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On Amplitude and Frequency Demodulation Using
Energy Operators

Petros Maragos, Senior Member, IEEE, James F. Kaiser, Fellow, IEEE,
and Thomas F. Quatieri, Senior Member, IEEE

Abstract—Amplitude-modulation (AM) and frequency-mod-
ulation (FM) systems are widely applicable to the modeling and
transmission of information in signals. In this paper it is shown
that the nonlinear energy-tracking signal operator ¥ (x) = (x)?
— xi and its discrete-time counterpart can estimate the AM and
FM modulating signals. Specifically, ¥ can approximately es-
timate the amplitude envelope of AM signals and the instanta-
neous frequency of FM signals. Bounds are derived for the ap-
proximation errors, which are negligible under general realistic
conditions. These results, coupled with the simplicity of ¥, es-
tablish the usefulness of the energy operator for AM and FM
signal demodulation. These ideas are then extended to a more
general class of signals that are sine waves with a time-varying
amplitude and frequency and thus contain both an AM and an
FM component; for such signals it is shown that ¥ can approx-
imately track the product of their amplitude envelope and their
instantaneous frequency. The theoretical analysis is done for
both continuous- and diserete-time signals.

I. INTRODUCTION

N his extensive work on nonlinear speech modeling,

Teager [14]-[16] noted the dominance of modulation as
a process in the production of speech. He also noted the
importance of analyzing speech signals from the point of
view of the energy required to generate them. One of the
beautifully simple algorithms for signal analysis he de-
vised and used extensively was the following nonlinear
energy-tracking operator ¥ given either in its discrete
form ¥, when operating on discrete-time signals x (n):

¥, lx(m)] £ x2(n) —x(n + Dx(n — 1) (1
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or in its continuous form ¥, when operating on continu-

ous-time signals x (7):
dx(t)\’ d*x (1)
<m> _“”<w2>

P - x0x@) )
where & = dx /dr. Both of these operators were first intro-
duced systematically by Kaiser [2]-[4].

¥, can track the energy of a linear oscillator; thus it
can be viewed as an energy operator. The reasoning [2],
{3] proceeds as follows: Consider an undriven linear un-
damped oscillator consisting of a mass m and a spring of
constant k. Its displacement x (¢) is governed by the mo-
tion equation mx + kx = 0, for which the general solu-
tion is a cosine x(f) = A cos (wo! + 0) with wy = vk/m.
The instantaneous energy E, of this undamped oscillator
is constant and equal to the sum of its kinetic and potential
energy; i.e.,

fl>

¥ [x (0]

m

2

E (%) + gxz = constant

I

m

7 (Awo)’. (3)
Thus the energy of the linear oscillator is proportional both
to the amplitude squared and the frequency squared of the
oscillation, a fact noted in [9]. Further,

E
(m/2)
Namely, when ¥, is applied to the oscillation signal, the
output of ¥, is equal to the energy (per half unit mass) of
the source producing the oscillation.

Kaiser [3], [4] found the following important properties
of ¥ : for any constants A4, r, and w, and for any signals
x and y

¥ [A cos (wot + )] = Aw}

@

¥ [Ae" cos (wot + 0)] = A’ 'wj (5)
V. x@y0] = O Ly0] + Yy O¥ xO]  (©)
The discrete operator also has similar properties [2], [3]:

¥, [Ar" cos (Qon + 6)] = A2 sin® (Qp) N
Y lx (n)y ()] = X2 ¥, y(m] + y> (¥, [x ()]
- ¥, x Y, [ ym)]. (8
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In this paper we apply the operators ¥. and ¥, to the
broad class of amplitude-modulated (AM) and frequency-
modulated (FM) signals. (For the fundamentals of AM
and FM systems see any book on communications, e.g.,
[13].) Since we analyze both continuous- and discrete-
time signals, first the relationship between ¥ . and ¥, is
investigated in Section II. Then, in Section III, we show
how these energy operators can approximately track the
envelope of AM signals. In Section IV they are found to
be able to approximately estimate the instantaneous fre-
quency of FM signals. For all these results we also pro-
vide the magnitude of the approximation errors involved.
Section V deals with the generalized case of AM-FM sig-
nals, i.e., FM signals with a time-varying amplitude en-
velope, or equivalently AM signals with a time-varying
instantaneous frequency. For such signals we show that
the energy operators can approximately track the product
of their amplitude envelope and their instantaneous fre-
quency. In Section VI it is shown that various general
classes of AM-FM signals yield a nonnegative signal in
the output of the energy operators; such a guarantee for
the nonnegativity of the energy operators is needed for
using them in AM and FM demodulation. In Section VII
we conclude and outline some extensions and applications
of our work.

Given the simplicity of the energy operators and the
broad applicability of AM and FM models in signal pro-
cessing and communications systems, the results derived
in this paper are very useful. For example, some results
in this paper have been used in the ongoing work of Mar-
agos, Quatieri, and Kaiser [5], [6] on speech modeling
using an AM-FM model where, inspired by Teager’s
work, several amplitude/frequency modulation phenom-
ena in time-varying speech resonances are being investi-
gated. In addition, our results in this work have been used
by Quatieri er al. [12] in detecting transient signal sig-
natures corrupted by AM-FM noise. In this paper, how-
ever, we do not assume anything about the specific nature
or source of the AM or FM signals.

Throughout the paper we deal with real-valued signals.
Finally, although we treat both discrete- and continuous-
time signals and operators, our most general results and
intuition are derived for and from the continuous-time
case.

II. DiscrReTiZING THE CONTINUOUS-TIME OPERATOR
By using certain combinations of discretized deriva-
tives we can obtain from ¥, an expression closely related
to ¥, and thus link the two operators. We examined three
cases.
A. Two-Sample Backward Difference
We replace ¢t with nT, (T, is the sampling period), x ()
with x (nT,) or simply x(n), x(¢) with y(n) = [x(n) — x(n
— D]/ T, and %(f) with [ y(n) — y(n — 1)]/T,. Then
x(@® = [x(n —x(n — D]/T,
£@) = [x(n) — 2x(n — 1) + x(n — D1/T}
¥ [x(0] = ¥ylx(n - DI/TT.
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where ~ denotes the mapping from continuous to dis-
crete. Thus from ¥, we obtained ¥, shifted by one sample
to the right and scaled by T;24

B. Two-Sample Forward Difference
(0= [x(n + 1) — x(m)/T;
()~ [x(n +2) = 2x(n + 1) + x()] /T
Y [x(O) = Yylx(n + DI/TS.

C. Three-Sample Symmetric Difference
() = [x(n + 1) —x(m) + (x(m)
— x(n — 1)]/27T,
= [x(n + 1) — x(n — D]/2T,
£ = [x(n + 2) — 2x(n) + x(n — 2))/4T;
V. [x(@®] » (Fulx(n + D] + 2¥,[x ()]
+ ¥ lx(n — D)) /4T

Thus, if we ignore the one-sample shift and the scaling
by T2, both asymmetric two-sample differences succeed
in transforming ¥ [x(¢)] into ¥,[x(n)]. However, the
three-sample symmetric difference gives a more compli-
cated expression; i.e., it results into a three-sample
weighted moving average of ¥,[x(n)].

Henceforth, we shall drop the subscripts ¢ and d from
¥ since it will be clear from the context whether we refer
to continuous or discrete time.

III. AMPLITUDE MODULATION (AM)
A. Continuous-Time AM

Let the general real-valued AM signal be
x(1) = a(@) cos (w.r + 8)

where w,. > 0 is the constant carrier angular frequency,
and 6 is a constant phase offset. The amplitude signal a (?)
is either proportional to or contains the AM ‘‘modulating
signal’’ (also called ‘‘information signal’’) and usually
varies more slowly than the carrier signal cos (w.f). The
AM envelope is defined as the signal |a (¢)|. Now consider
¥ applied to the AM signal. By properties (6) and (5) we
obtain

Y a(r) cos (w.t + 0)]

= a’(hw’ + cos’ (wt + O¥[a®].  (9)
— - e
D) E@

Since we are interested in using ¥ to estimate the enve-
lope contained in the term D, we next find sufficient con-
ditions under which the desired term D dominates over
the term E; then we can view E as an approximation error.
To quantify this error we compare an amplitude scale
characteristic of the order of magnitude of the dominant
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signal term with a similar amplitude scale of the error sig-
nal term. For example, if we want to restrict the maxi-
mum absolute value of the error E to be much smaller than
the value of the desired term D at each time instant, then
we demand that E,,,, << Dy, where for an arbitrary sig-
nal x () we denote

£ sup {|x(|},

Xmin é inf {|X(Z)|}

xmax

Since for all ¢

[E®] < | ¥ (a@)] (10)

it follows that
¥ [a(®) cos (w.t + 9)]
lf [\I’ (a)]max < (""('amin)2 (11)

where =~ means ‘‘approximately equal.”” The above ap-
proximating condition is meaningful only if D,;, > 0,
i.e., if @y, > 0. (Note that in general D(f) = 0 for all
7).

