigenvectors is

V ∗ (A, λ) =
�
Δ (A − λ) �′ u : u ∈ R

d
	
. (70)

3) A �′ v ≥ λ + v only holds if v = Δ(A − λ) �′ u,

u ∈ R
d
min.

The characterization of the eigenvectors is of signifi-
cant importance in tropical settings. Indeed, in max-plus
dynamical systems modeling manufacturing processes, it is
desired that some systems whose dynamics are governed
by x(t) = A � x(t − 1) eventually reach a steady state
where the processing occurs at regular intervals, that is,
x(t) = λ+x(t−1). If x(0) is an eigenvector, the steady state
is immediately reached; therefore, the characterization is
fundamental, as it provides well-behaved configurations,
in terms of reachability of a steady state, for a dynamical
system.

3) Tropicalization of WFST Algorithms: The Viterbi algo-
rithm, stemming from the field of communications,
attempts to decode the most probable series of latent
states from a data sequence. At the heart of this algo-
rithm is the following recursive computation: given a
sequence of observations {σt}T

t=0, observation probabili-
ties b(σt), and a transition matrix W , the highest proba-
bility of a single partial state sequence ending at state i

at time t and accounting for the first t + 1 observations is
given by

qi (t) = max
j

bi (σt)Wjiqj (t− 1) . (71)

We can formally tropicalize (71) and provide a recursive
solution for the state vector x(t)

x (t) = P (σt) �′ AT �′ x (t− 1) (72)

where x(t) = − log q(t), A = − log W , and P (σt) =

diag(− log b(σt)), with diag(·) denoting a matrix with the
argument in the diagonal and +∞ elsewhere.
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Fig. 12. Illustration of the Viterbi pruning. The path of optimal

states is denoted by red . States colored gray were examined by

the algorithm for optimality, whereas the dashed states had high

costs and were pruned.

Viterbi pruning is a practical technique that is frequently
used in order to reduce the computational burden of the
decoding. In essence, the optimal path is computed at each
step, and only the paths whose cost is within a certain
threshold are further expanded. An intuitive example is
given in Fig. 12. Viterbi pruning can be thought as the
problem

X (t) �′ y ≥ η (73)

where X(t) = diag(x(t)) and η is a vector with ηi =
1
2
(x(t)T �′ x(t)) + θ, where θ is the pruning parameter.

We can then interpret pruning as finding the smallest
solution y ∈ R

d
min, satisfying the min-plus inequality (73),

which can be done using the dual of Theorem 2

y = X∗ (t) � η (74)

where X∗(t) = −XT (t) and the negative entries of y indi-
cate the indices to be pruned. A geometrical interpretation
can be given to the Viterbi pruning; in particular, the set
of feasible solutions at each step is a tropical polytope
(see Fig. 13)

T (x (t) ,η) =
�

z ∈ R
d
min : z ≥ x (t) , z ≤ η

	
. (75)

Example 6: Let the state vector be

x (t0) =
�
1 7 4

�T

at some time t0, and suppose that the pruning parameter is
θ = 5. Then, ηi = 1

2
(x(t0)

T �′ x(t0)) + θ = 6. The optimal
solution then is given by (74)

y =

$%& −1 −∞ −∞
−∞ −7 −∞
−∞ −∞ −4

'() �

$%&6

6

6

'() =

$%& 5

−1

2

'() .

As y2 is negative, it gets pruned, and the resulting vector is

xp (t0) =
�

1 ∞ 4
�T

.

We emphasize that η, y, and the resulting polytope are
different for each time step t.

The weight pushing algorithm is an essential component
of the WFST framework [82]. The algorithm improves the
effectiveness of the Viterbi pruning by pushing weights
toward earlier transitions and states, without altering the
overall path statistics (i.e., the decoded sequences and
their probabilities). After weight pushing, low-probability
sequences can be identified and pruned early during
decoding and increasing efficiency.

