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Energy Separation in Signal Modulations with
Application to Speech Analysis

Petros Maragos, Senior Member, IEEE, James F. Kaiser, Fellow, IEEE, and
Thomas F. Quatieri, Senior Member, IEEE

Abstract—Oscillatory signals that have both an amplitude-
modulation (AM) and a frequency-modulation (FM) structure
are encountered in almost all communication systems. We have
also used these structures recently for modeling speech reso-
nances, being motivated by previous work on investigating fluid
dynamics phenomena during speech production that provide
evidence for the existence of modulations in speech signals. In
this paper, we use a nonlinear differential operator that can
detect modulations in AM-FM signals by estimating the prod-
uct of their time-varying amplitude and frequency. This oper-
ator essentially tracks the energy needed by a source to produce
the oscillatory signal. To solve the fundamental problem of es-
timating both the amplitude envelope and instantaneous fre-
quency of an AM-FM signal we develop a novel approach that
uses nonlinear combinations of instantaneous signal outputs
from the energy operator to separate its output energy product
into its amplitude modulation and frequency modulation com-
ponents. The theoretical analysis is done first for continuous-
time signals. Then several efficient algorithms are developed
and compared for estimating the amplitude envelope and in-
stantaneous frequency of discrete-time AM-FM signals. These
energy separation algorithms are then applied to search for
modulations in speech resonances, which we model using AM-
FM signals to account for time-varying amplitude envelopes and
instantaneous frequencies. Our experimental results provide
evidence that bandpass filtered speech signals around speech
formants contain amplitude and frequency modulations within
a pitch period. Overall, the energy separation algorithms, due
to their very low computational complexity and instanta-
neously-adapting nature, are very useful in detecting modula-
tion patterns in speech and other time-varying signals.

I. INTRODUCTION

ODULATION of the amplitude and/or frequency of
a sine wave has been used extensively in commu-
nication systems for transmitting information. Some of the
early pioneering work in this field was done by Carson
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[31, van der Pol [37], [38], and Armstrong [1]. The recent
state of basic knowledge on amplitude-modulation (AM)
and frequency-modulation (FM) systems can be found in
contemporary books on communications, e.g., [27]. Re-
cently [18], we have also used AM and FM models to
represent time-varying amplitude and frequency patterns
in speech resonances. Our initial inspiration for attempt-
ing to model and detect modulations in speech resonances
has been based on Teager’s pioneering work on nonlinear
modeling of human speech production [30]-[34].

In this paper, we provide an efficient solution to the
fundamental problem of estimating the time-varying am-
plitude envelope and instantaneous frequency of a real-
valued signal

x() = a(t) cos (w[t + W,y SO q(7) dr + 6> (1)

(@)

that has both an AM and FM structure; we then apply
these results to tracking modulations in speech reso-
nances. Henceforth, we call x(r) an AM-FM signal. It is
a cosine of carrier frequency w, with a time-varying am-
plitude signal a(r), an angle equal to the phase signal

t

¢ = w.t + w, SO q(rydr + 6 @)

and a time-varying instantaneous angular frequency sig-
nal

d
w () & 700 = o+ ong®, 3)

where |q ()| = 1, w, is the maximum frequency devia-
tion from w., and 6 = ¢(0) is some arbitrary constant
phase offset. Note that two different information signals
can be simultaneously transmitted in the amplitude a(f)
and the frequency w; (?) [or equivalently in the normalized
frequency modulating signal g (#)]. Such AM-FM signals
are very frequently used in communication systems. Next,
we briefly outline our motivation for using them to model
time-varying speech resonances.

By ‘‘speech resonances’’ we loosely refer to the oscil-
lator systems formed by local cavities of the vocal tract
emphasizing certain frequencies and de-emphasizing oth-
ers during speech production. In linear speech modeling
21, [51, [6], [15], [16], [26], speech resonances, also
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called ‘‘formants,’’ are characterized by the poles of the
transfer function of a linear filter modeling the vocal tract.
Each pair of complex conjugate poles corresponds to a
second-order resonator with an exponentially-damped
cosine as impulse response

R, () = Ae™ cos (w.t + 0). @

The formant frequency is w,, whereas ¢ > 0 controls the
formant bandwidth. In the linear model, the model coef-
ficients, and hence the formants, are assumed constant
over each short-time analysis frame (about 10-30 msec,
or 1-3 pitch periods). Thus, this classic approach assumes
some local stationarity of the speech signal.

One of the implications of our work in this paper is that
it now provides a possibility to extend this local station-
arity assumption to a more refined model where variations
of the frequency and amplitude of speech resonances can
be modeled and detected at the smallest possible discre-
tized time scale, i.e., the time scale of one sampling pe-
riod. Experimental evidences motivating such an ap-
proach come from Teager's work [34] that provided
indications and plausible explanations of how the speech
resonances can change rapidly both in frequency and am-
plitude even within a single pitch period, possibly due to
the rapidly-varying and separated speech airflow in the
vocal tract. It is also known that slow time variations of
the elements of simple second-order oscillators can result
in amplitude or frequency modulation of the simple os-
cillator’s cosine response [38]. Hence, since the effective
air masses in vocal tract cavities and the effective cross-
sectional areas of the airflow can vary rapidly, this could
cause modulations of the air pressure and/or velocity field.
In Section V we outline several mechanisms due to the
physics of speech airflow that may explain such changes.
All these considerations lead us to propose the following
modulation model for each speech resonance:

Ry (t) = a() cos [¢ (1]

e " A(t) cos (wct + W, S q(7) dr + 0).
0

&)

Thus, the constant amplitude A and frequency w, in the
linear resonator have now been replaced by a time-vary-
ing amplitude A (7) and instantaneous frequency w; (7). This
implies modeling the resonance with an exponentially-
damped AM-FM model. The total speech signal S(7) is
then modeled as a sum of such AM-FM signals

K
S0 = 2 a () cos [¢, (0] ©)

where the subscript k refers to the kth resonance and X is
the number of speech formants.