In several applications, for example in cases where a,,
= 0 or in cases where we need to quantify the average
error, we may want to compare the mean absolute value
of the error E with that of D. By ‘‘mean’’ we refer to a
‘‘time average’’ defined as follows. For an aperiodic sig-
nal x(¢), which is absolutely integrable, we define

= [w.a®]’,

~

@

Xppe 2 S x (1) dt.

Otherwise, if x is periodic with period T, or if we analyze
an arbitrary signal x only over the finite time interval [0,
T1], then we define

T

1
} SO x (1) dt.

In each case, the root-mean square (rms) value of x is

defined by
xrms é v ('x Z)EIVC .

Now returning to (9), we will also consider approxima-
tions

¥ [a(t) cos (w.r + 0)]

A
Xave =

= e lwca(®],

where =,,. denotes an approximation with a very small
mean absolute error.

To quantify the relative approximation error of (11) and
(12) we define two types of a signal-to-error ratio (SER)
in the output of ¥, where by ‘‘signal’’ we mean the de-
sired energy term D. The instantaneous SER

D)
|E @)

is defined at each r except for the isolated time instants
when both D and E are zero. The average SER

if [ ¥ (@|awe << (@etmy)® (12)

ISER(y) £

D
ASER & %
|E|ﬂVE
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is defined over the whole time interval that corresponds
to the averaging operation. Note that these SER’s have
the following general lower bounds:

Dmin (‘J"ramin)2
ISER(t) =2 — = ——— 13
D2 e = ¥ @ )
ASER = (©cam)’® (14)
- |‘I,(a)|ave'

The approximate result in (11) or (12) will be meaningful
and useful only if the instantaneous or the average SER
is >> 1. Before we show that this is true under very broad
assumptions about the amplitude signal, we first provide
some required results concerning the maximum absolute
value of signals and their derivatives. Throughout the pa-
per, we shall use the notation X (w) for the Fourier trans-
form of an aperiodic signal x(r), where w denotes angular
frequency, and the Fourier series representation x(f) =
Liape ™ if x(1) is periodic with fundamental period
27 /wy and o being its kth Fourier series coefficient. In
addition, we shall use the spectral absolute moments' of
real-valued signals x (¢) defined as

! S 0" X ()| de, if x(#) is aperiodic

A )™ do

Bxn =

o

wh 2 k"l ifx(r) = 2 agel
k= —o k

forn =0, 1, 2, - - - . The zeroth moment (which is fre-
quently used in this paper) is denoted by

Px = My 0-

For aperiodic signals x it is known [10, p. 34] that for all

t

d"x(1)
d"

15)

S "'«\’.’1'

This also holds for periodic x(f) = I,y e’ since the
kth Fourier coefficient of d"x /dr" is (jkwg)"cy. As a spe-
cial case of (15) for n = 0, we have

XO] < Xpax < e (16)

Note that x.,,, = u, if x has a linear Fourier phase; i.e.,

X(@) = +[X(@)]e™0 = xpo = p, a7
because, as shown in [10, p. 65],
o = 0] = 5= | K@) da,
™ —
Similarly, for periodic x () we have
() = £ 20 A cos ket = 10)] = Xnay = o (18)
'In this paper whenever we use one of the moments e, it will be as-

sumed that-it is finite.
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where 7, and A are arbitrary real constants. As a special
case, for any cosine x(f) = A cos (wyz) we have Xmax =
me = |4l

Finally, for band limited signals x with highest fre-
quency w, it follows? from (15) that

d"x (1)

X =0 v >
(w) lwl W, = ar"

(19)

= (wx)"ﬂ'x

forn = 1.

The previous results allow us to find next the maximum
absolute or average value of the signal in the output of the
e€nergy operator.

Proposition 1: Let x(¢) be a continuous-time real-val-
ued signal with finite spectral moments py, forn =0, 1,
2. Then (a)

YO = (1)’ + meopes
for all ¢. Further, if x is aperiodic,

(20)

§ ¥ [x(0)] dt:%S | X ()P do.  (21)
® 0

If x(t) = Ly e ¥ is periodic with period T = 27 /w,,

T ®
1 SO Y [x ()] dt = 2w} k»@ ka2

T (22)
(b) If x is also band limited with highest frequency w,,
W @) =< 2 (0, p,) 23)
¥ (e < 2(@xXmyy)’ (24)
Proof: (a) Equation (20) results from (15) and
@) < 0] + [x@x@)]. (25)

For (21) note that, by Parseval’s theorem for aperiodic
signals x,

j_w [k (1) — x()x(D)] dt = i S_m 20°| X (w))? dw.

(26)
Similarly, (22) results from Parseval’s theorem for peri-
odic signals.
(b) By using (19) and (25) we obtain (23). To prove
(24) for aperiodic signals x, note that, by (21),

Wy

¥ (X)pe = 2 S W?|X()|? do
T Jo

2

< 2 S X[ do = 2(wxm )
™ 4}

Wy

Similarly, for the case of periodic signals x() =
Tiae ' where o, = 0 if [k| > w,/wg and hence
wr/wy
Cms) = _ 2 oy .
/g

k= —wr

This completes the proof. Q.E.D.

*The bounds for the derivatives of band-limited signals are also related
to Berstein’s theorem [1].

Proposition 1 paved the way to find the following
bounds for the approximation error and the corresponding
SER’s involved in envelope tracking via the energy op-
crator.

Theorem 1: Consider a continuous-time AM signal x (f)
= a(t) cos (w.t + 6), where a(r) is real valued, band
limited with highest frequency w,, and has finite spectral

moments u, , for n = 0, 1, 2. Let E(r) = ¥x()] —
wld? () be the approximation error. Then: (a)
E®)] = 2(wqpa). @7

If ¥[a(r)] = O for all ¢, the average SER in the output of
¥ (x) is bounded as

l(.-.)f2
ASERZE — ).

(b) If a () = cos (w,1), then |E(1)| < w2
Proof: (a) (27) immediately follows from (10) and
(23). Further, (28) results from (14) and (24). For (b) note
that

(28)

¥ [cos (w, ) cos (w .t + 0)]

= w; cos’ (W) + w?cos’ (wet + )  (29)
Hence, |E(0)| < w2 Q.E.D.

Theorem 1 implies that, if we assume a band-limited
signal a(s) with bandwidth w, << w,, then |E|,,, <<
D,,. and the energy operator can track the AM envelope
squared (within a multiplicative constant) with a very
small mean absolute error. Then, applying a square root
operation after ¥ yields a signal proportional to the actual
envelope |a(7)|. Note that in taking the square root we
henceforth assume that the output of ¥ is a nonnegative
signal. This assumption was also used for deriving the
lower bound (28). As discussed later in Section VI, we
have found large classes of useful signals and sufficient
conditions for general signals x for which ¥ (x) is non-
negative.

An important special case for a(f) that we examine be-
lowisa(r) = 1 + kb(z), where b(2) is the modulating (or
information) signal, « is the AM index, and we henceforth
assume that

O0<k=<l.

Such AM signals are called AM with carrier (AM/WCQC).
Actually, all AM signals that have amplitude a (1) = O for
all ¢ can be viewed as equivalent to an AM/WC signal
with amplitude

“1=<b(t) =1 v

A[l + kb ()] = a(®

where
_ Omax + dnin _ Qmax — Qmin
A= T Tmin :
2 Amax + Amin
a®) — A
b(t) = ———.