Integral to the weight pushing algorithm is the compu-
tation of a potential for each state of the graph. In short,
the potential value is the weight amount that can be
“pushed” to earlier states and can be computed via an
iterative evaluation. A single iteration of the potential
vector can be expressed as [107]

vi+1 = vi ∧ A �′ vi (76)

with v0 = ρ being the emission vector. Recursively iterat-
ing (76), we arrive at the final potential vector

v∞ = ρ ∧ A �′ ρ ∧ A2 �′ ρ ∧ · · · ∧ An �′ ρ ∧ · · ·

= Δ (A) �′ ρ (77)

where the computation of Δ(A) is finite under very mild
assumptions; namely, that the graph does not contain
cycles of negative weight, and thus, λ(A) ≥ 0 (a stan-
dard assumption for WFSTs). Henceforth, we assume that
these conditions hold. After the potential computation,

Fig. 13. At each decoding step, x(t) and η of (75) define a

polytope. The vector r � η − x(t) denotes the range of each

dimension (negative ranges indicate that the index is pruned).

746 PROCEEDINGS OF THE IEEE | Vol. 109, No. 5, May 2021



Maragos et al.: Tropical Geometry and Machine Learning

Fig. 14. Illustration of epsilon transtitions and states. orange

denotes states and transitions that will be removed by the epsilon

removal algorithm, whereas surviving ones are denoted by green .

the network parameters can be updated via the rules

π′ = π + v∞, ρ′ = ρ − v∞, A′ = V − �′ A �′ V +

(78)

where V + = diag(v∞) and V − = diag(−v∞).
Another instrumental algorithm to the WFST frame-

work is epsilon removal [82]. Similar to weight pushing,
this algorithm facilitates decoding by decreasing the size
of the network by removing extraneous transitions and
states. Examples of these states and transitions can be
seen in Fig. 14. The removal of extraneous transitions and
states is achieved through the computation of the epsilon
closure of every state, which encapsulates the states that
are reachable using only epsilon transitions. To that end,
the network matrix A can be decomposed [107] into two
components

A = Aε ∧ Aε⊥ (79)

where Aε contains only the epsilon transitions and Aε⊥

contains the nonepsilon transitions. The epsilon closure
is then computed as the shortest distances of the network
matrix Aε, which, via the definition of the weak transitive
closure, is given by Γ(Aε), where the computation is finite
and equal to Γ(Aε) = Aε ∧ . . . ∧ Ad

ε . Having computed
the epsilon closure, the updated network parameters take
the form

A′ = Aε⊥ ∧
�
Γ (Aε) �′ Aε⊥

�
= Δ (Aε) �′ Aε⊥

ρ′ = ρ ∧
�
Γ (Aε) �′ ρ

�
= Δ (Aε) �′ ρ. (80)

4) Spectral Analysis of Tropical WFST Algorithms: The
representation that we developed in the previous sections
offers a unified computational framework that enables a
holistic analysis of WFSTs; in certain cases, it also enables
a geometrical characterization of the algorithms via ele-
ments of algebraic geometry, such as polytopes. Herein,
the computational framework of tropical algebra further
enables the spectral characterization of the graph algo-
rithms, that is, we are able to characterize the introduced
algorithms via their eigenvalues. This characterization

introduces a new dimension to these algorithms, as we
are now able to examine their properties for different
eigenvalues.

We established that a mild (and realistic) assumption for
the class of networks is that the cycles of the network have
nonnegative weights, and therefore, λ(A) ≥ 0. Therefore,
we can view (77) in the scope of Theorem 6

v∞ = Δ (A) �′ ρ = Δ (A − λ) �′ u (81)

with u = ρ and λ = 0. Thus, v∞ is a tropical
sup-eigenvector of A for the tropical eigenvalue 0. Then,
contextualizing (78) under the prism of Theorem 6,
π′ comprises two subsystems: the original system model π

(which is required to maintain the system dynamics) and a
new, well-behaved in terms of steady state, subsystem v∞.
The rest of the updates in (78) ensures that the cost of each
path remains unaffected.