A fundamental problem is, given a speech signal over
some time interval, to estimate the amplitude envelope
|a(z)| and the instantaneous frequency w;(f) of each res-
onance at each time ¢. Toward the solution of this prob-
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lem, we first isolate individual resonances by bandpass
filtering the speech signal around its formants. Then, we
use efficient algorithms (presented in this paper) that can
estimate the amplitude and frequency modulating signals
of each resonance based on an ‘‘energy-tracking’’ oper-
ator. Specifically, Teager developed several tools for non-
linear speech processing such as the energy operator

Y x@)] & EOF - x0x@® M

for continuous-time signals x(f) with x = dx/dt and its
discrete-time counterpart

Vilx(m] & x2(n) — x(n — Dx(n + 1) ®)

for discrete-time signals x(n), n = 0, +1, +2, - - - . Both
V¥, and ¥, are nonlinear and translation invariant. These
operators were first introduced systematically by Kaiser
[12], [13] and were shown to track the energy of simple
harmonic oscillators. Namely, if x(f) = A cos (w.t + 8)
is the displacement produced by a mass-spring undamped
linear oscillator with mass m and spring constant &, then
the total (kinetic plus gotential) energy of this oscillator
is equal to (mx* + kx%) /2 = (m/2)A*w?, i.e., propor-
tional to the squared product of amplitude and frequency.
Further, the operator ¥, applied to x(f) can track the en-
ergy (per half-unit mass) of the source that produced the
oscillation signal x (f) because [13]

¥.[A cos (w2 + 0)] = (Aw,)’ 9

for any constants A and w,.

The energy operators are also very useful for analyzing
oscillation signals with time-varying amplitude and fre-
quency. Specifically, in our earlier work [18], [19] we
have shown that ¥, applied to the AM-FM signal of (1)
can approximately estimate the squared product of the
amplitude a (f) and instantaneous frequency w; (¢) signals;
ie.,

¥, [a(z‘) cos <So w;(7) dr + 0>} = [aWw; (O] (10)

assuming that the signals a(f) and w;(f) do not vary too
fast (time rate of change of value) or too greatly (range of
value) in time compared to the carrier frequency w,.

The first goal of this paper is to further separate the
amplitude from the frequency signal in the output energy
product of ¥ .. Thus, we show in Section II how a com-
bined use of the energy operator ¥, on the AM-FM signal
and its derivative can lead to an elegant algorithm for sep-
arately estimating the amplitude a () and frequency w;(¢)
signals. We call this an energy separation algorithm
(ESA) because of the aforementioned dependence of the
energy of an oscillator on the product of amplitude and
frequency and because of the usage of energy-tracking
operators.

Section III provides a similar ESA for discrete-time sig-
nals by using the discrete energy operator ¥, and approx-
imating signal derivatives with 2-sample differences. Al-
though the continuous and discrete-time cases have some
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conceptual similarities, the mathematics are different and
less intuitive in the discrete case; hence, the discrete case
deserves its own exposition. In addition, because of the
variety of possible discrete approximations to derivatives,
there are several variations of discrete ESA’s. For ex-
ample, in Section IV we present a second discrete ESA
that uses 3-sample differences in place of derivatives and
comment on how its performance compares with the first
discrete ESA.

Section V discusses the preliminary application of the
discrete ESA to separate amplitude from frequency com-
ponents in speech resonances, i.e., signals resulting from
bandpass filtering speech vowels around their formants.
While the major focus of the paper is the development of
ESA’s for arbitrary AM-FM signals, our main inspiration
and motivation for this research has been based on the
problem of tracking modulations in speech signals. Thus
we precede the experimental results on speech by a brief
discussion of theoretical and experimental evidences for
the existence of such modulations in speech signals.

Finally, in Section VI we conclude by discussing var-
ious issues regarding the overall performance of ESA’s
for amplitude/frequency separation in AM-FM signals,
which we have found impressive given the short-time na-
ture of the nonlinear operators used and the relatively triv-
ial complexity to implement them, as well as their impli-
cations for speech modeling.

II. ENERGY SEPARATION FOR CONTINUOUS-TIME
SIGNALS

In this section, we first present some closed-formula
solutions for exact estimation of the constant amplitude
and frequency of a cosine using the energy operator and
then show that the same equations apply approximately to
an AM-FM signal with time-varying amplitude and fre-
quency. To simplify notation, we henceforth drop the
subscripts ¢ and d from the continuous and discrete energy
operator symbols and use ¥ for both; the difference will
always be clear from the context.

A. Constant Amplitude/Frequency Cosine

Consider a cosine x () = A cos (w.t + 0) with constant
amplitude A and frequency w, > 0 and its derivative
x() = —Aw, sin (w.t + 6). an

Then (9) implies that
V[x(@)] = Aol (12)

From (9) and (12) it follows that the constant frequency
and the absolute amplitude of the cosine can be obtained
from the following equations:

Y= ¥ 1x ()]
T AYRRO]

(13)

¥ x @]
Al = —. 14
. V¥ [x (0] o
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At each time instant these equations use only the two in-
stantaneous values of the output signals from the energy
operator when the latter is applied to both the signal and
its time derivative.