Ak
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In contrast, AM signals without a carrier are often called
AM with suppressed carrier (AM/SC); in this case a(f)
assumes both positive and negative values. Using ¥ to
estimate the envelope of AM/WC signals has three ad-
vantages over using it on AM/SC signals: i) The non-
negative amplitude a(r) is identical with the envelope
|a(®|, and hence the modulating signal b(¢) can be di-
rectly extracted from the estimated envelope. Thus ¥ can
be used for demodulation, i.e., recovery of the modulat-
ing signal b (¢), in the case of AM/WC signals. ii) If k <
1, we have a,,;, > 0 and can derive nonzero lower bounds
for the instantaneous SER in the output of ¥, which is a
useful measure of the relative approximation error be-
cause of the instantaneously adapting nature of ¥. iii) For
AM/WC signals we will be able to find tighter error
bounds than the general bounds derived in Theorem 1.
Theorem 2: Consider a continuous-time AM/WC sig-
nal x() = a(t) cos (w.t + 0), where a(t) = 1 + «b(1),
and b(¢) is real valued, band limited with highest fre-
quency w,, and has finite spectral moments g, , for n =
0, 1, 2. Then: (a) the approximation error E(t) = ¥ [x ()]

— w2a®(1) has the following upper bound:
[E@)| < kwli(uy + 26u3). (30)

The instantaneous SER in the output of ¥ (x) has the fol-
lowing lower bound:

_ 2
i) } 31)

2
[OF S
ISER(®) = <w_> L(uh + 2un})

(b) Over any finite time interval [0, 7] on which 55 b (1)
dt = 0, the average SER has the following lower bound:

ASER > <& 2[ L+ (b’ }
T \w/) Le(py + 2kp3) |

If b(z) is also periodic with period 7 and ¥ (b) = O, then

(32)

ASER = <9—>2 [—-71 + (kbm)” ] 33
T\, kb (1 + 2kb ) (33)
T\, kK + 2k%)° (34
(Y If b(®) = cos (w,1),
E@)| < k(1 + 0w’ (35)
2 2
o\ | (01—«
ISER(?) = (wa> [7'((] " K)] (36)
Proof: (a) From the general property
VIl + kb)) = 2¥[bG)] ~ kb(D) (37
and (10) we obtain
E@| < [ ¥ ®@)| + x|b@)] (38)

from which (30) results due to Proposition 1. Since a,,;,
=1 — k, (31) follows from (13) and (30).

(b) By (30),

T
SO |E(M)] dt < Epax < koo + 2kp).

~i—

'Elave =

(39

Now since a? = 1 + (kb)* + 2«b and b, = 0, we have

D.. =

ave

T
S [1 + «b@ df = 0[1 + (kbme)’l.
0

~|E,

(40)

The two previous results prove (32).

If b is also periodic, then ¥ (b),,. < 2(w, b’ and (by
using Cauchy-Schwarz’s inequality and Parseval’s theo-
rem)

1B e < (B)my < @b, @1
Hence, if ¥ (b) = 0, by (38)

E e < k¥ B)ye + &|D]e < kb (1 + 2kbyyy).

(42)
This and (40) prove (33), from which (34) follows since
meSc)Slfll; (H) = cos (w,1), then (37) implies that
V1 + & cos (w,N] = (kw,)’ + ko cos (wa1). (43)
Hence
[ ¥ (1 + kcos (w,0)] < x(l + Kw? (44)

This and the results from (a) and (b) complete the proof
of (¢). Q.E.D.

Thus, the envelope estimation by the energy operator
¥ in AM/WC signals can yield a smaller upper bound for
the error (and equivalently a larger lower bound for the
SER) than when ¥ is applied to AM/SC signals. For ex-
ample, assuming at u, = 1 or that b(r) is periodic, the
lower bound for the average SER is larger for AM/WC
signals if x < 0.78. In addition, ISER(f) = (w?/kw?)
whenever k << 1. Therefore, assuming that p, = 1
(which is true with equality if b has linear phase) and w,
< w,, the instantaneous SER will be >> 1 if w, << w,
(a standard assumption in AM applications) and « << 1
(a low percent of AM), or more generally if [w.(1 — Ik
>> wl(x + 2«2); under such conditions

Y[ + kb (1) cos (w .t + 0)} = w. [l + «b(D]

which demonstrates the envelope tracking abilities of
J¥.

Note that if we apply ¥ to AM/WC signals with ¥ <
1 and the instantaneous SER in the output of ¥ is >> 1|
for all 7, then we can also quantify the relative error in the
output of the NE% operator. Specifically, in the output of
V¥ the desired signal term is \/5, whereas the approxima-
tion error term is vD + E — \/B Hence, the instanta-
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neous SER in the output of V¥ is
vD(@)
IND@) + E@® - DO

In general, it is difficult to analyze this quantity. To find
a more mathematically tractable form, note that, to a first-
order approximation,

JDFE~D+ -1,
2D

ISER 5 () &

if |E| << D.

Hence,

ISER 5 () = m

WU T E@P

Thus, if by ISERy we denote the ISER at the output of
\I”

if |[E(t)] << D(». (@45)

ISERy >> 1 = ISER§ = 2 - ISERy. 46)

For example, if g, = 1, o./w, = 10 and « = 0.1, then
ISERy (f) = 675 and ISER 5 (r) = 1350.

Concluding, we note that the envelope tracking abili-
ties of V¥ also apply for certain signals a (¢) that are not
band limited or have an infinite mean spectral value p,,
in which cases Theorem 1 does not apply. For example,
consider the case of an AM signal with exponential am-
plitude signal a (r) = e" where r is any real number. Then
(5) implies that ﬁ can estimate the envelope with zero
error. Another example is the case of a linear envelope
a(f) = st + ¢, t = 0, where s, ¢ > 0. Then since

Vst + c] = s* 47)
it follows from (11) that, fort = 0,
V¥ [(st + ©) cos (w .t + 6)]

=~ w.(st +0), if(s/cf < wli.  (48)

B. Discrete-Time AM

Consider the discrete operator ¥ applied to a general
discrete-time real-valued AM signal a(n) cos (2.n + 6),
where Q. € (0, 7) is the discrete-time carrier frequency
(in radians per sample). By (8) and (7) we have

V[a(n) cos (Q.n + 0)]
= a’(n) sin® Q)
Dn)
+ ‘Ii(a(n))[cosz (Q.n + 6) — sin’ (QEB.

~—
E(n)

(49)

For estimating the envelope |a(n)|, the desired energy
term in the output of ¥ in D (n). The remaining term E (n)
is viewed as an approximation error bounded by

|E(m)| = | ¥ (a(n)]. (50)
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¥ can approximately track the envelope squared, if the
instantaneous SER

D) _ Isin (Q)aminl’
IE(n)| - \I’(a)max

is >> 1 for all n. This will be true if its lowest bound is
>> 1. Hence, if ay, > 0,

¥ [a(n) cos (Q.n + 6)]
~ [sin (Q)a®m))’,

ISER(n) =

(51

if W (@)gex << siN? ()a 2.
(52)

Alternatively, for example if a;, = 0, we can request as
a milder condition that the average® SER

Dave [Sin ( Qr)arms]z
|E|ave B |‘I’(a)|aV€

be >> 1 over the time interval corresponding to the av-
eraging operation. In this case

¥ [a(n) cos (2.n + )]
= ave [8ID (Q)a (”)]2,

ASER =

(53)

if | ¥ (@) [ave << [sin (Q)amsl”-
(54

Next we provide some results concerning the maximum
or mean absolute value of discrete-time signals, their dif-
ferences, and their outputs from the energy operator. This
analysis leads to finding upper bounds for the approxi-
mation error and lower bounds for the SER’s. It is then
simple to find sufficient conditions under which the SER’s
are much greater than unity and hence the above approx-
imations are useful.

First note that if x (n) is an aperiodic signal with Fourier
transform X (), then by using Parseval’s theorem we ob-
tain

ngw ¥ [x(n)] = % SO sin® (Q)|X(D)|*dQ. (55)

Similarly, for a periodic signal x(n) = E§2¢ ae/>™"/N

with period N,
N-1 N-1
1 B ., [27k ,
NEJO ¥x(n)] = 2 EO sin <—N > loe . (56)

For any signal x(n),

x| = Xmax = M, (57)
where
1 nv‘
— S X)) 49, if x is aperiodic
Moo )T
) N N=1
lay, ifx(n) = 2 agel?™ /N,
k=0 k=0

If a discrete-time signal x(n) is aperiodic, then we define x,,. =
L. _o x(n). If x is periodic with period N, or if we analyze an arbitrary
signal x only over a finite index interval [0, N — 1], then its average value
is defined as x,,. = (1/N) ZY¥Z! x(n). In each case the rms value of x is

defined as X, = V(X' )ue -
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Further, x,,« = M, if x has linear Fourier phase; i.e., if

x is aperiodic,

X() = £|X( Qe = xp =M, (58)
or for periodic x
[N/2]
2wk (n — ng)
x(n) = + kg() | 4| cos <TO> =
xmax = MX (59)

where ng and |4,| are arbitrary. The results (57)-(59) are
proved by using the same approach as for the proofs of
(16)-(18) and discrete- instead of continuous-time Fou-
rier transforms.