Similarly, we can revisit (80) and express the updated
network parameters as

ρ′ = Δ(Aε) �′ ρ = Δ(Aε − λ) �′ u

A′ = Δ(Aε) �′ Aε⊥ = Δ (Aε − λ) �′ U (82)

where λ = 0, u = ρ, and U = Aε⊥ . Note that ρ′ =

Δ(Aε − λ) �′ u is similar to (81); it simply refers to
the sup-eigenproblem of Aε. The second equation of (82)
consists of a collection of tropical sup-eigenvectors of Aε.
In this case, the immediate effects of Theorem 6 are less
pronounced; while ρ′ and A′ are (collections of) eigenvec-
tors, they are not employed to send the system to a steady
state.

From this analysis, we make two remarks: first,
A′ of (78) is, by definition, visualized [15], meaning that
it has a simpler structure than A, while still maintaining
the same spectral properties. As a second remark, we note
that tropical eigenvalue problems have infinite solutions.
Indeed, it is a well-known fact in tropical algebra [15] that
sup-eigenvectors exist for each eigenvalue λ ∈ [0, λ(A)].
Therefore, this creates a whole family of WFSTs that all
solve some eigenvalue problem for all λ in the aforemen-
tioned range.

VII. T R O P I C A L R E G R E S S I O N
Herein, we expand on our previous work [76] and apply
tropical geometry and max-plus algebra to a fundamental
regression problem of approximating the shape of curves
and surfaces by fitting piecewise linear (PWL) functions,
represented by tropical polynomials (11), to data possibly
sampled from a functional form and in the presence of
noise. We begin with a brief sampling of PWL models.

A. PWL Function Representation and Data Fitting

PWL functions f : R
d → R are defined as follows:

1) their domain is divided into a finite number of
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polyhedral regions separated by linear (d− 1)-dimensional
boundaries that are hyperplanes or subsets of hyperplanes
and 2) they are affine over each region and continuous
on each boundary. In using them for regression, two
major problems are representation, that is, finding better
analytical expressions to represent them, and their
parameter estimation for modeling a nonlinear system
or fitting some data. Furthermore, while these problems
are well-explored in the 1-D case, they remain relatively
underdeveloped for multidimensional data.

The so-called canonical representation for continuous
PWL functions, consisting of an affine function plus a
weighted sum of absolute-value affine functions, has been
extensively studied and applied to nonlinear circuit analy-
sis and modeling [21], [42], [59], [62]. However, it is
complete only for 1-D PWL functions. In higher dimen-
sions it needs multilevel nestings of the absolute-value
functions [58], [59]. The lattice representation, developed
in [104], is a constructive way to generate min–max
combinations of affine functions that provide a complete
representation of continuous PWL functions in arbitrary
dimensions. Combining the canonical with the lattice rep-
resentations in [112] involved producing an equivalent
representation as a difference of two convex max-affine
functions.

A more recent approach is to focus on the class of convex
PWL functions represented by a maximum of affine func-
tions, which are essentially max-plus tropical polynomials
as in (11), and use them for data fitting. Starting from early
least-squares solutions [51], [54], some representative
recent approaches to solve this convex regression problem
include [45], [46], [53], [60], and [69]. In all these
approaches, there is an iteration that alternates between
partitioning the data domain and locally fitting affine
functions (using least-squares or some linear optimization
procedure) to update the local coefficients. For a known
partition, the convex PWL function is formed as the max
of the local affine fits. Then, a PWL function generates a
new partition, which can be used to refit the affine func-
tions and improve the estimate. As explained in [69], this
iteration can be viewed as a Gauss–Newton algorithm to
solve the above nonlinear least-squares problem. The rank
K of the model can be increased until some error threshold
is reached. Interesting and promising generalizations of
the above max-affine representation for convex functions
include works that use softmax instead of max, via the
log-sum-exp models for convex and log–log convex data
[16], [17], [53]. Other iterative approaches for convex
PWL data fitting include [108]. Closer to our work is
[55] that solves max-plus equations using least-squares
and assumes that the slope parameters ak in (11) are
known. Reaching a local minimum of the �2 error norm for
approximately solving max-plus equations was approached
in [55] both via steepest descent (which was found compu-
tationally infeasible for large problems) and via Newton’s
method with undershooting (which could not guarantee
convergence to a local minimum). Very recently, it was

