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ABSTRACT | Tropical geometry is a relatively recent field in

mathematics and computer science, combining elements of

algebraic geometry and polyhedral geometry. The scalar arith-

metic of its analytic part preexisted in the form of max-plus

and min-plus semiring arithmetic used in finite automata,

nonlinear image processing, convex analysis, nonlinear

control, optimization, and idempotent mathematics. Tropical

geometry recently emerged in the analysis and extension

of several classes of problems and systems in both classical

machine learning and deep learning. Three such areas include:

1) deep neural networks with piecewise linear (PWL) activation

functions; 2) probabilistic graphical models; and 3) nonlinear

regression with PWL functions. In this article, we first sum-

marize introductory ideas and objects of tropical geometry,

providing a theoretical framework for both the max-plus

algebra that underlies tropical geometry and its extensions

to general max algebras. This unifies scalar and vector/signal

operations over a class of nonlinear spaces, called weighted

lattices, and allows us to provide optimal solutions for

algebraic equations used in tropical geometry and generalize

tropical geometric objects. Then, we survey the state of the

art and recent progress in the aforementioned areas. First,

we illustrate a purely geometric approach for studying the

representation power of neural networks with PWL activations.
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Then, we review the tropical geometric analysis of parametric

statistical models, such as HMMs; later, we focus on the

Viterbi algorithm and related methods for weighted finite-state

transducers and provide compact and elegant representations

via their formal tropical modeling. Finally, we provide optimal

solutions and an efficient algorithm for the convex regression

problem, using concepts and tools from tropical geometry

and max-plus algebra. Throughout this article, we also outline

problems and future directions in machine learning that can

benefit from the tropical-geometric point of view.

KEYWORDS | Graphs; lattices; max-plus algebra; neural net-

works; regression; tropical geometry.

I. I N T R O D U C T I O N
Tropical geometry is a relatively recent field in math-
ematics and computer science that combines elements
from algebraic geometry and polyhedral geometry. The
scalar arithmetic of its analytic part preexisted in the
form of max-plus and min-plus semiring arithmetic used
in finite automata, nonlinear image processing, convex
analysis, nonlinear control, optimization, and idempotent
mathematics. In max-plus arithmetic, the real number
addition and multiplication are replaced by the max and
sum operations, respectively. The name “tropical semi-
ring” initially referred to the min-plus semiring and was
used in finite automata [57], [99], speech recognition
using graphical models [82], and tropical geometry [68],
[80]. However, nowadays, the term, tropical semiring, may
refer to both the max-plus and its dual min-plus arith-
metic, whose combinations with corresponding nonlinear
matrix algebra and nonlinear signal convolutions have
been used in operations research and scheduling [25];
discrete event systems, max-plus control, and optimiza-
tion [1], [2], [6], [15], [22], [37], [39], [48], [78],
[110]; convex analysis [65], [85], [94]; morphological
image analysis [49], [73], [79], [95], [96]; nonlinear
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difference equations for distance transforms [11], [71];
nonlinear PDEs of the Hamilton–Jacobi type for vision
scale spaces [14], [50]; speech recognition and nat-
ural language processing [56], [82]; neural networks
[18], [19], [34], [40], [83], [89], [93], [103], [114],
[115]; and idempotent mathematics (nonlinear functional
analysis) [63], [64].

The goal of this article is threefold: 1) to provide a brief
background from tropical geometry and its underlying
max-plus algebra; 2) to summarize its applications in three
areas of machine learning (neural networks, graphical
models, and nonlinear regression); and 3) to provide
recent progress and some extensions using a generalized
max algebra. Parts 1) and 2) provide tutorial information
and survey state-of-the-art results. Some recent progress
from the authors is included in parts 2) and 3).

We begin in Section II with elementary ideas and objects
of tropical geometry. Section III provides the required
theoretical background on max-plus algebra, its underly-
ing nonlinear vector spaces called weighted lattices, and
monotone operators in the form of lattice duality pairs
called adjunctions (also known as residuation pairs). This
section also provides some tools from a generalized max-�
algebra to extend tropical geometrical objects. Further-
more, in Section IV, we show that adjunction pairs lead
to optimal solutions of max-plus and general max-� equa-
tions, as nonlinear projections on weighted lattices. Then,
the concepts and tools of the previous sections are applied
to analyzing and/or providing solutions for problems in the
following three broad areas of machine learning.

A. Neural Networks With Piecewise Linear (PWL)
Activations (See Section V)

Tropical geometry recently emerged in the study of deep
neural networks (DNNs) and variations of the perceptron
operating in the max-plus semiring. Standard activation
functions employed in DNNs, including the ReLU activa-
tion and its “leaky” variants, induce neural network layers
that are PWL convex functions of their inputs and create a
partition of space well described by concepts from tropical
geometry. Following [18] and [19], we illustrate a purely
geometric approach for studying the representation power
of DNNs—measured via the concept of a network’s “linear
regions”—under the lens of tropical geometry.

B. Probabilistic Graphical Models and
Algorithms (See Section VI)

As we review in Section VI-A, a novel application of
tropical geometry is its usage in [86] for analyzing para-
metric statistical models, including hidden Markov mod-
els (HMMs) and restricted Boltzmann machines (RBMs).
Furthermore, among the max-sum and max-product algo-
rithms used in graphical models, a prime representative
is the Viterbi algorithm. This can also be viewed in
the general setting of weighted finite-state transducers
(WFSTs) [56], [82] which have found extensive use in
speech recognition and other decoding schemes. Practical
reasons led researchers to adopt a tropical version of these

algorithms in order to resolve numerical issues that arose
from using sum-product algebras. However, as we explain
in Section VI-B, tropicalization is not restricted merely as a
numerical tool; further tropical modeling of the algorithms
as in [106] and [107] leads to a compact and elegant
representation, while highlighting geometric properties.