B. AM-FM Signals
Consider the real-valued AM-FM signal of (1)
x() = a(t) cos [¢ (D]. (15)

We henceforth assume that 0 < w,, < w.and |g(®)| <
1, which implies that for all ¢
0< w — 6y < () < 0 + 0y < 20, (16)
In [19] we have shown that

¥ [a cos (¢)] = (ad)> + 0.5a% sin 2¢) + ¥ (a) cos” (¢)
(- —

1305
amn
where

¢ =w and ¢ = w,q.

To obtain the result in (10), which generalizes (9) and
extends it to time-varying amplitude and frequency sig-
nals, we henceforth view the term E(f) as an approxima-
tion error and provide realistic conditions under which
this error is negligible. Since most of the modulating sig-
nals with which we deal in this paper are narrowband and
have an oscillatory nature, a meaningful (and tractable in
the context of the energy operators) measure to quantify
the error relative to the signal is the relative maximum
absolute error defined as the ratio E,, /Dpax, Where D =
(ad)? is the desired energy term in (17), and for an arbi-
trary signal z(f) we denote

A
Zmax = SUP |Z(t)|’
t
Thus, in the context of energy operators, we shall hence-

forth use an approximation = to mean that

Emax
Y@ =D+E=~De ™ <1

max

Hence, if the condition

YV (@ ax + 0.5@* P << (@) nax (18)
holds, then (with a relative error << 1)
¥ [a cos (§)] = (ad)’. (19)

For amplitude/frequency separation we also need to ap-
ply ¥ to the AM-FM signal derivative x = y; — ¥z,
where

x(1) = a@) cos [p(] — a@® (@) sin [ (®]. (20)
»(® b210]
From (17) we obtain
¥ [a¢ sin (¢)] = a’¢* — 0.5a%d* ¢ sin 2¢)
+ [@2¥ () + ¢*¥(a)] sin’ (§). (1)
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The desired term for energy separation is a’$*, which can
be combined with (19) to give simple equations for the

amplitude and frequency signals. However, since
¥y = y) =¥(y) + ¥(y)

— 2yttt hyn
¥ (x) contains many other cross terms. To be able to ana-
lyze and compare the order of magnitude of these terms
as well as find realistic assumptions under which the ap-
proximating condition (19) becomes valid, we next focus
on the broad class of AM-FM signals with bandlimited
amplitude/frequency modulating signals.

1) Bandlimited Amplitude/Frequency  Modulating
Signals: Let z(r) be a real-valued signal with Fourier
transform Z(w). Consider its spectral absolute moments

(22)

1 oo
— S w"|Z(w)| dw,  if z(?) is aperiodic
T Jo

AN
Bzn =

o

wf B k"ewl,  ifz() = Doge

(23)
forn =0, 1, 2, - - - Note for the zeroth moment

Kz = Hzo0

that z,,, = u, if z(¢) is a cosine or its Fourier transform
has a linear phase.

Consider now the following lemma for bandlimited sig-
nals whose proof can be found in [19].

Lemma 1 [19]: Let z(f) be a real-valued continuous-
time signal with Fourier transform Z(w) whose spectral
moments p, , are finite for n = 0, 1, 2. Assume that z(7)
is bandlimited with highest frequency w, > 0; i.e., Z(w)
= 0 for |w| > w,. Then

lZO] < Zmax = B Q4
20| < w.p. 25)
lZ0] < wln, (26)
¥z < 2(w,p)% @n

Let us now assume that a(¢) and ¢g(¢) are bandlimited
with highest frequencies w, and wyrespectively, where w,,
wr < w,. Then by Lemma 1 it follows that (see [19] for
details)

E®)] = Qul + 0.5w,wrp)ps. (28)
To simplify the error formula, we henceforth assume that

29

Ba = Qmas Bg = Gmax = 1.

Then the main approximation (19) becomes valid (i.e.,
has negligible relative error) by assuming that

2wk + 0.50, 0

(we + 0)

E max

= << 1.
(awi )lznax

(30
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In the special case of a nonnegative amplitude signal a (z),
we can assume without loss of generality (by ignoring
constant scaling factors) that a(f) = 1 + «b(f) with 0 <
k < 1and [b(®| < 1. Then [19]

E@)| < kwl(pp + 2u3) + 0.5(1 + 0’ wnwpp,

and the energy tracking in (19) has a negligible relative
error if

€2))

Erax
5 =
(awi )max

where 8 = w,,/wy is the FM modulation index, « is the
AM index, and we assumed g, = 1.