shown in [38] that, under certain assumptions, a carefully
initialized alternating minimization algorithm converges
linearly for max-affine regression. Finally, it was demon-
strated in [20] how to efficiently solve large-scale convex
regression—albeit with an unconstrained number of affine
pieces. For additional references, we refer the reader to the
bibliography in the above works.

Next, we focus on convex PWL regression via the
max-affine model, which has a tropical interpretation, and
propose a direct noniterative and low-complexity approach
to estimate its parameters by using the optimal solutions
of max-plus equations of Section IV-A.

B. Optimal Fitting Max-Plus Tropical Lines and
Planes

Given data (xi, yi) ∈ R
2, i = 1, . . . , N , if we wish to fit a

Euclidean line y = ax+ b by minimizing the �2 error norm
‖y − ax − b‖2, where y = [yi] and x = [xi], the optimal
solution, that is, the least-squares estimate (LSE), for the
parameters a and b is

âLS =
N

�
i xiyi −

��
i xi

� ��
i yi

�
N

�
i (xi)

2 −
��

i xi

�2

b̂LS =

�
i (yi − âLSxi)

N
. (83)

Suppose that, now, we wish to fit a max-plus tropical line
p(x) = max(a + x, b) by minimizing some �p error norm.
The equations to solve for finding the optimal parameter
vector w = [a, b]T become$%%%&

x1 0

...
...

xN 0

'((()
" # !

X

�

$& a
b

')
" # !

w

=

$%%%%&
y1

...

yN

'(((()
" # !

y

. (84)

By Theorem 2, the optimal (min �p error) subsolution is

ŵ =

�
â

b̂

�
= X∗ �′ y =

$&
i

yi − xi
i

yi

') (85)

where X∗ = −XT and

i

=
N

i=1. This vector ŵ yields

(after max-plus “multiplication” with X) the greatest lower
estimate (GLE) of the data y. Thus, the above approach
allows to optimally fit (w.r.t. any �p error norm) max-plus
tropical lines to arbitrary data from below. In addition,
we can obtain the best (unconstrained) approximation
with a tropical line that yields the smallest �∞ error.
This minimum max absolute error (MMAE) solution is,
by Theorem 3

w̃ = ŵ + μ, μ =
1

2
‖X � ŵ − y‖∞. (86)
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Fig. 15. (a) Optimal fitting via (85) or (86) of a max-plus tropical

line y �max(x− 2,3) (shown in black dashed curve) to data from

the line corrupted by additive i.i.d. Gaussian noise ∼N (0,0.25).

Blue line: Euclidean line fitting via least-squares. Red line: best

subsolution (GLE). Green line: best unconstrained (MMAE)

solution. (b) Same experiment as in (a) but with uniform noise

∼Unif[− 0.5,0.5].

Example 7: Suppose that we have N = 200 data obser-
vations (xi, yi) from the tropical line p(x) = max(x− 2, 3),
where the 200 abscissae xi were uniformly spaced in
[−1, 12] and their corresponding values yi = p(xi) + εi are
contaminated with two different types of zero-mean noise
i.i.d. random variables εi, Gaussian noise ∼N (0, 0.25), and
uniform noise ∼Unif[−0.5, 0.5]. Fig. 15 shows the two
optimal solutions (85) and (86) for fitting a max-plus trop-
ical line, superimposed with the least-squares Euclidean
line fit. The parameter estimates and errors are shown
in Table 2.