C. Piecewise Linear Regression (See Section VII)

Fitting PWL functions to data is a fundamental
regression problem in multidimensional signal modeling
and machine learning since approximations with PWL
functions have proved analytically and computationally
very useful in many fields of science and engineering.
We focus on functions that admit a convex representation
as the maximum of affine functions (e.g., lines and
planes), represented with max-plus tropical polynomials.
This allows us to use concepts and tools from tropical
geometry and max-plus algebra to optimally approximate
the shape of curves and surfaces by fitting tropical
polynomials to data, possibly in the presence of noise; this
yields polygonal or polyhedral shape approximations. For
this convex PWL regression problem, we provide optimal
solutions with respect to �p error norms, derived using
monotone operator adjunctions that are projections on
weighted lattices, and an efficient algorithm based on
preliminary work in [76].

Finally, in Section VIII, extending preliminary work
in [75], we generalize tropical geometry using the max-�
algebra and weighted lattices framework of [74], as sum-
marized in Section III-B, with an arbitrary binary opera-
tion � that distributes over max, and apply it to optimal
convex PWL regression for fitting max-� tropical curves
and surfaces to arbitrary data.

II. E L E M E N T S O F T R O P I C A L
G E O M E T R Y
After some notation and definitions from tropical and
related semirings, we first present some simple examples of
tropical1 curves and surfaces that result from tropicalizing
the polynomials that analytically describe their Euclidean
counterparts. Then, we explain this tropicalization as
a dequantization of real algebraic geometry. Finally,
Newton polytopes and tropical halfspaces are defined with
examples.

Notation: For maximum (or supremum) and minimum
(or infimum) operations, we use the well-established
lattice-theoretic2 symbols of ∨ and ∧. We use roman letters

1The adjective “tropical” was coined by French mathematicians,
including Dominique Perrin and Jean-Eric Pin, to honor their Brazilian
colleague Imre Simon who was one of the pioneers of min-plus algebra
as applied to automata. However, we give it an alternative and substantial
meaning in connection with its Greek origin word that
comes from the Greek word , meaning “turn” or “changing the
way/direction,” to literally express the fact that tropical curves and
surfaces bend and turn.

2We do not use the notation (⊕,⊗) for (max, +) or (min, +),
which is frequently used in max-plus algebra, because, in functional
analysis and image processing: 1) the symbol ⊕ is extensively used for
the Minkowski set addition and max-plus signal convolution and 2) ⊗ is
unnecessarily confusing compared to the classic symbol + of addition.
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for functions, signals, and their arguments, and Greek
letters mainly for operators. Also, we use boldface roman
letters for vectors (lower case) and matrices (capital).
If M = [mij ] is a matrix, its (i, j)th element is denoted as
mij or [M ]ij . Similarly, x = [xi] denotes a column vector,
whose ith element is denoted as [x]i or simply xi. We also
use the set notation [n] := {1, . . . , n}.

A. Tropical Semirings

Compared with the classical real number ring (R,+,×),
the max-plus semiring (Rmax,∨,+) consists of the set
Rmax = R∪{−∞} equipped with an idempotent “addition”
that is the maximum operation and a generalized “mul-
tiplication” that is the extended real addition. Similarly,
we consider the dual min-plus semiring (Rmin,∧,+), where
Rmin = R∪{+∞}. Both tropical semirings are special cases
of dioids [39]. From a different viewpoint that we follow
in this article, if we combine both the maximum and min-
imum operations, we obtain the complete lattice (R,∨,∧)

of extended real numbers R = R ∪ {−∞,+∞}. Further-
more, as done more generally in Section III-B, we can com-
bine the max-plus and min-plus scalar arithmetic into an
algebraic structure called complete lattice-ordered double
monoid (clodum), which consists of the extended reals R

equipped with the maximum (∨), minimum (∧), addition
(+), and dual addition (+′) operations. The operations +

and +′ are, respectively, the “lower addition” and “upper
addition” used in convex analysis [85]. They are identical
for finite reals and differ only when combining −∞ with
+∞; in all cases, they are commutative:

a+ b = a+′ b ∀a ∈ R ∀b ∈ R

a+ (−∞) = −∞, a+′ (+∞) = +∞ ∀a ∈ R. (1)

In idempotent mathematics [64], convex optimiza-
tion [13], and the theory of dioids [39], the following Log-
Sum-Exp approximation is often used for the max and min
operations:

a �θ b := θ · log
�
ea/θ + eb/θ

�
= φ−1

θ [φθ (a) + φθ (b)]

a �θ b := (−θ) log
�
e−a/θ + e−b/θ

�
(2)

where φθ(a) := exp(a/θ), and θ > 0 is usually called a
“temperature” parameter. In the limit as θ → 0, we obtain
the max and min operations

lim
θ↓0

a �θ b = max (a, b)

lim
θ↓0

a �θ b = min (a, b). (3)

This approximation and limit is the Maslov dequantiza-
tion [77] of real numbers and generates a whole family of
semirings Sθ = (Rmax,�θ,+) and θ > 0, whose operations
are the generalized “addition” �θ and “multiplication” +.

Each of the semirings Sθ is isomorphic to the semiring
(R≥0,+,×) of nonnegative real numbers R≥0 equipped
with standard addition and multiplication. This isomor-
phism is enabled via the bijection a 	→ φθ(a) from Rmax

onto R≥0. To see this, let x = φθ(a) = exp(a/θ) and
y = φθ(b) = exp(b/θ). Then, for any a, b ∈ Rmax,

φθ (a �θ b) = x+ y, φθ (a+ b) = x · y.