A simpler (and stronger) set of conditions that implies
(30) or (32) is

w, < w,and k << 1

wa, + 0.5603}
<

(we + wm)z

<1 (32)

w
W << weand A = << 1

We

(33)

where N\ = w,,/w, is the FM modulation depth. The above
conditions formalize the intuitive idea that if the ampli-
tude and the frequency signal do not vary too fast in time
or too much compared to the carrier, then ¥ will track
their squared product when applied to the AM-FM signal
x(®):

Yx()] = a’ 0w} . 34

The error analysis is more complicated when we apply
the energy operator to the derivative ¥ = y; — y, of the
AM-FM signal, because ¥ (x) contains many more terms
than the desired term a’w?. One approach is to follow an
approximate analysis where the dominant term is kept and
the rest is ignored. Thus, notice from (20) and Lemma 1
that

(35)

( y2)max = (36)

Since w, << w,, the term y, has a much larger order of
magnitude than y,, where by ‘‘order of magnitude’’ we
mean the physical order of magnitude of its maximum ab-
solute value (see also the Appendix). Thus, by ignoring
y;, We can write

(yl)max =

amax wa

amax(w( + wm)'

—y, = — a¢ sin (¢). (37

X =

The AM-FM signal y, has an amplitude signal with band-
width w, + w;. Hence, by replacing w, with w, + wyin
(30), (32) we arrive at the stricter conditions

2(wg + @)’ + 0.5w,0p << (@ + W)
k(w, + wf ¥ + 0.5w,, wr << (w + o), (38)

ifa(d =1+«b(t) =0
which guarantee that

Y(y) = a’o} (39
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with a negligible relative error. Therefore,
Y[x(0] = a* (i@ (40)

This result was derived by approximating the input signal
x = -y, and using the energy-tracking capability of ¥ as
in (19). An alternative approach is not to approximate the
input x, but instead to find the order of magnitude of all
the error terms in the output signal ¥ () and show that
they are much smaller than the order of magnitude of the
desired term a’w? . In the Appendix we provide a detailed
analysis for this second approach.
By combining now (34) and (40) we obtain

/\If ol
Y@ - 90

@n
¥ [x (]
—_—— =~ A 42
O] la @] 42)

We call (41), (42) the continuous energy separation al-
gorithm (CESA). Thus, the CESA provides estimates of
the time-varying instantaneous frequency signal w;(f) =
0 and of the amplitude envelope |a(?)| of an AM-FM sig-
nal, given the assumptions (33). Note that if x(f) = A4 cos
(w.t + 0) is a cosine with constant amplitude/frequency,
then the CESA yields the exact solution w;(f) = w, and
la@®] = |4|.

For the validity of the approximate results (10), (40),
and the CESA, it is assumed that we deal only with sig-
nals x for which ¥ (x) and ¥ (%) are nonnegative signals.
From (17) it follows that a sufficient condition for ¥ [x (2)]
= 0 for all ¢ is, assuming that a(f) = 1 + «b(¢) > 0 with
k<1,

¥ (@max + 0.50,(1 + 62 Guax < (1 = 02 (w, — w,)°.
43)

As we have shown in [19], there are broad classes of AM-
FM signals x with (often extremely) large amounts of AM
or FM modulation (i.e., large x and \) for which ¥ (x) =
0. If ¥ (a) > O, then another sufficient condition [simpler
than (43)] for nonnegativity of ¥ [@ cos (¢)] iS Wy, Gmax <
2(w, — w,)*. There is a large class of amplitude modu-
lating signals a such that ¥ (a) = 0. For example, this
class includes i) cosines of constant frequency, ii) expo-
nentials e” since ¥ (e”) = 0, and iii) linear trends sz + ¢
since ¥ (st + ¢) = s%, as well as all finite products of
signals from any of these three classes.

Note also that at times #, of zero energy, i.e., when
¥ [x(t,)] = 0, we approximately have zero amplitude a (z,)
= 0 if the frequency w; () is assumed to always be posi-
tive. At such time instants, however rare they may be, we
need additional information to estimate w;(2,). Given the
assumption that w;(¢) varies more slowly than x(#), one
approach is to interpolate the missing w;(#o) value from its
surrounding neighbors.

2) Special Cases of Amplitude/Frequency Modulating
Signals: The CESA was derived by assuming that the

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 10, OCTOBER 1993

amplitude and frequency information-carrying signals a
and ¢ are bandlimited. However, there are also other spe-
cial cases of AM-FM signals, where bandlimitedness is
not a true or an appropriate (for Lemma 1) assumption.
Then, it may be possible to show that the CESA will still
yield approximately correct solutions provided that the in-
formation signals do not vary too fast or too much with
time compared to the carrier. We next analyze two such

cases.
Cosine with Exponential Amplitude: For any real g, let
x(t) = Ae” cos (w.t + ). 44)

This can be viewed as a special case of an AM-FM signal
with time-varying amplitude a (f) = Ae” and constant fre-
quency. Now

x() = Ae” [—w, sin (w.t + 0) + o cos (w7 + 0)].

45)
By applying ¥ to x and x we have
Vx()] = A w2 (46)
0_2
¥ [k (0)] = A whe (1 + ——2). @7
Then assuming that (¢ /w.)* << 1 yields
: 2
YO _ o+ S~ 48)
¥ (x) W
ot
Y@ 1" _ apem. 49)

V¥ () =\/ o2
1+p

Thus, if the exponential rate |g| is much smaller than w,,
we can use the CESA to approximately estimate the am-
plitude and frequency. The relative approximation error
is about 62 /2w?2. Note that if 0 < 0, then |q| is the 3 dB
bandwidth of the exponential ¢”. Hence, the condition
(0/w)® << 1 is of the same spirit as the condition
(wg/wo)* << 1 for truly bandlimited amplitude signals
a(®).