Proposition 2: Let x(n) be a real-valued discrete-time
signal that is band limited with highest frequency {,, i.e.,
X(Q) =0forQ, < |®| < x. Then

x(n) — x(n — | < 2 sin (Q,/2)M,
|
=x'(n)
(60)
|L(n) -2 -1+ x(n - 3)] < 4 sin® (Q,/2)M,

—
=x"(my=x'"(n)—x'(n—1)

(61)
| ¥ (x(n))| < 8 sin’ (Q,/2)M?
(62)
¥ [x(M]ae < 2[8in (L)X’
(63)
Proof: To prove (60) note that
Ix' ()| = ‘i S XA - e/ d0 l
21l' -7

Qe
1 .
— S IX(@)| |1 — e??] dQ
27 J-q. e’

<
2|sin(Q/2)]
1 Qe
< 2sin (2,/2) <; S X (D) dQ). (64)
0

Now by (60) and since |X' ()| = |2 sin (2/2)X(Q)],
|x" (n)| = 2 sin (Q,/2)M,. < 4 sin® (Q,/2)M,

which proves (61). Finally, note that ¥[x(n — 1)] =
(x' (n))* — x(n)x” (n); hence

[¥0c(n — D) < () + O o

8 sin® (Q,/2)M2.

This completes the proof of (62), because n is arbitrary.
Finally, (63) results from (55) or (56) and the fact that
X(Q)=0forQ, < |Q| = 7. Q.E.D.

The previous proposition has prepared the ground for
finding the following bounds for the approximation error
when the energy operator estimates the envelope term in
the discrete AM signal.

I
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Theorem 3: Consider a discrete-time AM signal x(n)
= a(n) cos (Q.n + 0), where a(n) is real valued and band
limited with highest frequency @, € (0, ). Let E(n) =
¥ [x(n)] — sin® (Q)a’(n) be the approximation error.
Then: (a)

|E(n)| < 8sin’ (Q,/2)M2. (65)

If ¥[a(n)] = O for all n, the average SER in the output
of ¥ (x) has the lower bound

1| sin (9(,)}2
ASER = - | ——< | .
2 | sin (Q,)

() If a(n) = cos (Q,n). then |E(n)| < sin® (Q,).
Proof: (a) follows from (50), (62), and (63). (b) fol-
lows from (50) and the fact that ¥[cos (,n)] = sin’
(2,). Q.E.D.
Theorem 3 implies that V¥ can track the bandlimited
envelope of discrete AM signals with very small mean
absolute error provided that 2 sin? (£,)/sin® (Q.) << I:

V¥[a(n) cos (Qn + 0)] = . [sin (R)am)],
if 2 sin® (Q,)/sin® (Q,) << 1. (67)

Figure 1(a) shows an example with a(n) = cos (Q,n), Q.
= 7/5 and Q, = 7 /100. For this example, Theorem 3
predicts that the average SER is = 175 in the output of
¥; the actual average SER was 494. (For simplicity, in
this paper all the measured SERs have been rounded to
integer values.) In the output of J¥ the average SER was
348. Finally, note that in taking the square root of ¥ [x (n)]
we implicitly assume that the latter is nonnegative for all
n; sufficient conditions for this are provided in Section VI.

Next we focus on AM/WC signals.

Theorem 4: Consider a discrete-time AM/WC signal
x(n) = a(n) cos (Q.n + 0), where a(n) = 1 + kb(n),
b(n) is real valued and band limited with highest fre-
quency Q,€(0, 7), |b(n)] = 1,and0 < « < 1. Let E(n)
= ¥ [x(n)] — sin’® (Q)a*(n) be the approximation error.
Then: (a)

|E(n)| < 4« sin® (Q,/2) (M, + 2kM3).

(66)

(68)
The instantaneous SER in the output of ¥ (x) has the fol-
lowing lower bound:

sin (©,) >2 { (1 - x)?
2sin (Q,/2)) LM, + 2kM3)

(b) Over any finite index interval [0, N — 1] on which
TN g b(n) =0,

ISER (n) = < } (69)

sin () ﬂ 1+ (kbmy)’
2sin (Q,/2)) kM, + 2kM?)

If b (n) is also periodic with period N and ¥ (b) = 0,
sin? (Q)[1 + (kbmo)’]

ASER = < j| (70)

ASER = 2 [kb s Sin (D)) + 4kb g sin’ (Q,/2) @D
sin (Q.) 2 1
= <2 sin (Qa/2)> <K + 2K2>' 72
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operator ¥ in AM signals a(n) cos (Q.n), where Q. = 7 /5. (a) AM/SC signal with
¥ applied on (a). (c) Difference between |sin (2,)a,(n)| and the signal in (b). (d)

AM/WC signal with a(n) = 1 + 0.8 cos (wn/100) = a,(n). (e) NES applied on (d). (f) Difference between |sin (2.)a,(n)| and

the signal in (¢).

(c) If b(n) = cos (R,n),

|E(n)| < «?sin® (Q,) + 4k sin® (2,/2)  (73)
sin? () (1 — «)?
ISER () = gy (Qag +)(4K sinz)(ﬂa 7y
Proof: (a) First note the general property
V(1 + «b(n)]
= k> ¥[bn)
— Kb + 1) = 2b(m) + b(n = . (75)

=b"(n+ 1)

Then (68) and (69) follow from (50), (51), (61), and (62)
because

| ¥ (1 + kb(n)| < 4« sin® (Q,/2)Q2xM} + M) (76)
(b) By (68),
1 N-1
|Elwe = 3 2, E®| < Ena
< 4« sin® (Q,/2)2x M3 + M,). an

Further, since b,,. = 0,
sin” (,)
N
sin? (@)1 + (kbmmg)*].

The two previous results prove (70).
For periodic b(n) we have |b" |, < 4 sin? (Q,/2)bms-
Then, by (75), (63), and the assumption ¥ (b) = O,

|E e < 2[Kb s sin (Q)]? + dkbpy, sin® (2,/2).  (79)
This and (78) prove (71), from which (72) follows since
bes = 1 and sin® (@) =< 4 sin® (Q,/2).
(c) Note that (75) yields
¥[1 + «cos (2,n)]
= «? sin® (Q,) + 4« sin® (Q,/2) cos (Q,n). (80)
Then (73) and (74) follow because
| ¥ (1 + kcos (Qn)]
< k2 sin® (Q,) + 4« sin® (2,/2).

N-1
Dy = 2 [+ xb@]

(78)

(81)
Q.E.D.
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By Theorem 4, assuming that b(n) is zero mean and is
periodic or has M, = 1, we obtain

V¥ [(1 + «b(n)) cos (2.1 + 0)]

= ae I (L) [1 + kb (n)]

if 4 sin® (2,/2) (x + 2«?) << sin® (Q,).

Fig. 1(d) shows an AM/WC signal and Fig. 1(e) shows
the estimated envelope. The average SER in the output of
¥ was 1922, and the instantaneous ISERy (n) ranged in
[134, 19865]. This is consistent with Theorem 4 which
predicts that ASER = 383 and ISER,,;, = 10. Further,
in the output of V¥ we measured an average SER of 3359
and an instantaneous ISERy(n) in the range [267,
39730]; note that ISER g (n) = 2 - ISERy(n) as pre-
dicted by (46). Thus, despite the small (carrier-to-infor-
mation bandwidth) ratio Q./Q, = 20 and the large AM
index ¥ = 0.8, the operator Vv performed quite well in
estimating the envelope with an average relative error of
0.03%.

(82)

IV. FreQuUENCcY MobuLaTioNn (FM)
A. Continuous-Time FM
Consider the general FM signal

cos [6()] = cos [wct o S () dr + o}
0

where w, is the carrier frequency, g(¢) is the FM modu-
lating (or information) signal, ¢ () = {j w;(7)dr + 6 is
the phase signal, § = ¢ (0) is an arbitrary phase offset,
and the instantaneous angular frequency is defined as

p Ao ()

i) = — = + .
w; (D dr We @y q (D)

Henceforth, we shall always assume that
-1=<q@® =<1 vt 0< w, < w,

and w,, is the maximum deviation of w; from w,.. Hence,
for all ¢,

O0< w. —w, < ) < w + w, <2w,.

Given w;(f) = ¢ (¢) and assuming that g (¢) achieves both
its extreme values —1 and 1 within the analysis time in-
terval, we can obtain w,., w,,, ¢ (?) as follows:

w. = (wi)min + (wi)max
¢ 2

Wy = (W;)max — @, and q(0) = [w;(¥)
Applying ¥ to the FM signal yields

— W]/ O

. . H 2
¥ (cos [p(D]) = [¢(®)]* + ¢ M
N

D1 E()

(83)

Our goal is to use ¥ for frequency demodulation, i.e., to
estimate the instantaneous frequency w;(f), from which
then the modulating signal ¢ (#) can be directly extracted.

Hence, the desired energy term in (83) is D = w?, whereas
E is the approximation error bounded as

wn g0

E(®| < 5

(84)
because ¢ (1) = w,q(f). A sufficient condition to ensure
that ¥ [cos (¢)] = w? is to demand that the instantaneous
SER

2

D@ _ 2(w. — w,)
ISER(®) = > - 85
be >> 1 for all ¢; then,
t
¥ [cos (S w; (1) d7>:|
) 0
= (0,0, if 0pGua << 2(0. — w0 (86)

Alternatively, for certain applications it may be sufficient
to demand an average SER

Dye 2@ f ave
iE'ave wmlq|ave

much greater than unity. The next theorem provides an
upper bound for the absolute approximation error and
lower bounds for the SER’s. Henceforth, the FM index
will be denoted by 8 = w,,/ w;.