B. Examples of Tropical Polynomial Curves and
Surfaces

1) Tropical Polynomial Curves: Consider the analytic
expressions for a Euclidean line and parabola

p1 (x) = ax+ b, p2 (x) = ax2 + bx+ c. (4)

“Tropicalization,” that is, replacing sum with max and
multiplication with addition, yields the corresponding
max-plus tropical polynomials

pmax
1 (x) = max (a+ x, b)

pmax
2 (x) = max (a+ 2x, b+ x, c) . (5)

The equations for the min-plus case are identical as in (5)
by replacing max with min. The graphs of all the above can
be seen in Fig. 1.

2) Tropical Polynomial Surfaces: Consider the equa-
tions of the following tropical planes represented as 2-D
max-plus and min-plus polynomials of degree 1:

f (x, y) = max (x, 2 + y, 7)

g (x, y) = min (5 + x, 7 + y, 9) (6)

whose graphs can be seen as surfaces in Fig. 2(a) and (b).
Next, to the general Euclidean conic polynomial

pconic (x, y) = ax2 + bxy + cy2 + dx+ ey + f (7)

there corresponds the following two-variable max-plus
tropical polynomial of degree 2:

pmax
conic (x, y) = max (a+2x, b+x+ y, c+ 2y, d+ x, e+ y, f) .

(8)

Its min-plus version is shown in Fig. 2(c).

C. Tropicalization via Dequantization of Algebraic
Geometry

The algebraic side of tropical geometry [68] results from
a transformation of analytic Euclidean geometry where the
traditional arithmetic of the real field (R,+,×) involved in
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Fig. 1. Euclidean and tropical 1-D polynomial curves of first and second degrees. (a) Euclidean line. (b) Max-plus line. (c) Min-plus line.

(d) Euclidean parabola. (e) Max-plus parabola. (f) Min-plus parabola.

the analytic expressions of geometric objects is replaced by
the arithmetic of the max-plus or min-plus semiring. A geo-
metric explanation and visualization of this transformation
is obtained from Viro’s graphing of polynomial curves on
log–log paper [111]. Consider the monomial curve v =

cua, c > 0, on the positive quadrant of the (u, v)-plane and
consider the log–log transformation of both coordinates
composed with a uniform scaling by θ > 0: x = θ log u and
y = θ log v. Then, on the (x, y)-plane, the curve becomes
the line y = b/θ + ax, where b = log c. If we have a
K-term polynomial curve v = P (u) =

�K
k=1 cku

ak with
ck = exp(bk) > 0 and ak ∈ R (i.e., a posynomial [12]),
then we convert it to

Pθ (x) = θ log

�
K�

k=1

exp (bk/θ) exp (akx/θ)

�
. (9)

As θ ↓ 0, this yields, via the Maslov dequantization, a K-
term 1-D max-plus tropical polynomial

lim
θ↓0

Pθ (x) = p (x) =
K

max
k=1

{bk + akx} . (10)

While each Pθ(x) is a smooth function, their limit p(x) is a
max-affine function and represents a PWL convex function.
If we perform dequantization with negative exponents,
we obtain a min-plus polynomial that is a PWL concave
function.

The above procedure extends to multiple dimensions
or higher degrees and shows us the way to tropicalize
any classical d-variable polynomial (linear combination of
power monomials)

�
k cku

ak1
1 , . . . , u

akd
d defined over R

d
>0,

where ck > 0 and ak = [ak1, . . . , akd]
T is traditionally

Fig. 2. (a) and (b) Surfaces (graphs) of the two tropical planes defined in (6). (a) Max-plus plane f. (b) Min-plus plane g. (c) Surface of the

2-D min-plus tropical polynomial function (tropic conic) p(x,y) �min(a� 2x,b� x� y,c� 2y,d� x,e� y, f) and its tropical quadratic curve.

(c) is inspired by [68, Fig. 1.3.2].
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Fig. 3. Tropical curve of the max-polynomial p(x,y) �max(2x,y,c)

left and its dual min-polynomial p′(x,y� �min(2x,y,c) right.

(a) Max-plus curve. (b) Min-plus curve.

some nonnegative integer3 vector, but, herein, we allow
ak ∈ R

d: replace the sum with max and log the individual
monomials. Thus, a general d-variable max-plus polyno-
mial p : R

d → R has the expression

p (x) =
K�

k=1

aT
k x + bk, x = [x1, . . . , xd]

T . (11)

We define the rank of a tropical polynomial p as the
number of affine terms involved in the maximum; here,
K = rank(p). Its graph is a max of K hyperplanes with
intercepts bk = log ck ∈ R and real slope vectors ak ∈ R

d.
The degree of p is |a| = maxk ‖ak‖1, where ‖ak‖1 =

|ak1|+ · · ·+ |akd|. Thus, the curves or surfaces of real alge-
braic geometry become via dequantization the graphs of
convex PWL functions represented by tropical polynomials.

D. Tropical Curves and Newton Polytopes

To the zero set of a classical polynomial, there corre-
sponds the tropical curve or hypersurface of a max-plus
tropical polynomial p : R

d → R :

V (p) :=
�

x ∈ R
d : more than one terms of p (x)

attain the max
	
. (12)

The above also defines the tropical curve of min-plus
polynomials by replacing max with min. Thus, V(p) con-
sists of the singularity points (of nondifferentiability) of
p(x). Examples are shown in Fig. 3 for degree-1 tropical
polynomials and in Fig. 2(c) for a degree-2 polynomial.

Another interesting geometric object related to a
max-plus polynomial p is its Newton polytope, which is
the convex hull [denoted by conv(·)] of the set of points
corresponding to its slope coefficient vectors

Newt (p) := conv ({ak : k = 1, . . . , rank (p)}) . (13)

3Traditionally, “tropical polynomials” assume that the parameters
aki are nonnegative integers. If we also allow negative integers, we get
“Laurent tropical polynomials.” As in [15], we allow any real coeffi-
cients; this may be called “tropical posynomials” [16].