FM/Linear (Chirp): Consider the following FM signal
over a finite-time interval

2
x(t) = A cos (wct + Wy (tz — t> + 6), te [0, L]

— — _
()

(50)

with linear instantaneous frequency w;(f) = w, + w,,(2¢/L
— 1). Then

2
%(1) = —Aw; (1) sin <wct + w, <tZ - t> + 0>. 1)
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From (17) it follows that

¥ (x) = A[w? + w,, sin 2¢) /L] (52)
~ Al (53)
V(%) = A2 [w? - w? % sin (2¢) + 42’5" sin? (¢)}
‘ (54)
=~ Awi@® (55)
where both approximations assumed that
4 % << (@ + wp). (56)

Under this condition, the CESA can be used to approxi-
mately estimate the amplitude and frequency of the
FM/Linear signal.

III. DiscrReTE-TIME ENERGY SEPARATION ALGORITHM-1
(DESA-1)

In this section we derive an algorithm for estimating the
amplitude envelope and the instantaneous frequency of a
discrete-time AM-FM signal by using the discrete-time
energy operator. The basic inspiration for a discrete al-
gorithm comes again from the case of a cosine with con-
stant amplitude and frequency. Thus we first discuss this
constant case and then we focus on the general AM-FM
case.

A. Cosine with Constant Amplitude/Frequency

If x (n) is a sampled version of a continuous-time signal
and we replace derivatives & with 2-sample backward (or
forward) differences [x(n) — x(n — 1)] /T where T is the
sampling period, then [19] the continuous-time energy
operator reduces (up to one sample shift) to the following
discrete version

Yix(m)] = 2@ — x(n + Dx(n — D1/T%

Consider a constant amplitude/frequency discrete-time
cosine

x(n) = Acos (Q.n + 0) 57
where @, = w,T and w, < w/T. Then [12]
¥ x(n)] = A% sin®> (Q,)/T? (58)
which can be rewritten as
sin ©.\°
Vx(n)] = Aw? <9_> . (59)

In this form, a comparison with the continuous case (9)
is direct; the discrete case has the additional (sin Q./Q,)>
factor which attenuates the result by a known and com-
pensatable amount. Thus, the two results are similar.
Since the variable . carries the information about T, we
_ can assume T = 1 (thus simplifying many of the expres-
sions and formulas) and then insert the proper sampling
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period or frequency at the end to scale the answer accord-
ing to the relation f, = Q./(2«T), where f, is the fre-
quency in Hz. In the remainder of this paper we have
therefore assumed that T = 1 in the expression of ¥ and
hence

Yix(m] = x2(n) — x(n — Dx@r + 1).

Note that 7 = 1 is also the correct assumption for signals
that are inherently defined only for discrete time.

Now consider the backward difference approximation
for the first derivative of x (¢):

y(m) =x(m) — x(n — 1
= Afcos (Q.n + 6) — cos (.(n — 1) + 6)]
= —2Asin (Q./2) sin Q.n + 6 — Q./2) (60)

a+6> . <B—a>
> sin 2 .

given that

cos () — cos (B) = 2 sin <

Now
Y[ y(n)] = 44% sin® (Q./2) sin® (Q,). (61)
Note that
Yyl _ o L
W) 2sin” (2./2) = 1 — cos (). (62)

Hence, the constant frequency and absolute amplitude can
be found from the following equations:

¥x(n) — x(n — 1)]) 63)

Q. = arccos <1 -

2V¥ [x (n)]
_ |¥Ix(m] _ ¥ [x(n)]
4l = \/;nz Q) \/1 - cos® (Q,) 64
_ ¥ [x(m)] (69
1o (1 - Yx(n) — x(n — 1)]>
2¥ [x (n)]

Note that we can also find the frequency and amplitude
by using the above equations and replacing y(n) with the
forward difference x(n + 1) — x(n).

B. AM-FM Signals
Consider a discrete-time real-valued AM-FM signal

x(n) = a(n) cos {an + Q, S q(m) dm + 9). (66)
~ 0 B

&(n)
We define its instantaneous frequency by
d
Qn) & mom = Q + Q,q0). (67

Both the differentiation d/dn in (67) and the integration
§ dm in (66) treat the integer time indexes n and m sym-
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bolically as continuous variables. Thus, in the discrete
FM case, g(-) is assumed to be a known mathematical
function with a computable integral. Note that the contin-
uous-time angular frequencies w,, w,, and w; (in radi-
ans /s) have been replaced by their discrete-time counter-
parts Q., Q,,, and ©; (in radians /sample). All frequency
variables in this paper are assumed nonnegative, and all
discrete-time frequencies are assumed to be <=. In ad-
dition, we assume that |g(n)| < 1 and Q,, = Q,, which
implies that for all n

0<Q -2, <M <9 +Q, <7 (68)
Now for any a(n) and ¢ (n)
¥ [x(m)] = a’(n) ¥ [cos (¢ (n))]
+ ¥ (@a(m)[cos® (¢ (n) — ¥ (cos ¢ (m)].
(69)

If we assume (as shown later for slowly-varying Q,(n)
compared to Q) that

¥ [cos (¢ (n)] = sin’ [2;(n)] (70)

then

Y[x(m)] =~ a*(n) sin’ [Q:(m)] + ¥ (@(m)[cos® (& (n))

— sin’ (@;(n))] (1)
= a*(n) sin’ [Q;(n)], (72)
if ¥ (@ max << [Amax 510 (@) mar)
where in general
sin (@, + Q,) ifQ +Q, <7/2

[sin (@)Imax = § 1
sin (2, — Q,)

if |2, - 7/2| < Q,
ifQ, - Q, > 7/2

(73)

To find appropriate classes of signals for which the
above approximations become valid and tractable, we next
focus on the case of bandlimited modulating signals.