Theorem 5: Assume that the real-valued FM informa-
tion signal g () is band limited with highest frequency «,
and that its spectral moments g, o and g, | are finite. Then:
(a) the approximation error E = ¥ [cos (¢)] — w? has the
upper bound

ASER = @87

|E@®| < 0.50,, 0pi, . (88)

The instantaneous SER at the output of ¥ has the lower
bound
2(w, —
ISER() = 2
Wi Wflq

(b) Over any finite interval [0, T] on which {J (1) dr =
0, the average SER has the lower bound

2[w} + (W Gmy)’]
Wm Wrkq

2
0),,,) (89)

ASER = (90)

If () is also periodic with period 7, then

IMew? + 2 2
Wy DG s B Wy

Proof: (a) Equations (88) and (89) follow from (84),
(85), and (19) since Gmax < wpp,.
(b) Over any finite interval [0, T] on which g,,. = 0,
T
1
(@ ave = ;S [we + @ngO) di = w7 + @} (Gm)".
0

92)

In addition, |§|swe < gmix = wsp,. By combining these
two inequalities, (87) yields (90).
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If g(f) = Ii axe’™ ' is also periodic with period T =
27 / wp, then by the Cauchy-Schwarz inequality,

1 (" 17
: : 1 PNT
T SO lgoldr = |7 SO lg@)|" dt
wi/wg
= \/:5 % k2|0‘k|2
k=-wf/w0

2 T
o el S lg@)|* dt = wrq
TAT Jo = HAms
Thus, for periodic g, |loe < @/Gms- This proves (91);
the second lower bound results because g < 1.
Q.E.D.
Assume now that wy, w, < .. Then, if the FM infor-
mation signal g is zero mean and is periodic or has u, =
1, Theorem 5 guarantees that the average SER will be
>> 1 under any of the following three realistic condi-
tions: i) The bandwidth wy of the transmitted information
is much smaller than the carrier frequency w, . ii) The fre-
quency deviation w,, is much smaller than w,.. iii) The
modulation index 8 << 2, which is true for all narrow-
band FM systems. (Both i) and ii) are standard assump-
tions in FM broadcasting systems [13].) Hence,

¥ <cos [ So w; (1) d7}> ~ e [0, O),

if W, wp << 2w,

93)

Alternatively, for any band limited g (1) that satisfies the
above assumptions (i)-(ii) and has p, = 1 (which is true
with equality if ¢ has linear phase), then, by Theorem 5,
the instantaneous SER will also be >> 1 and

\/J(cos [ SO w; (1) dTl) = w;(1),

if wywr << 2(w, — wn)

94)

A special class of FM signals for which Theorem 5 does
not apply is the class of FM/linear (chirp) signals, whose
instantaneous frequency varies linearly:

wi(t) = w. T Wy <2—7€ - 1>, tel0, T). 95

In this case we can still apply the approximation result
(86) and obtain

Jefom (s (5-) o)

2t w
=~ w. + | if 2 < N
W, + Wy (T > i = < (W, — W)

(96)

Thus, J¥ can track the instantaneous frequency as long
as the latter does not change much (i.e., small w,,) or too
fast (i.e., small 1/7T) compared to the carrier w,.

B. Discrete-Time FM
Consider a discrete-time FM signal

n

cos [¢ (n)] = cos {&L.n + Q, SO q(m) dm + 0}. (Ca)

We define its instantaneous angular frequency by

0,(n) £ 921

Both the differentiation d/dn and the integration { dm in
the above two definitions treat the integer time indices n
and m symbolically as continuous variables. Note that the
continuous-time angular frequencies w., Wy, and ; (in ra-
dians/second) have been replaced by their discrete-time
counterparts €., @, and Q; (in radians/sample), which are
assumed to be in (0, 7). We also assume that lgm)] = 1
forallnand 0 < Q. + Q,, < 7.

In the discrete-time FM model (97) the modulating sig-
nal g(n) is assumed to be a mathematical function with a
known computable integral. For simplicity, during the rest
of this section we will focus only on two special cases
corresponding to g(n) being either a cosine or a linear
trend. Thus, consider first an FM/cosine signal

= Q. + Q.q0n). (98)

x(n) = cos [Q.n + B sin (Qn) + 0] (99)
-
¢ (n)

where 8 = 9,,/Q,. The instantaneous frequency varies
sinusoidally as

Q:(n) = Q. + Q, cos (An).
For applying ¥ to x(n) note that if we set
A = Q.n + B cos ({) sin (Qn) + 6
B = Q. + B sin () cos (;n)
then

cos (24) + cos (2B)
2

cos® (4) — sin® (B).

x(n + DHx(n — 1)

Assume now that Q,is small; i.e.,
and sin () = Q.
(100)

For example, the approximation in (100) incurs an error
< 1% for @ < = /50. Then, 4 = ¢(n), B = Q;(n), and

¥ [cos (Q.n + B sin (Qn) + 0)]

o <1= cos () = 1

~ sin® [Q, + @, cos (Ynm)], if @ << 1.

(101)

Thus for discrete FM/cosine input signals, ¥ followed by
a square root and sin”'(+) operation can approximately
track their instantaneous frequency.

An alternative set of conditions for ¥ to track well the
instantaneous frequency can be derived by bounding the
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approximation error. Namely, the approximation error E
= ¥[cos (¢)] — sin® (Q;) is equal to

E = cos? (¢) — sin® (Q;) — cos? (4) + sin® (B)

[cos 2¢) + cos (2Q;) — cos (24) — cos (2B)] /2

sin (A + ¢) sin (4 — ¢) + sin (B + Q;)
- sin (B — Q). (102)

The instantaneous SER in the approximation in (101) has
the general lower bound:

sin® [ ()] _ [sin ()] fin

ISER®) = =T Em) | E s

(103)

where

sin (2, — Q,), ifQ. <

(SYE

[Sin (Qi)]min = (104)

sin (@, + Q,), ifQ > g

Next we find a more specific lower bound for the instan-
taneous SER.

Proposition 3: Consider a discrete-time FM/cosine
signal with @, < 7 /4. If

w < n
2[1 —sin ()] ~ 2 - V2

the instantaneous SER in the approximation in (101) has
the following bound:

8 < (105)

[sin (2)] 2

ISER(n) = 3

(106)
Proof: 1f

v = B[1 — cos (Qf)L v> = B[l — sin (Q/)]

assumption (105) implies that both angles v, and v, are
in the interval [0, = /2]. (Note that the first bound of 3 in
(105) varies with ; and assumes its maximum value of
7/ = V2) = 5.36 when @, = 7/4.) Now, by (102),
|E| < |sin (A — ¢)| + |sin (B — ©;)], and hence | E|
< sin (yy) + sin (y,). This implies that |E| < v, + v,,
since sin (6) < @ for any 6 € [0, = /2]. Hence,

s

since sin (2 + w/4) = 1/\/5 This result and (103)
complete the proof. Q.E.D.
Note that the lower bound (106) for the instantaneous
SER will be >> 1 only for narrow-band FM/cosine sig-
nals, because 8 << [sin (©;)]2;, implies that 8 << 1.
Figs. 2(a) and (d) show two FM/cosine signals, the first
with 100% modulation (i.e., @, = €, and the second
with 20% modulation (i.e., ©,, = 0.2Q,). The corre-

sponding outputs from the N2 operator are shown in Figs.
2(b) and (e). The average SER’s in the output of V¥ were

|E| 56{2—\/5sin<9f+
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49 and 418, respectively. If we assume that the signals in
Fig. 2 resulted from sampling continuous-time FM sig-
nals (with negligible aliasing), the lower bounds that
Theorem 5 predicts for the two average SER’s are 20 and
100, respectively. In the 20% modulation case we also
measured ISER(n) € [169, 6650]. Overall, the examples
in Fig. 2 illustrate that the information signal is well
tracked despite the fact that Q;/Q, = 0.1 is high compared
to its usually low values in practical applications. Further,
lowering Q,,, i.e., the amount of frequency modulation,
decreases the estimation error.

Consider now a discrete-time FM/linear signal over a
finite time interval

2
y(n) = cos [Q(‘n + @, <% - n> + 9],
A

~—

é(n)

n=0,1,--+,N (107)

i.e., a “‘chirp’’ signal with linearly varying instantaneous
frequency

2n

Qn) =Q. +Q, <———1>, n=

0,1,
N

, N.