This satisfies several important properties [18]:

Newt (p1 ∨ p2) = conv (Newt (p1) ∪ Newt (p2)) (14)

Newt (p1 + p2) = Newt (p1) ⊕ Newt (p2) (15)

where ⊕ denotes Minkowski set addition, as defined
in (21). Examples are shown in Fig. 4. Thus, the Newton
polytope of the sum (resp. max) of two tropical polyno-
mials is the Minkowski sum (resp. the convex hull of the
union) of their individual polytopes.

E. Tropical Halfspaces and Polytopes

In pattern analysis problems on Euclidean spaces R
d,

we often use halfspaces H(a, b) := {x ∈ R
d : aT x ≤ b},

polyhedra (finite intersections of halfspaces), and poly-
topes (compact polyhedra formed as the convex hull of
a finite set of points). Replacing linear inner products
aT x with max-plus versions yields tropical halfspaces [36],
which are defined as the following subsets of R

d
max with

parameters a = [ai], b = [bi] ∈ R
d+1
max :

T (a, b)

:=



x ∈ R

d
max :

max{a1 + x1, . . . , ad + xd, ad+1} ≤
max{b1 + x1, . . . , bd + xd, bd+1}

�
(16)

where min(ai, bi) = −∞ for all i. Thus, for each i,
only one coefficient is needed4 either in the left or in
the right side of inequality (16). Replacing max with
min in (16) yields tropical halfspaces that are min-plus
hyperplanes. Examples of tropical halfplanes are shown
in Fig. 5, forming a planar polytope. It is obvious that their
separating boundaries are tropical lines. Such regions in
multiple dimensions were used in [18], [19], and [113] as
morphological perceptrons.

As an example in the 3-D space, in Fig. 6 we can see
the intersection of the tropical halfspaces corresponding
to the two tropical polynomials in (6). This polytope is
the polyhedral region formed by intersecting the half-space
above the surface of the 2-D max-plus polynomial f

with the half-space below the surface of the min-plus
polynomial g.

We note from Figs. 5 and 6 that the number of trop-
ical boundaries required to form polytopes, which could
serve as decision regions in pattern classification problems,
is smaller than the number of linear boundaries. See,
for instance, the polytope RP in Fig. 5(b). This obser-
vation remains valid in higher dimensions too, namely
decision regions can be formed with fewer tropical lines or

4The general expression (16) of a tropical half-space includes as
special cases expressions {x :

�

i
ai + xi ≤ b} which seem as a direct

tropical analog of the expression {x :
�

i aixi ≤ b} for Euclidean
halfspaces. For example, it is shown in [36] that {x : max(a + x, c) ≤
max(b + x, d)} = {x : max(a + x, c) ≤ d} if a > b.
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C. A Geometric Algorithm
We present a randomized method for ÒsamplingÓ the

extreme points of the upper hull of a polytope P = P1 �
· · · � Pm . We generate K standard normal vectors, that
is, gk

i . i .d .� N (0, I d ), and compute (gk )T vi for all extreme
points vi . We record the minimizers/maximizers for each
polytope Pj and repeat the trial. Denoting by Vi � Rk i × d

the matrix whose rows contain the coordinates of each
vertex of Pi , the above procedure essentially counts the
number of unique tuples giving the row indices of the
extrema of Vi gk for all i .

From our discussion motivating the use of the reverse
search method, it is clear that the resulting number is a
lower bound on the number of vertices in the Minkowski
sum. The resulting Algorithm 1 leverages the techniques
in [28]. This method and its specialization to upper
hulls work for general polytopes, whereas the MIP-based
methods in the literature are only presented for rectiÞer
networks. On the other hand, it should be noted that
MIP formulations can be used to enumerate the number
of linear regions of deep neural networks; in contrast,
it is unclear how to adapt our geometric algorithm or
the reverse search method for neural networks with more
than one layer. Finally, we note that adapting Algorithm 1
for counting vertices in upper hulls of Minkowski sums
is described in [19, Sec. 4.1]. The idea for extending
the technique to the upper hull is simple: to ensure that
the maximizers of the linear forms lie on the upper hull,
we restrict ourselves to samples with a positive Þrst coor-
dinate. The Þnal guarantee is similar to the one given
in Proposition 4, though stated in terms of a restricted
normal cone.

Algorithm 1 Sampling Points in the Convex Hull
Input: polytopesP1, . . . , Pm in vertex representation
I ext := � .
for j = 1 , . . . , K do

Samplegj � N (0, I d)
Computezi := Vi gj , � i � [m].

Collect

�
zmax := (argmax z1, . . . , argmaxzm )

zmin := (argmin z1, . . . , argmin zm )
I ext := I ext � { zmax , zmin }

end for

Algorithm 1 provides a nontrivial lower bound to the
number of extreme points of the resulting Minkowski sum
with high probability, as shown in Proposition 4.

Proposition 4: Let N denote the number of vertices of
P = P1 � · · · � Pm , a failure probability � , and deÞne

�N :=
�

log
�

1
maxi (1 Š 2
 (NP (vi )))

� � Š 1

where 
 (NP (vi )) is the solid angle of the
normal cone NP (vi ) of the i th vertex. Then, for
K � �N log(N/� ) in Algorithm 1, the algorithm

Fig. 9. Polytopes P and Q and their solid angles. All the solid

angles of P (left) are bounded away from zero. On the other hand,

for Q (right), we have � (N Q (v i )) � 1.

records all the vertices with probability at
least 1 Š � .

Proof Sketch:The key idea in the proof is the follow-
ing: extreme points of Minkowski sums are also extreme
points of individual summands. Consequently, missing a
ÒconÞgurationÓ of minimizers across our trials is equivalent
to missing an extreme point v of the Minkowski sum.