1) Bandlimited  Amplitude/Frequency  Modulating
Signals: Given a real-valued signal z(n) with Fourier
transform Z(Q) define its mean absolute spectral value by

1 x
- So |Z(@)| dQ, if z is aperiodic
Mz é N-1

k§0 o]

N-1
ifz(n) = 2 oye™/N,
k=0

(74)

Note that z,,,, = M, if z(n) is a cosine or has a linear
Fourier phase.

To find bounds on the output of the energy operator
processing bandlimited signals we first need the following
lemma.
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Lemma 2 [19]: Let z(n) be a real-valued discrete-time
signal with a finite mean absolute spectral value M,. As-
sume that z(n) is bandlimited with highest frequency &,
>0,ie.,Z(@ =0forQ, < |Q] = «. Then

lz(n)l = Znx = M, 75)
|z(n) — z(n — V)| = 2sin (Q,/2)M, (76)
|¥ z(n)| < 8 sin® (Q,/2) M? an

Now for the AM-FM signal assume that the amplitude
signal a(n) is bandlimited with bandwidth ¢, < Q. and
that ap,, = M,.

For the frequency Q;(n) we assume that it is generally
a nonnegative signal that can be expressed as a finite lin-
ear combination of cosines. This class of frequency sig-
nals is quite broad since it includes all real-valued peri-
odic signals, which (via the DFT) can always be expressed
as a finite sum of cosines. Therefore, with no loss of gen-
erality,' we can write

K
Qi) = Q. + El Qi cos Qn + 0)  (78)
with @, > 0 and all Q,, > 0. If Q;(n) is periodic with
period N + 1,then K < | (N + 1)/2], and the dc com-
ponent of the instantaneous frequency signal is

(79

We can also express Q;(n) in the standard form (67) by
writing

Qi(m) = 2 + Qg (80)
where the maximum frequency deviation is
K
Q, = kZI Qi (81)

and hence |g(n)| =< 1. The phase signal corresponding to
(78) is

K
Q
() = Qn + 2 2Esin (Qun + 0 + 0. (82)
k=1 Qg ’
The bandwidth of Q;(n) is equal to

Qf = mlz(ix Qf.k' (83)
k=1

! Assuming that Q;(n) is periodic presents no loss of generality in apply-
ing the energy operator/separation algorithms on a short-time basis to speech
and many other discrete-time signal classes. Namely, any short-time seg-
ment of a discrete-time signal or any finite-extent signal can be repeated
and viewed as periodic. Any real-valued periodic discrete-time signal can
be expressed as a finite linear combination of cosines; adjusting their phase
offsets yields Q,,, > 0, and if the signal is nonnegative its dc component
isQ. > 0.
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Due to the specific nature of ¢ (n) the following general
approximations result:

k
wm+wm=2¢<;m)

if @ |k — m| << 2 (84)
k +
¢®—wm=w—mm<2m>
ifQlk —ml << 2. (85)
Henceforth, we assume that
Q<< 1 (86)

which means that the frequency signal Q;(n) has a small
bandwidth. Then by settingm =n + landk =n — lin
(84), (85) we obtain

cos [¢p(n + 1)] cos [¢(n — 1))
=3(cos [p(n + 1) + ¢(n — 1)] + cos [¢(n + 1)

—¢é(n - 1)
= 1(cos [2¢ ()] + cos [22;(n)]). (87
cos’[¢ (n):sinz Q: (]
Therefore,
¥[o(n)] = sin® [Q;(n)]. (88)

Hence, the approximation (70) becomes valid due to as-
sumption (86).

From Lemma 2 it follows [19] that, the approximation
in (72) also becomes valid if we further assume for the
bandlimited a (n) that

8 sin® (Q,/2) << [sin® (@;)]yax
4k sin® (R,/2) << [5in2 (2;)]maxs (89)
ifa(n) =1+ «kb(n) = 0.
Now, consider the backward difference

ym =x@m) —x(n — 1)

= a(n)c(n) + [a(n) — a(n — 1)] cos [p(n — 1)]
— ~ —

—~

D(n) E(n)
(90)
where

c(n) = cos [¢(m)] — cos [¢p(n — 1)] 9n

P {4)(") + o~ 1)}

= sm|(—————

2

- sin [w} ) (92)

From (84)-(86) we obtain
c(n) = =2 sin [Q;(n — 0.5)/2] sin [¢ (n — 0.5)].
93)
Lemma 2 implies that the order of magnitude of the terms
in (90) are

D,.x = 2 sin (Qi/z)maxamax %94

Emax i 2 Sin (Qa/z) amax

Due to assumption (89), D is the dominant term because
its order of magnitude is much larger than that of E.
Hence, ignoring the term E,
y(n) = —=2a(n) sin [Q;(n — 0.5)/2] sin [¢ (n — 0.5)].
95)
Assuming that
Q, << Q. (96)

and using the standard series expansions for sin( ) and
cos( ) together with the first-order approximation (1 +
v)? = 1 + prif |v| << 1 yields, for any real r,

sin [rQ;(n)] = sin (rQ,) + rQ, cos rQ)qn). (97)

Thus, the approximate amplitude signal of y (n) is essen-
tially bandlimited with highest frequency Q, + {};. Hence,
if we make the assumption [stronger than (89)]

8 sin’ [(Q, + ©)/2] << [sin® (@;)]max

4k sin’ [(Q, + ©/)/2] << [5in? ()] max (98)

ifam) =1+ «b(n) = 0
then
¥[y(n)] = 4a*(n) sin® [Q;(n — 0.5)/2)

- sin® [Q;(n — 0.5)]. (99)

To proceed further, one approach is to ignore the half-
sample shift, since

Q,,9Q
1Qi(n — 0.5 - Q)| < — < Q.