The above approach and tropical solution can also be
extended to fitting planes. Specifically, we wish to fit a
general max-plus tropical plane p(x, y)

p (x, y) = max (a+ x, b+ y, c) (87)

to the given data (xi, yi, zi) ∈ R
3, i = 1, . . . , N , where zi =

p(xi, yi) + error, by minimizing some �p error norm. The
equations to solve for finding the parameters w = [a, b, c]T

become $%%&
x1 y1 0
...

...
...

xN yN 0

'(()
" # !

X

�

$%& ab
c

'()
" # !

w

=

$%%&
z1
...
zN

'(()
" # !

z

. (88)

By Theorem 2, the optimal subsolution, which yields
approximations of z = [zi] from below, is ŵ = X∗ �′ z.

Table 2 Errors and Parameter Estimates for Optimal Fitting of a Max-Plus

Tropical Line to Data Corrupted by Uniform Noise

Hence

$%& âb̂
ĉ

'()
" # !

ŵ

=

$%&−x1 · · · −xN

−y1 · · · −yN

0 · · · 0

'()
" # !

X∗

�′

$%%&
z1
...
zN

'(()
" # !

z

=

$%%%&

i

zi − xi
i

zi − yi
i

zi

'((() .

(89)

Furthermore, the MMAE solution is given by w̃ = ŵ + μ,
where μ = 1

2
‖X � ŵ − z‖∞.

C. Optimally Fitting Tropical Polynomial Curves
and Surfaces

The above approach and solution can also be general-
ized to polynomial curves of higher degree and to multidi-
mensional data x ∈ R

d. We wish to fit a max-plus tropical
polynomial

p (x) = max
�
aT

1 x + b1, . . . ,a
T
Kx + bK

�
=

K�
k=1

aT
k x + bk

(90)

to the given data (xi, yi) ∈ R
d+1, i = 1, . . . , N , where yi =

p(xi)+ error, by minimizing some �p error norm. The exact
equations are

$%%%%&
aT

1 x1 aT
2 x1 · · · aT

Kx1

aT
1 x2 aT

2 x2 · · · aT
Kx2

...
...

...
...

aT
1 xN aT

2 xN · · · aT
KxN

'(((()
" # !

X

�

$%%%%&
b1
b2
...
bK

'(((()
" # !

w

=

$%%%%&
y1
y2
...
yN

'(((()
" # !

y

.

(91)

We assume that the slope vectors ak are given, and we opti-
mize for the parameters {bk}. By Theorem 2, the optimal
subsolution for minimum �p error is

ŵ =

$%%&
b̂1
...
b̂K

'(() = X∗ �′ y =

$%%%%%&
N

i=1

yi − aT
1 xi

...
N

i=1

yi − aT
Kxi

'((((() . (92)

Note that X � ŵ ≤ y. Furthermore, by Theorem 3,
the unconstrained solution that yields the minimum �∞
error is

w̃ = μ+ ŵ, μ =
1

2
‖X � ŵ − y‖∞. (93)

There are two major categories of problems to which the
above general tropical regression model can be applied:
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Fig. 16. Two-dimensional tropical fitting using the optimal

unconstrained (MMAE) approach to data from (94). (a) Tropic conic

with known integer slopes [2-D conic (K � 11)]. (b) Slopes found via

K-means on gradients (K � 25).

First, if the slopes ak are known for all K terms, then the
above optimal solutions estimate the rest of the tropical
model parameters (i.e., the intercepts bk) with a linear
complexity O(dNK). Second, in the case of unknown
slopes, we can cluster the numerical gradients of the data
using K-means, use the centroids of the K clusters as
estimates of the slope vectors ak, and then optimally solve
for the intercepts bk; this approach was proposed in [76].
(An alternative heuristic approach is to discretize the range
of the numerical gradients of the data and use as slopes
all integer multiples of a slope step up to the desired
accuracy.) In both approaches, if, for some k, we set or
estimate the intercept bk to be equal or close to −∞, this
essentially removes the corresponding line or hyperplane
from the max-affine combination. Next, we illustrate both
approaches via an example.