Moreover, it is not hard to see (e.g., [19, Corollary 1])
that the solid angles of the normal cones of the vertices of
a polytope P form a probability distribution, with


 (NP (vi )) = Pg �N (0 , I d ) (g � NP (vi )) (59)

the probability that g is in the normal cone at vi and,
consequently,v i being the minimizer of the linear function
x 	� x T g. The rest follows from a coupon collector-style
argument; a detailed proof is available in [19, Sec. 4].

Example 5: Suppose that P has all-equal solid angles,
that is, 
 (NP (vi )) = (1 /N ), for all i , in which case,

�N = log( N/ (N Š 2))Š 1. Rewriting log N/ (N Š 2) =
log(1 + 2 / (N Š 2)) and combining with the inequality
log(1 + x) 
 x, we see that

�N �
N Š 2

2
� K �

�

N
2

Š 1
�

log (N/� )

is necessary to achieve probability failure at most� . Note
that this shows that Algorithm 1 will require at least this
number of samples for any polytope P ; indeed, it is easy
to see that min i 
 (NP (vi )) 
 (1/N ) for any polytope with
N vertices.
Our guarantee heavily depends on the conesNP (vi ).
If there are vertices that only slightly ÒextendÓ out of the
polytope, our required sample size will be a large multiple
of N . Fig. 9 illustrates (nonzonotopal) examples in R2;
Q has a vertex where the solid angle of the normal cone
is close to 0, in contrast to P that is more Òregular.Ó Never-
theless, the proposed algorithm can be easily parallelized,
only relies on computing inner products, and crucially
utilizes the geometric insights from the Newton polytope
characterization of neural network layers.

D. Other Connections Be tween Tropical Geometry
and Neural Networks

1) Tropical Polynomial Division and Network Simpli�ca-
tion: Another problem where tropical geometry can be of
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use is neural network minimization; as neural networks
increase in complexity, so do their needs in computing time
and memory, limiting their use in time-sensitive applica-
tions. Therefore, we seek to reduce the size of a neural
network while maintaining its accuracy. Several methods
have attempted to solve this problem, by removing either
connections between neurons [43] or neurons themselves
[47], [66] from the network. The former is referred to
as weight or unstructured pruning and the latter as chan-
nel/neuron or structured pruning. These studies show that
minimal drops in accuracy (roughly 1% on the VGG-16
architecture) are possible, despite a significant decrease in
network complexity. Note that neural network compression
is distinct from the so-called dropout technique [102]; the
latter is a technique applied during the training stage and
aims to address the problem of overfitting by setting a
random subset of the neurons to zero during each training
epoch.

Tropical geometry can also provide novel methods for
neural network simplification.

1) Given a fixed ReLU network, we can attempt to
construct a smaller neural network whose Newton
polytopes closely approximate the polytopes of the
original network. The resulting algorithm is construc-
tive and relies on the concept of tropical polyno-
mial division [100], which approximates the dividend
using the Newton polytopes of the divisor and quo-
tient. Since this method constructs a network from
scratch, it can be much faster than pruning methods
in practice. It was originally applied to minimize the
second-to-last layer of networks with a single output
neuron in the context of binary classification prob-
lems, with less than 0.5% loss in accuracy even when
only 1% of the hidden units are retained. Extensions
to multiclass problems are considered in [101].

2) A complementary approach appeared in [3]. The
authors first obtain a tropical geometric character-
ization of the decision boundaries of neural net-
works using their Newton polytopes; following that,
they present a regularization method that balances
a sparsity-inducing penalty with an objective that
attempts to preserve the decision boundaries of the
neural network. In contrast to the previous two
approaches, this is a pruning method.

2) Morphological Neural Networks: Though feedforward
networks with PWL activations have become the de-facto
standard in neural computation, the paradigm of so-called
morphological computation is also closely related to tropical
geometry. In morphological computation, linear operations
are replaced with their tropical versions; thus, the building
blocks of a morphological neural network are replaced
by dilations and erosions instead of linear operations.
In its most elementary version, a morphological (max,+)-
perceptron computes the function

x 	→ wT � x = max
i

{wi + xi} (60)

Fig. 10. Example of tropically separable patterns in R2, using the

weight vector w � [0.075, 0.3]T.

where w ∈ R
d
max is a set of trainable weights. In binary

classification, the decision regions induced by a (max,+)

perceptron are collections of so-called tropical halfspaces.
A (max,+)-perceptron can separate two classes if and only
if a certain tropical polyhedron is nonempty, a condition
that can be checked efficiently for this particular case.

Proposition 5 [18, Proposition 1]: Consider N1 points
from class C1 and N2 points from class C2, forming the
matrices X1 ∈ R

N1×d and X2 ∈ R
N2×d. Then, these points

can be separated by a morphological perceptron of the
form (60) if and only if

{w ∈ R
d
max : X1 � w ≥ 0N1 , X2 � w ≤ 0N2} �= ∅

⇔ X1 �
�
X2

∗ �′ 0
�
≥ 0. (61)

An example of a tropically separable configuration of
points is shown in Fig. 10. Even though the morphological
paradigm dates back almost 3 decades [91], [92], [103],
[113], a recent resurgence of interest has led to new
developments; for example, it was recently shown [83],
[115] that a morphological neural network with a hid-
den layer consisting of dilations and erosions followed
by a linear layer is a universal approximator. In a more
recent publication [34], the authors focus on deep learning
for image processing, treating all nonlinear operations
(e.g., max-pooling) as trainable morphological operators
to complement trainable convolutional operations and
achieve competitive results in tasks, such as boundary
detection using considerably fewer parameters than other
architectures.