(100)
Then, we can set Q;(n) = Q;(n — 0.5) and combine (72)
and (99) to derive the following discrete energy separa-
tion algorithm (DESA) for estimating the instantaneous
frequency and envelope:

Yix(n) —x(n — 1] _
arccos <1 - 29 ()] > = Q;(n) (101)
[ ¥ [x (m)]

=~ |la()|. (102)

,\/1 j <1 Y — x(n — 1)])2
29 [x ()]

We call this algorithm DESA-1a, where ‘‘1°’ implies the
approximation of derivatives with a single sample differ-
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ence and ‘‘a’’ refers to the usage of asymmetric differ-
ence. We have experimentally tested DESA-1a and found
that it generally works quite well in estimating the ampli-
tude and frequency signals. (Numerical results are given
later). However, since we used an asymmetric difference
for approximating the derivative , a further improvement
may result (as discussed later) if we symmetrize the term
¥ [x(n) — x(n — 1)] by averaging it with ¥ [x(n + 1) —
x(n)]. Thus, if we repeat the analysis done for the back-
ward difference y for the forward difference z, we obtain

) =x(n+ 1) —x(n) =yn +1 (103)
1
~ 2a(n) sin [Q(n_;z_)] sin [6(n + 0.5)]  (104)

and applying the energy operator
V[z(n)] = 4a’@n) sin® [Q;(n + 0.5)/2]

- sin? [Q;(n + 0.5)]. (105)

By averaging the results in (99) and (105) and assuming
that the shifts by +4 and —3 sample approximately cancel
out, we have

Yiym] + ¥[z(n)]
2

=~ 4a’(n) sin® [Q;(n) /2] sin® [Q;(m)].  (106)

Thus, the action of ¥ on asymmetric derivatives is par-
tially ‘‘symmetrized’’ by averaging the action of ¥ on
two opposite asymmetric derivatives. Then combining
(72) and (106) yields another DESA given by the formu-
las

x(m) —x(n — 1) = y(n)
Yyl + ¥y + DI _

arccos <1 V)] > = {;(n)

(107)
¥ [x(n)]
5 = |a(m)]
- <1 _ Y[y(m] + ¥y + 1)]>
4V [x (n)]

(108)

We call this the DESA-1 algorithm. The frequency esti-
mation part works as long as 0 < ©;(n) < , since the
principal value of the arccos (v) function assumes that v
€ [0, 7]. Thus, the DESA-1 algorithm can estimate in-
stantaneous frequencies up to 1 the sampling frequency.
Note that we can replace the left side of (107) with its
equivalent expression

2 arcsin Jif[y(n)] + ¥ [y( + 1]
8Y [x ()]

=~ Qi(n) (109)

However, the formula using arcsin( ) is computationally

more complex than the formula using arccos ( ) because it

requires an additional square-root operation per sample.
For the validity of the approximate results (72), (99),
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and (105), and the DESA-1, it is assumed in this paper
that we deal with signals x (z) such that ¥ [x(n)] = 0 and
¥[x(n) — x(n — 1)] = 0 for all n. As discussed for the
continuous-time case, this is satisfied by many classes of
AM-FM signals [19]. For the present work it suffices to
say that, in most of our experiments with noiseless AM-
FM and bandpass filtered speech signals, we have very
rarely encountered a negative ¥ [x(n)], and in most such
cases the negative value appeared to be due to round-off
errors. Note also that, by (72), if for some ny we have
¥ [x(ng)] = 0, then assuming that Q;(ng) # 0, we have
a(ng) = 0; also, ¥[y(ny)] = 0. Thus, at such time in-
stants we cannot estimate the frequency ;(n) using the
DESA-1. In our implementations, whenever we encoun-
tered such a situation we set the amplitude equal to zero
and estimated the frequency from its value at the previous
sample, i.e., set Q;(ng) = Ai(np — 1). This is in accor-
dance with our general assumption that ©; varies more
slowly than the signal x. An alternative implementation
would be to interpolate the frequency signal value at such
time instants from its neighbors.

Fig. 1 shows that the application of DESA-1 to an AM-
FM signal, whose amplitude and frequency modulating
signals were single cosines, results in a successful ap-
proximate estimation of the amplitude and frequency sig-
nals with relatively small errors. Note that both the AM
and the FM parts of this AM-FM signal have a large
amount of modulation, i.e., 50% AM since « = 0.5 and
20% FM since N\ = Q,,/92. = 0.2. Despite these large
amounts of modulation, the DESA performs well. Ob-
viously, its performance is even better at lower amounts
of modulation. Also note that Fig. 1(b) shows the square
root of the output of the energy operator when applied to
the original AM-FM signal; this output signal is approx-
imately the product of the amplitude and the sine of the
frequency signal. Then the DESA-1 separates these two
information signals. Finally, we have found that DESA-
1 performs very similarly to DESA-1a, although the latter
almost always yields somewhat larger estimation errors.
Numerical comparisons between the errors of DESA-1
and DESA-1a are given in Section IV.