Example 8: Suppose that we are given N = 500 data
observations (xi, yi, zi) as in Fig. 16 from the noisy
paraboloid surface [45]

z = x2 + y2 + ε (94)

where ε ∼ N (0, 0.252) is the zero-mean noise and the
planar locations (xi, yi) of the data points were drawn
as i.i.d. random variables ∼Unif[−1, 1]. First, as a trop-
ical regression example with known slopes, let us fit to
the above data a symmetric (with all positive and neg-
ative integer slopes in [−2, 2]) max-plus tropical conic
polynomial

p (x, y) =
�

0≤|k+�|≤2, k·�≥0

bk� + kx+ �y (95)

where zi = p(xi, yi) + error, by minimizing some �p error
norm. The equations to solve for finding the 11 parameters
w = [b0,−2, . . . , b0,0, b1,0, b0,1, b1,1, b2,0, b0,2]

T become

$%%&
−2y1 · · · 0 x1 · · · 2x1 2y1

...
...

...
...

...
...

−2yN · · · 0 xN · · · 2xN 2yN

'(()
" # !

X

� w = z.

(96)

By Theorem 3, the optimal unconstrained solution for
MMAE is w̃ = μ+ ŵ, where ŵ = X∗ �′ z and μ is half the
�∞ error incurred by ŵ. The resulting MMAE conic surface
is shown in Fig. 16(a).

As a second approach, let us fit a tropical model of
rank K

pK (x, y) = max (a1x+ b1y + c1, . . . , aKx+ bKy + cK) .

(97)

This consists of K planes of unknown slopes estimated by
using K-means on the numerical gradients of the 2-D data,
whereas the intercepts ck are computed using the tropical
fitting algorithm as in (93), which solves the unconstrained
�∞ problem. In this combined approach, the first step
(K-means) is heuristic, yielding probably a local minimum
for the slope estimation subproblem, whereas the second
step (tropical regression for the intercepts) yields a
global minimum optimally solving the unconstrained �∞
problem. By varying K, we empirically find that even a
small number of planes with adaptive slopes (e.g., see
the case K = 25 shown in Fig. 16) can yield both better
approximations than the fixed slope case (but of course at a
higher computational cost as discussed next) and generally
good approximations, as seen by the errors in Table 3.

Computational complexity: Recent methods for convex
PWL data fitting are commonly variations of iterative non-
linear least-squares algorithms. The standard least-squares
estimator (LSE) [54] scales cubically in d and N , becom-
ing intractable in the high-dimensional and/or large sam-
ple setting. The nonlinear least-squares problems in [53]
and [69] are solved iteratively via a partitioning algorithm,
with each iteration taking time O((d + 1)2N); however,
these algorithms may not converge or fit the data poorly.
This obstacle, largely due to nonconvexity, is empirically
overcome by running multiple instances of the algorithm
from random initializations. The convex adaptive parti-
tioning (CAP) algorithm proposed in [45] solves a linear
regression problem for each partition, leading to time
complexity O(d(d+ 1)2N log(N) log log(N)).

In contrast, our algorithm for the case of unknown
slopes has a complexity of O(dNKiK), where iK is the
number of K-means iterations. After computing the K
centroids ak, it performs a single pass over the data to
form (91) and solve for bk, with total complexity O(dNK).
If the true slopes have some clustering structure, K-means
will converge quickly, and the cost of our algorithm will

Table 3 Errors for Optimal Tropical Fitting of the Function (94) Using 2-D

Max-Plus Polynomials
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Fig. 17. (a)–(d) max-� tropical lines y �max(a � x,b): (a) Max-plus line: y �max(a� x,b), (b) Max-times line: y �max(a · x,b), (c) Max–min

line: y �max(a∧ x,b), and (d) Max-softmin line: y �max(a���θ x,b). (e) Softmax-softmin line: s(x) � (a���θ x) ���θ b. In (d) and (e),

the parameter θ varies.

be practically linear. As such, in nonpathological cases,
we can assume that iK may be treated as a small constant,
thus improving on both the CAP algorithm and on the
traditional LSE, resulting in a complexity O(dNK). Finally,
note that, for the case with known slopes, our algorithm
has a complexity of Θ(dNK).