VI. T R O P I C A L G E O M E T R Y A N D
G R A P H I C A L M O D E L S
A. Hidden Markov Models

The use of tropical geometry within the framework
of parametric statistics was pioneered by Pachter and
Sturmfels [86]. Specifically, they consider graphical mod-
els that are formally represented by directed acyclic graphs
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with two sets of vertices: the hidden variables X =

(X1, . . . , Xm) and the observed variables Y = (Y1, . . . , Yn).
Moreover, we use s1, . . . , sd to denote the model parame-
ters. Given an observation σ = (σ1, . . . , σn), the observa-
tion probabilities are polynomials of degreeE in the model
parameters, where E is the number of edges of the afore-
mentioned graph. We use fσ (s1, . . . , sd) = Ps1,...,sd(Y =

σ) to denote the observation probability. Pachter and
Sturmfels [86] asked a fundamental question about this
family of models:

How do the solutions to inference problems depend on the
model parameters?

The authors fix the numbers d and n of model parameters
and observations, and furthermore, assume that each of
the observed variables can take � different values. Mathe-
matically, this model is a polynomial map f : R

d → R
�n

,
each of the coordinates being one of the aforementioned
polynomials of degree E. Let ui := − log(si) determine the
associated logarithmic parameter space. Moreover, define

gσ (u1, . . . , ud) :=−max
h

log Ps1,...,sd (X = h | Y = σ) .

(62)

Pachter and Sturmfels [86] show that gσ is PWL and
concave on the logarithmic parameter space, with the
normal cones of Newt(fσ) identifying its domains of
linearity. As the parameters u1, . . . , ud vary, they define
inference functions σ 	→ ĥ, where ĥ is the most likely
tuple of hidden variables given an observation σ. This
leads to the following.

Proposition 6 [86, Proposition 6]: The inference func-
tions σ 	→ ĥ of a graphical model f are in bijection with
the vertices of the Newton polytope of the map f . The
explanations ĥ for a fixed observation σ in a graphical
model are in bijection with the vertices of the Newton
polytope of the polynomial fσ .

This is the main ingredient in [86], which the authors
employ to deduce upper bounds on the number of infer-
ence functions and explanations of graphical models,
by leveraging known bounds on the number of vertices
of Newton polytopes. Finally, they motivate theoretically
the use of the so-called polytope propagation algorithm
to enumerate the vertices of the aforementioned poly-
topes, including an application to inference for biological
sequence analysis [87].

The authors of a later publication [24] study the
Restricted Boltzmann Machine (RBM), a graphical model
that is the building block of deep belief networks [52],
using techniques from algebraic and tropical geometry.
Formally, RBMs are represented by a bipartite graph on
hidden variables h ∈ {0, 1}k and observed variables v ∈
{0, 1}n, with “activation”

ψ (v,h) := exp
�
hT W v + bT v + cT h

�
(63)

which determines a probability distribution

p (v) :=
1

Z

�
h∈{0,1}k

ψ (v,h) , Z :=
�
v,h

ψ (v,h) (64)

where Z is the induced log-partition function. The authors
then define the tropical RBM model by applying the
Maslov dequantization principle to log p(v), leading to the
PWL convex model in (65)

q (v) := max{hT W v + bT v + cT h : h ∈ {0, 1}k}. (65)

Similar to [86], varying the parameters (b, c,W ) deter-
mines a collection of inference functions. Cueto et al. [24]
then obtained the following characterization of an RBM’s
inference functions (recall that a linear threshold function
is a function of the form f(x) = sign(αT x + β)):

Proposition 7 [24, Proposition 5.1]: The inference func-
tions for the RBM in k hidden and n observed variables
are precisely those Boolean functions {0, 1}n → {0, 1}k for
which each of the coordinate functions is a linear threshold
function.

B. Tropical Algorithms on WFSTs

1) Introduction: Weighted Finite State Transducers
(WFSTs) introduce a computational framework that
extends traditional automata, with applications in auto-
matic speech recognition, natural language processing,
computational biology, and more. The workhorse of the
framework is the Viterbi algorithm, a decoding procedure
that performs inference over graphs. The framework also
includes a variety of algorithms aiming to reduce the
computational footprint, which can be split into two cate-
gories: 1) algorithms that respect the initial topology of the
network, refactoring the weights or removing extraneous
transitions and 2) algorithms that fundamentally alter
the structure of the network, via network minimization
or composition. In any case, WFSTs, complete with their
suite of diverse algorithms, present a formal mathemati-
cal framework whose properties have been analyzed for
decades. A simple WSFT is shown in Fig. 11.

WFST algorithms historically employed tropical arith-
metic [81], [82] for practical reasons. However, their
formal modeling using tropical matrix algebra was only
recently explored. A recent work [106] tropicalized the
Viterbi algorithm7 and its pruning variant, both semi-
nal communications algorithms, by expressing the symbol
observation probabilities as a tropical diagonal matrix. A
following work [107] extended the tropicalization to other
instrumental WFST algorithms, namely, epsilon removal
and weight pushing, via the strong and weak transitive
closures of the network.

7The framework of weighted lattices allows us to analyze the
max-product form of the Viterbi algorithm as a nonlinear dynamical
system in state space and extend it to more general forms that accept
control inputs [74].
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Fig. 11. Toy WFST. Transitions are of the form i/o:c, where i is the

input symbol, o is the output symbol, and c is the cost of the

transition. For example, the input sequence dx would be decoded to

DLX with a total cost of 12. Here, the ε-transition denotes the lack of

an input symbol.

In addition, a tropical analog to spectral graph theory
can be found, which studies the existence and characteriza-
tion of solutions to the tropical (sup-)eigenvalue problem.
While mathematically analyzing WFSTs, certain elements
from tropical spectral theory arise, which are introduced
in the next section.