In [2] it was shown that ¥ can approximately track the
instantaneous frequency of the chirp signal if Q,,/N <<
1. Next we follow a similar approach with the difference
that all the approximations are left for the final stage so
that the approximation error can be quantified. Given that

yin + Dy(n = 1
= % [cos <2¢>(n) + %> + cos (ZQi(n))}

= cos’ [¢p(m)] — sin® [Q;(n)]

1
+ —

> {cos <2d>(n) + 2%") — Ccos (2¢(n))]

it follows that
Y[cos (¢(n))]

R i)
= sin” [Q;(n)] sin | 2¢(n) N sin N
—

— s
D(n)

—

E(n)
(108)

Since | E(n)| < sin (Q,,/N), we have the approximation

2
‘Il{cos <an + Q,,,(”ﬁ - n> + 0>]
2n
~ sin? o
=~ sin {Q( + Q’"(N 1)},

- if sin <?—\;’—> << [sin @& (109)
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Fig. 2. Detection of instantaneous frequency by the energy operator ¥ in FM signals cos [Qn + (©,,/9) sin (&,n)], where
Q. = n/5and @, = 7/50. (a) FM signal with @, = Q.; Q,(n) = f,(n). (b) V¥ applied on (a). (c) Difference between |sin

(fi(n))| and the signal in (b). (d) FM signal with @,, = 0.2Q.: Q;(n) = f2(n). (¢)

| sin (f,(n))| and the signal in (e).

with an instantaneous SER
Dmin
Emax

[sin ()] o
sin (Q,,/N)

ISER(n) = (110)

V. AMPLITUDE AND FREQUENCY MODULATION
(AM-FM)

A. Continuous-Time AM-FM
The signal

a(r) cos [6(1)]
= a(t) cos <wct + W SO q(7) dr + 0> (111)

is a cosine with both a time-varying amplitude a(¢) and a
time-varying instantaneous frequency w; (f) = é(t). It can
be viewed either as a general FM signal whose amplitude
varies like the envelope of some AM signal, or as a gen-

¥ applied on (d). (f) Difference between

eral AM signal whose instantaneous frequency is not con-
stant but varies according to some FM information signal
q(t). We have used these types of combined amplitude
and frequency modulation signals in modeling speech res-
onances [5]-[8]. We henceforth call (111) an AM-FM
signal. Obviously, AM-FM signals include as special
cases the AM and FM signals. Applying the operator v
yields

¥[a cos (¢)]
= (@d)’ + ¢ sin (2¢)/2 + cos’ (®)¥(a) .
N~ ~— i

—~ T
D(1 E®)

(112)

The desired energy term is D = (ag)’. If we consider the
approximation ¥[a cos (¢)] = (ad)?, then the error E is
bounded as

|E()| = | ¥(@@)| + 0.5 0)d(0)]

V(@) max + 0-5608 maxiimax -

IA

IA

(113)
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Let now a(r) and g(¢) be band limited with corresponding
highest frequencies w, < w, and w; < w.. If ¥(a) = 0,
an upper bound for the mean absolute error is

Elpe < Qi + 050,051, @y (114)
flq

Further, since Dy, = (w0, — @) (@pms)?, the average SER
of the approximation will have the lower bound
D

ASER > —* > .
|E|we 20>+ 0.5w,,wsp,

(@, — w,)

(115)

Thus, if 2w} + 0.5w,w0m, << (0, —

Ao ([

Further, if the AM part is with carrier, i.e., if a(t) = 1
+ kb(t) > 0 with k < 1, then we can also find a nonzero
lower bound for the instantaneous SER. Specifically, from

w,)?, then

w; (1) d‘r>] =, |a@®) |w;(t). (116)

Yia(n) cos ¢(n)] a (n) ¥ [cos ¢p(n)] + ¥ [a(n)] cos ¢(n

a@*(n) sin® Q:(n) + a*(W)[¥[cos d(n)]
%’ g ~

1
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Finally, if so desirable, it is possible to separate the
amplitude from the frequency component in the output of
V¥ applied to an AM-FM signal x via an algorithm which
we have developed in [7], [8]. This algorithm is very ef-
ficient because it uses only a simple nonlinear combina-
tion of two energy signals, ¥(x) and ¥(x), to separately
estimate the amplitude envelope and instantaneous fre-
quency of x.

B. Discrete-Time AM-FM
Consider a real-valued discrete-time AM-FM signal
a(n) cos [¢(n)]

n

= a(n) cos <an + Q, SO q(m) dm + 0> (120)

with time-varying amplitude envelope |a(n)| and instan-
taneous frequency Q;(n) = do¢/dn = Q. + Q,q(n). For
any a and ¢,

— 1) cos ¢(n + 1) a2n
— sin® Q;(n)] + ¥la()] cos ¢(n — 1) - cos p(n + 1).

D(n)

(113), (37), (23), and (19) we obtain
|E@)| < kaog(uy + 26p3) + 0.5(1 + 0 w,0mm,
(117)
from which it follows that

D_.
ISER(t) = =™

max

- (I = 0w = )’
T kel(up + 26p3) + 0.5(1 + K)zw,,,wfuq’

(118)

Assuming that y, = I and u, = 1 (which are true with
equality if b and g have linear phases, for example if they
are single cosines), this SER will be >> 1 if w,, Wp Wy
<< w.and ¥k << 1; then

(119)

Thus, under realistic assumptions, when V¥ s applied
to an AM-FM signal, it yields the product of two com-
ponents: the FM instantaneous frequency w;(¢) and the
AM envelope |a(t) |. If w,, << kw,, the w,(¢) variations
in the operator’s output have much smaller amplitude than
that of |a(t)|, and AM dominates over FM: i.e., the

¥ output follows the AM envelope. In contrast, FM
dominates over AM if k << w,,/w.. Examples of these
cases are shown in Section V-B.

JW[(I + kb(t)) cos <wll + w, S q(r)dr + 0
0

= [1 + «b()][w, + wuq®)].

E(m

(122)
Henceforth we assume that ; € (0, =) varies either sinu-
soidally, in which case g(n) = cos (n), or linearly, in
which case g(n) = 2n/N — 1 forn =0,1, - -+ ,N. In
the cosine case, we assume that Oy << 1. In the linear
case, we assume that sin (,,/N) << [sin (©,)] 2. . These
assumptions ensure that

¥[cos (¢(n)] = sin’ [Q;(n)]
and

E(n) = E'(n) = ¥[a(n)] cos [¢(n — 1)] cos [¢(n + 1)].

Since | E'(n)| <| ¥(a(n))| for all n, we obtain the approx-
imation

Yla(n) cos (¢(n))]
= e @ (n) sin’[Q; (n)],

- if 1 ‘I,(a) iave < [anns sin (Qi)min]2 (123)

with an average SER

(@)’ [5iN ()] i

ASER =
| ¥(@) [ave

(124)

: 2
> [Sln.(?i)]min (125)
2 sin” (2,)
where the second lower bound resulted by assuming that
a(n) is band limited with bandwidth Q, and that ¥(a) is
nonnegative.
Further, if a,;, > 0, e.g., if a(n) = 1 + kb(n), where
b(n) is band limited with bandwidth Q, and « < 1, then
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Fig. 3. Tracking abilities of the energy operator in AM/WC-FM signals [1 + & cos (@) cos [Qn + (Q,/9Q) sin (Qn +
7 /4)] with Q. = 7 /5. Q, = 7/100, and Q; = 7/50. (a) AM/WC-FM signal with x = 0.8 and @, = 0.1Q.; a(n) = a,(n),
Q.(n) = fi(n). (b) N7 applied on (a). (¢) Difference signal between | a, () sin (f, (7)) | and the signal in (b). (d) AM/WC-FM
signal with k = 0.1 and 2,, = 0.8Q; a(n) = ay(n), Qi (n) = fr(n). (e) N2 applied on (d). (f) Difference between | a,(n) sin

(f,(n))| and the signal in (e).

we obtain the approximation
Yla(n) cos (6(n)] =~ a’(n) sin” [D; (),

if W@y << [a” sin” (@)]min

(126)
with an instantaneous SER
1 = ) 2Isi 2
ISER(n) > "\)P ([s;" @] mi (127)
—_— 2 1 . 2
(1 — &) [sin ()] min (128)

>
4k sin® (Q,/2) 2k M} + M)

and an average SER (over any finite interval on which b,
=0)

[sin ()] 2in

ASER = —5—— .
8«2 sin® (Q,/2)M;

(129)

If b(n) = cos (Qn), it follows from (127) and (81) that

(1 — &) [sin (@)} min
2 sin? (Q,) + 4k sin® (Q,/2)

ISER(n) = (130)