Tropical regression with unknown slopes ak is equiv-
alent to the problem of max-affine regression. When the
number of terms is K ∈ [2, N/(d+ 1)], a recent result [61]
shows that the problem is, in fact, NP-hard for any choice
of loss function � that satisfies �(x) = 0 ⇔ x = 0.

Some interesting connections arise when the number
of pieces K = 2. On the one hand, if we fix a1 = 0,
b1 = 0, we recover the problem of ReLU regression, which is
known to be NP-hard [29], [70]. On the other hand, if we
constrain −a1 = a2 ≡ a, and similarly, −b1 = b2 ≡ b,
and furthermore denoting v = [aT , b]T and x̃i = [xT

i , 1]
T ,

tropical regression with squared �2 error becomes

arg min
v∈Rd+1

N�
i=1

�
yi − |vT x̃i|

�2

which is the problem of phase retrieval; the latter is also
known to be NP-hard [33].

VIII. T R O P I C A L A L G E B R A A N D
G E O M E T R Y O N W E I G H T E D L AT T I C E S
A. Generalized Tropical Lines and Planes

In the same way that weighted lattices generalize
max-plus algebra and extend it to other types of clodum
arithmetic, we can extend the basic objects of max-plus
tropical geometry (i.e., tropical lines and planes) to other
max-� geometric objects. For example, over a clodum
(K,∨,∧, �, �′), we can generalize9 max-plus tropical lines
y = max(a+x, b) as y = max(a�x, b). Fig. 17(a)–(d) shows
some generalized tropical lines where the � operation is
sum (+), product (×), min (∧), and softmin (�θ). In the
first three cases, the generalized tropical lines are PWL
functions. However, in Fig. 17(d), a portion of the line
is curving. To further illustrate this curving and create a
symmetry between the max and min operations, we show

9The generalization in this section is done only w.r.t. to the “gen-
eralized multiplications” of the clodum, which becomes arbitrary scalar
operations � and �′ (instead of + and +′) that distribute over max and
min, respectively. However, the “generalized additions” of the clodum
remain the operations maximum and minimum.

in Fig. 17(e) a smooth function

s (x) = (a �θ x) �θ b

= θ log
�
exp

�
− log

�
e−a/θ + e−x/θ

�
+ eb/θ

�
(98)

which goes beyond the max-� framework and is actually a
softmax-softmin.

Similarly, we can generalize max-plus tropical planes
z = max(a+x, b+ y, c) to max-� as z = max(a �x, b � y, c).
Fig. 18 shows a max–min plane where � = min. This
is an interesting geometrical polyhedral object that
consists of portions of planes, either sloped or horizontal,
at several levels.

Furthermore, we can generalize max-plus
halfspaces (16) to max-� tropical halfspaces

T (a, b) :=



x ∈ Kd : aT �

�
x

e

�
≤ bT �

�
x

e

��
. (99)

Examples of max-plus tropical halfspaces are shown
in Figs. 5 and 6. The slopes of their bounding line
segments or faces are either zero or equal to 1.
Max-product halfspaces can give boundaries that are
PWL but have arbitrary slopes. Max–min halfspaces have
PWL boundaries with more corner points or edges (see
examples in Figs. 17(c) and 18). Finally, a totally different
generalization results if we replace the “multiplication” � in
a generalized tropical line with the (log-sum-exp) softmin
operation of (2), as shown in Fig. 17(d)–(e), in which case,

Fig. 18. Max–min plane z �max(9∧ x,11∧ y,7).
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the line segments of a tropical line will become partially or
totally smooth exponential curves.