2) Background: A WFST is mainly characterized by the
transition matrix of a network, which we denote A ∈
R

d×d
min , and where each entry aij corresponds to the cost

of transitioning from state i to state j. The initial states
are denoted by π ∈ R

d
min, where each initial state has a

finite cost, and +∞ otherwise. Similarly, emitting (or final)
states are denoted by ρ ∈ R

d
min and have also finite costs

(and +∞ if they are not final states). We define the weak
transitive closure of A as

Γ (A) := A ∧ A2 ∧ · · · ∧ Ad ∧ · · · (66)

and the strong transitive closure as

Δ(A) := I ∧ A ∧ A2 ∧ · · · ∧ Ad ∧ · · · (67)

where Ak =

k times !" #
A �′ . . .�′ A. The minimum cycle mean of A

is defined as

λ (A) = min
c∈C(A)

weight (c)

length (c)

where C(A) is the set of cycles of the network, and
weight(·) and length(·) denote the weight (sum of the costs
along the cycle) and length of a cycle, respectively.

In tropical spectral analysis, the min-plus eigenproblem8

of A consists of finding the eigenvalues λ and eigenvectors
v such that

A �′ v = λ+ v. (68)

8In [15], the discussion revolves around the max-plus eigenprob-
lems; instead, in this section, the analysis will focus on the min-plus
eigenproblems.

The minimum cycle mean λ(A) plays a fundamental role in
the min-plus eigenproblem; indeed, it is the smallest eigen-
value and the only one whose corresponding eigenvectors
may be finite [15]. For the spectral analysis component,
we will heavily rely on the following theorem, which
characterizes the sup-eigenvectors of A, which are defined
as the solutions to:

A �′ v ≥ λ+ v. (69)

Theorem 6 [15, Dual of Theorem 1.6.18]: Suppose
that A has at least one finite entry. If λ ≤ λ(A) and
λ < +∞, then the following holds.

1) A �′ v ≥ λ+ v has a finite solution.
2) The set of finite sup-eigenvectors is

V ∗ (A, λ) =
�
Δ (A − λ) �′ u : u ∈ R

d
	
. (70)

3) A �′ v ≥ λ + v only holds if v = Δ(A − λ) �′ u,

u ∈ R
d
min.

The characterization of the eigenvectors is of signifi-
cant importance in tropical settings. Indeed, in max-plus
dynamical systems modeling manufacturing processes, it is
desired that some systems whose dynamics are governed
by x(t) = A � x(t − 1) eventually reach a steady state
where the processing occurs at regular intervals, that is,
x(t) = λ+x(t−1). If x(0) is an eigenvector, the steady state
is immediately reached; therefore, the characterization is
fundamental, as it provides well-behaved configurations,
in terms of reachability of a steady state, for a dynamical
system.

3) Tropicalization of WFST Algorithms: The Viterbi algo-
rithm, stemming from the field of communications,
attempts to decode the most probable series of latent
states from a data sequence. At the heart of this algo-
rithm is the following recursive computation: given a
sequence of observations {σt}T

t=0, observation probabili-
ties b(σt), and a transition matrix W , the highest proba-
bility of a single partial state sequence ending at state i

at time t and accounting for the first t + 1 observations is
given by

qi (t) = max
j

bi (σt)Wjiqj (t− 1) . (71)

We can formally tropicalize (71) and provide a recursive
solution for the state vector x(t)

x (t) = P (σt) �′ AT �′ x (t− 1) (72)

where x(t) = − log q(t), A = − log W , and P (σt) =

diag(− log b(σt)), with diag(·) denoting a matrix with the
argument in the diagonal and +∞ elsewhere.
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Fig. 12. Illustration of the Viterbi pruning. The path of optimal

states is denoted by red . States colored gray were examined by

the algorithm for optimality, whereas the dashed states had high

costs and were pruned.

Viterbi pruning is a practical technique that is frequently
used in order to reduce the computational burden of the
decoding. In essence, the optimal path is computed at each
step, and only the paths whose cost is within a certain
threshold are further expanded. An intuitive example is
given in Fig. 12. Viterbi pruning can be thought as the
problem

X (t) �′ y ≥ η (73)

where X(t) = diag(x(t)) and η is a vector with ηi =
1
2
(x(t)T �′ x(t)) + θ, where θ is the pruning parameter.

We can then interpret pruning as finding the smallest
solution y ∈ R

d
min, satisfying the min-plus inequality (73),

which can be done using the dual of Theorem 2

y = X∗ (t) � η (74)

where X∗(t) = −XT (t) and the negative entries of y indi-
cate the indices to be pruned. A geometrical interpretation
can be given to the Viterbi pruning; in particular, the set
of feasible solutions at each step is a tropical polytope
(see Fig. 13)

T (x (t) ,η) =
�

z ∈ R
d
min : z ≥ x (t) , z ≤ η

	
. (75)

Example 6: Let the state vector be

x (t0) =
�
1 7 4

�T

at some time t0, and suppose that the pruning parameter is
θ = 5. Then, ηi = 1

2
(x(t0)

T �′ x(t0)) + θ = 6. The optimal
solution then is given by (74)

y =

$%& −1 −∞ −∞
−∞ −7 −∞
−∞ −∞ −4

'() �

$%&6

6

6

'() =

$%& 5

−1

2

'() .

As y2 is negative, it gets pruned, and the resulting vector is

xp (t0) =
�

1 ∞ 4
�T

.

We emphasize that η, y, and the resulting polytope are
different for each time step t.

The weight pushing algorithm is an essential component
of the WFST framework [82]. The algorithm improves the
effectiveness of the Viterbi pruning by pushing weights
toward earlier transitions and states, without altering the
overall path statistics (i.e., the decoded sequences and
their probabilities). After weight pushing, low-probability
sequences can be identified and pruned early during
decoding and increasing efficiency.