The above tracking of the squared product of the instan-
taneous amplitude and (sine of ) frequency signals will in-
cur a very small relative error as long the instantaneous
or average SER’s are >> 1. Further, by (46), if ISER ;5
>> 1, then the instantaneous SER at the output of V¥
will be approximately twice the SER at the output of V.
Figs. 3(a) and (d) show two AM/WC-FM signals with
cosines as modulating signals and with the following two
combinations of AM and FM amounts: i) 80% AM (k =
0.8) and 10% FM (2,,/9Q. = 0.1); ii) 10% AM and 80%
FM. The corresponding outputs from the V¥ operator are
shown in Figs. 3(b) and (e). The estimation error signals,
i.e., the differences between the ideally desired outputs
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Fig. 4. Maximum allowable ratio w,/w, of the information signals’ bandwidth versus the carrier so that the continuous energy
operator ¥ is guaranteed to yield a nonnegative energy output when applied to AM-FM signals of the form x(r) = [l + « cos
(w41)] cos [wt + (w,,/w,) sin (w,r)]. The maximum ratio w,/w,, within (0, 1], is shown as a function of the AM index « for

different FM amounts 100(w,, /@) %.

la(ny| sin [Q;(n)] and the real outputs from the V¥ are
shown in Figs. 3(c) and (f). For case i) we measured at
the output of ¥ an ASER = 429, ISER,,;, = 134 and
ISER,.« ~ 0(10°%). For the parameter values in Fig. 3(a),
our theoretical results predict the lower bounds ISER;,
= 8 and ASER = 227. In the output of V¥ we found
that the actual values of the instantaneous and average
SER’s were approximately twice larger than their coun-
terparts at the output of ¥. For case ii), due to the very
large amount of FM, the average SER at the output of
V¥ dropped to 75 whereas ISER,,;, = 9 and ISER,,, ~
0(10%. These examples illustrate that applying V¥ to
discrete-time AM-FM signals can approximately track the
product of the AM envelope and the (sine of the) FM in-
stantaneous frequency, with a relatively small error even
in cases with extreme amounts of AM or FM.

VI. PositiviTy OF ENERGY OPERATORS

For the validity of the approximate results derived in
this paper it is assumed that we deal only with AM-FM
signals x(t) = a(t) cos [¢(z)] as in (111) for which ¥[x(?)]
= O for all . From (112) it follows that, if a(z) = 1 +
kb(r) with |b(t)| = 1 and « < 1, a sufficient condition
for the nonnegativity of ¥(x) is Epyy < Dpin, 1.€.,

V(@)ax + 0.5, (1 + €Y Goax = (1 — 6)2(w, — w,)°.
(131)

As an example, if b(t) = cos (w,t + ) and g(t) = cos
(wst), then by (44) the above condition becomes

0.5w,w,(1 + &) + k(1 + K)ol

= (1 - &) (w — w,). (132)

Let us further assume that w, = w; and define

w(l wf

_ = — = r, )\ _

W, W W,
where r is the ratio of the information signal’s bandwidth
versus the carrier, and A is the FM modulation depth.
Then, for given amounts of AM and FM, i.e., for each
combination of (x, \) € (0, 1)?, the allowable range for
the ratio r that guarantees ¥[x(z)] = 0 is

N 1 — )1 =N A
IR R VR
4 (1 + k) 2
O0<r= = Iy
2k

As Fig. 4 shows, for very large AM and FM amounts =
50% the maximum (r,,) allowable value of r in the inter-
val (0, 1] is 0.05, which is relatively large. Conversely,
for very large r such as 0.5, the signal can still have large
amounts of AM and FM, e.g., 20%, and still yield a non-
negative energy output.

For an alternative condition, note that if the amplitude
signal a is such that ¥[a(r)] = O for all ¢, then a simpler
condition to guarantee nonnegativity of ¥[a cos (¢)] is

Grnax < 2w — @) (133)

If x has only FM, i.e., if a is constant, and ¢ has linear
Fourier phase and a bandwidth w, then ¥(x) = 0 if

Wner < 2w, — W) (134)

This condition is true under very mild assumptions. For

example, it is valid if w;/w, < 0.1 and w,,/w, < 0.8.
If x has only AM, i.e., if w,, = 0, then ¥(a) = O guar-

antees that ¥(x) = 0. In general, there is a large class of
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signals a such that ¥(a) = 0, as the following result in-
dicates.

Proposition 4: (a) Any finite product of signals with
nonnegative ¥ energy is also a signal with nonnegative
energy; i.e., for all n = 2 and forall ¢,

)} =0 vi=1,---,n

= \1{] H< x,v(t)} = 0. (135)
(b) ¥(x) is nonnegative for any signal x that is a finite
product of any signals from the following three classes:
i) cosines of constant frequency, ii) real exponentials e,
and iii) linear trends st + c.

Proof: (a) Since ¥(xx;) = x1¥(x) + x2¥(x,),
(135) is true for n = 2. By induction on n, it can also be
proven for any integer n > 2. (b) is a special case of (a)
since ¥(cos (wt)) = w2, ¥(e') = 0, and ¥(st + ¢) =
s Q.E.D.

Note also that, from the definition ¥(x) = () — xx,
we can predict the positivity or negativity of ¥(x) at spe-
cial time instants. Specifically, ¥[x(#)] = 0if ¢ is a zero
crossing (x = 0) or inflection (x = 0) point. Also, ¥[x(ty)]
< 0 if x has a positive local minimum (x > 0, x =0, %
> 0) at t, or a negative local maximum.

In the discrete-time case, it is also assumed in this pa-
per that we deal with AM-FM signals x(n) = a(n) cos
[¢(n)] as in (120) such that ¥[x(n)] = 0 for all n. If a(n)
= 1 + kb(n) with | b(n)| = 1 and x < 1, then it follows
from (122) that a sufficient condition for the nonnegativity
of ¥(x) is Emax = Diin» 1-€-,

(@) + (1 + &) [¥(cOS (9)) = sin® (@)]max
(136)

As discussed for the continuous-time case, there are many
classes of discrete AM-FM signals that satisfy (136). For
example, in the case of a cosine amplitude b(n) = cos
(Q,n) and a linear frequency &;(n) = Q. + Q,2n/N -
1),n =20, -+, N, with @ = w /2, it follows from
(136), (81), and (108) that ¥(x) = 0if

< (1 = ©)*[sin (@) iin-

k2 sin? (Q,) + 4« sin (,/2) + (1 + &)’ sin <Q—A7>

< (1 — k)’ sin® Q. — Q). (137)

For more general cases it suffices for the present work to
say that, during most of our experiments with noiseless
AM-FM and bandpass filtered speech signals, we have
very rarely encountered a negative ¥[x(n)], and in most
such cases the negative value appeared to be due to
roundoff errors.

VII. DisCUSSION
We have shown that the energy operator ¥, followed
by a square root operation, can approximately estimate
the envelope of AM signals and the instantaneous fre-
quency of FM signals. In both cases we have found upper

bounds for the maximum and mean absolute value of the
approximation errors. We have also shown that their mag-
nitudes relative to the corresponding signal values are
much smaller than unity under very general conditions for
the modulating signals, namely, by assuming that the AM
or EM information signals have a bandwidth much smaller
than the carrier frequency and/or that they do not vary
much in value with respect to the carrier. Our results ap-
ply to general AM signals both in continuous and discrete
time, as well as to general continuous-time FM signals.
For discrete-time FM signals we presented results in the
simple cases where the modulating signal varies either
sinusoidally or linearly; in [7] we have extended our dis-
crete FM results to more general classes of signals that
are finite linear combinations of cosines.

We have also analyzed general AM-FM signals a(t)
cos (§§ w; (1)dT), for which we showed that (if the relative
approximations errors involved in the AM and FM de-
modulation are << 1)

J:[a(t) cos <SO w,»(7)dr>jl = |a@)|w ).

Thus the ¥¥ output is the product of two parts: the in-
stantaneous frequency w;(f) and the amplitude envelope
|a(¢)|. This result generalizes the tracking ability of
J¥ , which for cosines 4 cos (wo?) yields | A| wo, whereas
for AM—FM signals the constant amplitude A and fre-
quency wy are replaced by the time-varying amplitude and
instantaneous frequency.

Finally, all our results for continuous-time signals can
be easily extended to incorporate any multiplicative con-
stant amplitude A # 1 and/or any exponential factor e’
in the input signal by just multiplying the energy opera-
tor’s output with A2 e’ because

¥ [Ae"x(1)] = A7 x(D)].

Similarly, all our results for discrete-time signals can be
easily extended to incorporate a constant amplitude A #
1 and/or an exponential factor r" in the input signal by
just multiplying the output of ¥ by A*r*", since
W, [Ar" x(n)] = AP r ¥y lx(n)].