B. Generalized Tropical Regression
Suppose that we wish to fit a general max-� tropical

plane

p (x, y) = max (a � x, b � y, c) (100)

to the given data (xi, yi, zi) ∈ R
3, i = 1, . . . , N , where

zi = p(xi, yi) + error, by minimizing some �p error norm.
The equations to solve for finding the optimal parameters
w = [a, b, c]T become

$%%&
x1 y1 e
...

...
...

xN yN e

'(()
" # !

X

�

$%& ab
c

'()
" # !

w

=

$%%&
z1
...
zN

'(()
" # !

z

. (101)

If we can accept subsolutions, which yield approximations
of the given data from below, then, by Theorem 4, the opti-
mal subsolution for any clodum arithmetic is

ŵ =

$%& âb̂
ĉ

'() =

$%%%&

i

ζ (xi, zi)
i

ζ (yi, zi)
i

ζ (e, zi)

'((() (102)

where ζ is the scalar adjoint erosion (28) of �. This vector
ŵ yields (after max-� “multiplication” with X) the GLE
of z. Next, we write in detail the solution for the three
special cases where the scalar arithmetic is based either on
the max-plus, or the max-times, or the max–min clodum:

$%& âb̂
ĉ

'()
T

=

���������������������

��
i

zi − xi,
�
i

zi − yi,
�
i

zi

�
��

i

zi/xi,
�
i

zi/yi,
�
i

zi

�
��

i

�
zi ∨ 1[zi≥xi]

�
,
�
i

�
zi ∨ 1[zi≥yi]

�
,
�
i

zi

�
(103)

where 1[·] is 1 if the predicate [·] is true and 0 otherwise.
This approach allows to optimally fit (w.r.t. any �p error
norm) general max-� tropical planes to arbitrary data
from below.

IX. C O N C L U S I O N A N D F U T U R E
D I R E C T I O N S
Tropical geometry and max-plus algebra offer a rich col-
lection of ideas and tools to model and solve problems in
machine learning. In this work, we have surveyed the state

of the art and some recent progress in three areas: 1) DNNs
with PWL activation functions; 2) probabilistic graphical
models and algorithms for WFSTs; and 3) nonlinear regres-
sion with PWL functions. Furthermore, we have introduced
extensions to general max algebras that allowed us to:
1) express the optimal solutions of several of the above
problems as projections onto nonlinear vector spaces called
weighted lattices and 2) generalize tropical geometrical
objects. We conclude by outlining below some future
research directions.

1) This work developed a Newton polytope representa-
tion of neural network layers, which was explored in
the context of single-layer networks; due to the stabil-
ity of Newton polytopes under addition and multipli-
cation, one could try to derive similar representations
for compositions of multiple layers. On the one hand,
this may allow for refined empirical estimates on
their complexity measured in terms of linear regions;
on the other hand, further developing the aforemen-
tioned representation can pave the way for better
network minimization methods, possibly combined
with ideas from sparse regression.

2) It was briefly mentioned in Section II-E that
tropical polytopes are more “economical” in their
number of required parameters. This can introduce a
whole new field of study, where there is an explicit
characterization of Euclidean polytopes that can be
exactly represented by a more efficient, tropical
polytope while also providing quantifiable metrics
for the relative gain.

3) The results of Section VI-B4 can be extended to
more concrete benefits. While mainly algebraic,
there is an extensive theory on the reachability and
robustness [15] of the tropical matrices via their
eigenvalue characterizations. Adapting these results
to the WFST setting is nontrivial and a possible
avenue for future study.

4) Regarding our work on tropical regression, we note
that the max-affine representation is not limited to
PWL functions only because we can represent any
convex function as a supremum of a (possibly infinite)
number of affine functions via the Fenchel–Legendre
transform [32], [65], [94]. Closely related ideas are
based on morphological slope transforms [30], [50],
[71] that offer generalizations of this result to non-
convex functions and approximate representations
via adjunctions.
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