Integral to the weight pushing algorithm is the compu-
tation of a potential for each state of the graph. In short,
the potential value is the weight amount that can be
“pushed” to earlier states and can be computed via an
iterative evaluation. A single iteration of the potential
vector can be expressed as [107]

vi+1 = vi ∧ A �′ vi (76)

with v0 = ρ being the emission vector. Recursively iterat-
ing (76), we arrive at the final potential vector

v∞ = ρ ∧ A �′ ρ ∧ A2 �′ ρ ∧ · · · ∧ An �′ ρ ∧ · · ·

= Δ (A) �′ ρ (77)

where the computation of Δ(A) is finite under very mild
assumptions; namely, that the graph does not contain
cycles of negative weight, and thus, λ(A) ≥ 0 (a stan-
dard assumption for WFSTs). Henceforth, we assume that
these conditions hold. After the potential computation,

Fig. 13. At each decoding step, x(t) and η of (75) define a

polytope. The vector r � η − x(t) denotes the range of each

dimension (negative ranges indicate that the index is pruned).
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Fig. 14. Illustration of epsilon transtitions and states. orange

denotes states and transitions that will be removed by the epsilon

removal algorithm, whereas surviving ones are denoted by green .

the network parameters can be updated via the rules

π′ = π + v∞, ρ′ = ρ − v∞, A′ = V − �′ A �′ V +

(78)

where V + = diag(v∞) and V − = diag(−v∞).
Another instrumental algorithm to the WFST frame-

work is epsilon removal [82]. Similar to weight pushing,
this algorithm facilitates decoding by decreasing the size
of the network by removing extraneous transitions and
states. Examples of these states and transitions can be
seen in Fig. 14. The removal of extraneous transitions and
states is achieved through the computation of the epsilon
closure of every state, which encapsulates the states that
are reachable using only epsilon transitions. To that end,
the network matrix A can be decomposed [107] into two
components

A = Aε ∧ Aε⊥ (79)

where Aε contains only the epsilon transitions and Aε⊥

contains the nonepsilon transitions. The epsilon closure
is then computed as the shortest distances of the network
matrix Aε, which, via the definition of the weak transitive
closure, is given by Γ(Aε), where the computation is finite
and equal to Γ(Aε) = Aε ∧ . . . ∧ Ad

ε . Having computed
the epsilon closure, the updated network parameters take
the form

A′ = Aε⊥ ∧
�
Γ (Aε) �′ Aε⊥

�
= Δ (Aε) �′ Aε⊥

ρ′ = ρ ∧
�
Γ (Aε) �′ ρ

�
= Δ (Aε) �′ ρ. (80)

4) Spectral Analysis of Tropical WFST Algorithms: The
representation that we developed in the previous sections
offers a unified computational framework that enables a
holistic analysis of WFSTs; in certain cases, it also enables
a geometrical characterization of the algorithms via ele-
ments of algebraic geometry, such as polytopes. Herein,
the computational framework of tropical algebra further
enables the spectral characterization of the graph algo-
rithms, that is, we are able to characterize the introduced
algorithms via their eigenvalues. This characterization

introduces a new dimension to these algorithms, as we
are now able to examine their properties for different
eigenvalues.

We established that a mild (and realistic) assumption for
the class of networks is that the cycles of the network have
nonnegative weights, and therefore, λ(A) ≥ 0. Therefore,
we can view (77) in the scope of Theorem 6

v∞ = Δ (A) �′ ρ = Δ (A − λ) �′ u (81)

with u = ρ and λ = 0. Thus, v∞ is a tropical
sup-eigenvector of A for the tropical eigenvalue 0. Then,
contextualizing (78) under the prism of Theorem 6,
π′ comprises two subsystems: the original system model π

(which is required to maintain the system dynamics) and a
new, well-behaved in terms of steady state, subsystem v∞.
The rest of the updates in (78) ensures that the cost of each
path remains unaffected.

Similarly, we can revisit (80) and express the updated
network parameters as

ρ′ = Δ(Aε) �′ ρ = Δ(Aε − λ) �′ u

A′ = Δ(Aε) �′ Aε⊥ = Δ (Aε − λ) �′ U (82)

where λ = 0, u = ρ, and U = Aε⊥ . Note that ρ′ =

Δ(Aε − λ) �′ u is similar to (81); it simply refers to
the sup-eigenproblem of Aε. The second equation of (82)
consists of a collection of tropical sup-eigenvectors of Aε.
In this case, the immediate effects of Theorem 6 are less
pronounced; while ρ′ and A′ are (collections of) eigenvec-
tors, they are not employed to send the system to a steady
state.

From this analysis, we make two remarks: first,
A′ of (78) is, by definition, visualized [15], meaning that
it has a simpler structure than A, while still maintaining
the same spectral properties. As a second remark, we note
that tropical eigenvalue problems have infinite solutions.
Indeed, it is a well-known fact in tropical algebra [15] that
sup-eigenvectors exist for each eigenvalue λ ∈ [0, λ(A)].
Therefore, this creates a whole family of WFSTs that all
solve some eigenvalue problem for all λ in the aforemen-
tioned range.

VII. T R O P I C A L R E G R E S S I O N
Herein, we expand on our previous work [76] and apply
tropical geometry and max-plus algebra to a fundamental
regression problem of approximating the shape of curves
and surfaces by fitting piecewise linear (PWL) functions,
represented by tropical polynomials (11), to data possibly
sampled from a functional form and in the presence of
noise. We begin with a brief sampling of PWL models.

A. PWL Function Representation and Data Fitting

PWL functions f : R
d → R are defined as follows:

1) their domain is divided into a finite number of

Vol. 109, No. 5, May 2021 | PROCEEDINGS OF THE IEEE 747



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [576.000 782.640]
>> setpagedevice