A. Noise

Throughout all our analysis we assumed that the AM
and FM signals are clean, i.e., do not contain noise. Next
we provide some preliminary discussion for the case when
the signal is corrupted by noise. Kaiser [2] showed that if
w(n) is a discrete-time zero-mean white noise sequence,
then

&{¥[x(n) + wm]} = ¥lx(m] + ol (138)

where &{-} denotes statistical expectation and 0% =
&{w?(n)}. We illustrate the effect of (138) in the case of
signals x(n) with a bandwidth Q, < 7 by comparing the
signal-to-noise ratio (SNR), defined as the ratio of mean
squared values, of the noisy input x + w and output ¥(x



1548

+ w). Thus, the SNR of the input is SNR; = (X,1,,)> /0%
Note that ¥(x + w) is equal to ¥(x) plus some noise terms
and that the output of ¥ has the same dimension as the
signal squared. Hence, the SNR of the output is SNR, =
| (x) |ave /02 If ¥(x) = 0, it follows from (63) that

SNR, = 2 sin® (Q,)SNR, (139)

with equality if x(n) = A cos (Q,n). Thus, if the input is
a cosine corrupted by noise and 2 sin’ (©,) = 1, then the
energy operator does not deteriorate the input SNR; it can
even lead to an SNR improvement since the output SNR
will be larger than the input SNR if 7/4 < Q, < 37/4.
There are several issues that arise concerning the impli-
cations of (138) and (139) for general AM or FM signals
as well as possible ways of suppressing noise either in the
input or in the output of ¥. These issues are not addressed
in this paper.

B. Postfiltering the Error

The approximation error signal £ when ¥ is used to
track the envelope of an AM signal a(r) cos (w.t + 6) has
a low-pass and a high-pass component, i.e., by (9),

cos Quw.t + 26)

1
E(t) = ¥(a()) [5 + >

The high-pass error component ¥(a) cos 2w + 28) can
be effectively eliminated by a low-pass filtering in the out-
put of ¥. Thus, as observed in [11], the approximation
error can be further reduced by about 50% if the output
of ¥ is low-pass filtered to eliminate components around
2w.. Of course, the relative magnitude of this high-pass
error component with respect to the desired term a’w? is
in the order of O(w2/w?). Thus, for small ratios w,/w,
<< 1, the error is already negligible and hence a further
low-pass filtering may be an unnecessary computational
luxury.

For FM signals cos [¢(¢)], the approximation error
when V¥ tracks the instantaneous frequency term w,-z(r) is,
by (83), E(t) = é (1) sin [2¢(t)]/2. Hence, if wy is the
bandwidth of w;(¢), the spectrum of the error is approxi-
mately concentrated in the interval 20w, — 2w, — 2wy,
2w, + 2w,, + 2ws], whereas the desired term w} has high-
est frequency 2w;. Thus, if the ratio (w,, + 2w;)/w, is
smaller than one, then elimination of the error component
through low-pass postfiltering is possible, although a very
small value of this ratio (which is common in realistic FM
systems) guarantees that the error magnitude is negligible
compared to the desired term.

Similar conclusions can be made for the general AM-
FM case and for discrete-time signals, as has been exper-
imentally found in [11].

C. Other Demodulation Approaches

A standard envelope estimation approach in AM sys-
tems [13] consists of passing the AM signal through a
memoryless nonlinearity (e.g., a square law), followed
by low-pass filtering. In these systems the estimation er-
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rors are introduced either via the imperfections of the low-
pass filter that always has a nonideal cutoff frequency re-
sponse or via the nonlinearities that may introduce distor-
tions such as higher powers of the envelope. However,
the energy operator approach does not require a low-pass
filter. Using a low-pass filter at the output of Vv may
further reduce the approximation error, but it may not be
needed since the error is already small if w, << w, or «
<< 1. Similar arguments apply for the FM case.

Given a real AM-FM signal x(r) = a(¢) cos [¢(¢)], an
alternative approach to estimate its envelope |a(r)| and
instantaneous frequency ¢(t) is to use the Hilbert trans-
form £(¢) of x(r). The Hilbert transform approach can pro-
vide an envelope

rt) = NX2 (@) + 22(1)

and an instantaneous frequency 8(1), where 6(t) = arctan
[£(z) /x(¢)]. Of course, there will be some error because
r(t) and 0(7) will generally be different from their coun-
terparts |a(r) | and ¢(¢) imposed by the true modulations
in x. In [11] there is some work reported on comparing
the Hilbert transform with the energy operator approach
in [7], [8]. Experiments on N-sample discrete AM-FM
signals indicate that when the ratio of carrier w,. versus the
information signals’ bandwidths w,, wyis in the order of
0(10), then the discrete Hilbert transform (implemented
via an FIR filter) can give a smaller error but at a com-
putational complexity O(N?) which is higher than the very
low O(N) complexity of the energy operator approach.
Decreasing the complexity of the Hilbert transform to an
O(N) by using a shorter impulse response makes its error
larger than that of the energy operator. In addition, if the
ratio of w, versus w,, wyis in the order of O(100) or higher,
then the energy operator yields a smaller error than the
more complex Hilbert transform approach.

D. Applications

In proving that the energy operator can be used for
tracking the envelope of AM signals or the instantaneous
frequency of FM signals with negligible error we assumed
that the carrier frequency w, is much larger than the band-
width w, or w, of the AM or FM information signal and
that the AM index « or the FM depth w, /w. are much
smaller than one. All these assumptions are very realistic
and universally used by AM or FM communication sys-
tems. For example, commercial AM broadcasting sys-
tems use a carrier frequency in the range [550, 1600] kHz
and the transmitted information is band limited to 5 kHz;
hence, in this case the average relative error that ¥ would
incur while tracking the envelope would be in the order
of wﬁ/w% < 107*. Similarly in commercial FM broad-
casting systems the carrier is in the range [88, 108] MHz,
whereas the message bandwidth is 15 kHz, and the max-
imum frequency deviation does not exceed 75 kHz. This
implies that using ¥ to track the instantaneous frequency
would incur an average relative error in the order of
w,,,wf/wz < 107%. Thus both in AM/WC and FM com-
munications systems the energy operator is applicable
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since it can provide signal demodulation with very small
error and can be implemented very simply.

Another very promising applications area for the results
in this paper is the problem of tracking modulations in
speech resonances. Motivated by several nonlinear and
time-varying phenomena during speech production, we
proposed in [5], [6] an AM-FM modulation model for
speech signals by representing a single speech (formant)
resonance as a damped AM-FM signal and the total short-
time speech signal S(z) within a pitch period as a sum of
such AM-FM signals

K !
S(f) = [\21 ak(t) Ccos <w(A“T + W,k S qk(T)dT + 6A>
= 0

where K is the number of speech formants, w. ; is the
center value of the kth formant, w,, ; is its maximum fre-
quency deviation from . x, g (1) is the normalized fre-
quency deviation signal, and a, () = e “MA (1) is its
time-varying amplitude that includes an exponential de-
cay and a generally non-constant amplitude signal A4, (1).
The instantaneous value of the kth formant frequency is
w; (1) = we o + Wk gk (t). In contrast 1o the above AM-
FM model, the standard linear time-invariant (within a
short-time frame) model for speech implies that each for-
mant has no FM (i.e., w, ; = 0) and no AM beyond the
exponential damping (i.e., 4;(?) is a constant). In our
speech experiments [5]-[8] we have found that the energy
operator applied to single speech resonances (extracted
via bandpass filtering of speech) is very efficient in track-
ing modulation patterns with significant amounts of AM
and FM. These time-varying instantaneous frequencies
and amplitudes extracted from each speech resonance can
be used for a variety of applications including speech cod-
ing, synthesis and recognition.

In another application, we have applied the energy op-
erator to detection of weak acoustical events in an inter-
fering AM-FM signal background [12]. Examples of such
interference occur in an underwater environment (e.g.,
interference from biologics or active sonar) or in environ-
ments for mechanical system monitoring (e.g., interfer-
ence from large rotating machinery). We have developed
an AM-FM model for the narrowband background, and
to detect acoustic signals in this background we applied
the discrete energy operator. When the signal of interest
does not satisfy the assumed AM-FM model, the opera-
tor’s output is shown to produce a large deviation from
the slowly-varying modulation components. One inter-
pretation of this deviation is that the operator is perform-
ing a nonlinear short-time estimation of the AM-FM
background; when the background deviates from the as-
sumed model, the estimation error grows. In essence the
energy operator senses the perturbations from the AM-
FM background. Preliminary results indicate that this
technique can detect short-duration signals in a slowly-
varying AM-FM background. Robustness of the method
in noise and the formulation of a *‘detection statistic’” are
now being investigated.
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In conclusion, the instantaneous adapting nature of the
energy operator and its ability to track amplitude and fre-
quency modulations, as well as its low complexity, makes
the energy operator a very useful tool for signal process-
ing and its application to communications, speech analy-
sis, and signal detection.
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