Concluding, we note that it is very simple to implement
DESA-1 since it only requires a few simple operations
per output sample and involves a very short window of
samples around the time instant at which we estimate the
amplitude and frequency. Details on the computational
complexity of DESA-1 are discussed later in Section
VI-A.

2) Bandlimited-Amplitude/Linear-Frequency

Modulating Signals:

Consider now a discrete AM-FM/Linear signal x(n) =
a(n) cos [¢(n)] over a finite time interval, i.e., a chirp
signal with a time-varying amplitude a(n) and linearly-
varying instantaneous frequency

Q,-(n)=QC+Q,,,<2—n— l>, n=20,1,---,N.

(110)

N
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Fig. 1. (a) AM-FM/Cosine signal x(n) = [1 + 0.5 cos (wn/50)] cos [xn/5 + 4 sin (7n/100 + 7 /4)}. (b) V¥ [x(m)]. (c)
Estimated amplitude envelope using DESA-1. (d) Estimated instantaneous frequency (shown as fraction of w); the dotted line
shows Q. /=. (e) Error in amplitude estimation. (f) Error in frequency estimation.

Its quadratic phase signal is

2

o) = Qn + Q, <"ﬁ . n> + 6(0). 111)

By repeating ;(n) every N + 1 samples one can view it
as a periodic signal. However, although we can represent
this linear Q; (n) over the interval [0, N] as a combination
of cosines (via DFT), it is not effectively bandlimited in
the sense of not having a highest frequency << 1. Thus,

we use a different approach than in the case of bandlim-
ited frequency modulating signals.

First, note that for any integers k, m

k+m

_ Q5
ok) + ¢(m) = 2¢ < > + N k — my* (112)

k+m
ok) — o(m) = (k — m); < > > (113)
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By setting k = n + 1 and m = n — 1 it follows that
cos [¢p(n — 1)] cos [¢(n + 1)]

=%(cos [p(n + 1) + ¢(n — 1)]
+cos[pn+ 1) —d(n— 1D

_ l( [2 " ﬁ} + cos [20

=5 | cos b (n) N cos [2Q2;(n)]

= cos? [¢(n)] — sin® {Q;(n)] — sin [2¢ (n) + Q—A';]

A
- sin <W> (114)
Hence, if we assume
. (D .
sin <—ﬁ> << sin” (Q;)max (115)

we obtain the approximation ¥ [¢(n)] = sin®* [Q;()].
Note that (115) implies

m

< 1.
N 1

(116)

Then, by further assuming that a(n) is bandlimited with
bandwidth Q, satisfying (89) we obtain
¥ [a(n) cos (¢ (n)] = a’(n) sin” [Q;(n)].

Now consider the backward difference

(117)

y(n) =x(@) —x(n — 1)
= a(m)c(n) + [a(n) — a(n — 1)] cos [¢(n — 1)]
(118)

where

c(n) = cos [¢(n)] — cos [¢(n — 1)] (119)

L Q@n—03) . _ Q,
= —2 sin [——2 }sm [qb(n 0.5) + 4N}'

(120)
By (89), the term a(n)c(n) has a larger order of magni-

tude than the residual y(n) — a(n)c(n). Hence, we can
set y(n) = a(n)c(n). Assuming further that

Q, << Q. (121)

and using the approximation (97) leads us to conclude that
the effective bandwidth of a (n)sin(Q;(n — 0.5) /2) is equal
to Q,. Therefore, from (89), (115), and (117) it follows
that

Y{ym)] = 4a’(n) sin® [Q;(n — 0.5)/2]

- sin? [Q;(n — 0.5)]. (122)

Note that

Q) — Qn —0.5) = _Q_,,, << Q.

N (123)
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Hence, we can set Q;(n) = Q;(n — 0.5) and apply the
asymmetric algorithm DESA-1a of (101), and (102) to
find both ©Q;(n) and |a(n)|. In addition, our extensive nu-
merical comparisons (discussed later) have shown that a
further improvement almost always results if we apply the
symmetrized algorithm DESA-1.

Fig. 2 shows the good amplitude/frequency separation
and tracking capabilities of the DESA-1 in the case of an
AM-FM signal with a sinusoidally-varying amplitude and
linearly-varying frequency components. The percent of
both AM and FM is 25% in this example. Despite the
discontinuity in the slope of the frequency signal, we see
that DESA-1 performs quite well in separating and track-
ing the amplitude and frequency signals.

IV. DiscrReTE-TIME ENERGY SEPARATION
ALGORITHM-2 (DESA-2)

In this section, we develop an alternative DESA that
avoids the previous half-sample shifts in the estimated
frequency signal by using a symmetric difference to ap-
proximate the first derivative x(z). We first start from the
simple case of a cosine with constant amplitude/fre-
quency that inspires the specific algorithm. Then we show
that the algorithm also works for general AM-FM sig-
nals.

A. Cosine with Constant Amplitude/Frequency
Consider the cosine
x(n) = A cos (Q.n + 6) (124)
and the 3-sample symmetric difference
s() = [ + 1) — x(m) + () — x(n = 1)]/2
=xn+1) —x@n— 1]/2
Alcos (Q.(n + 1) + 0)

— cos (Q.(n — 1) + 6)]/2

I

—~A sin (Q,) sin (2.2 + 0) (125)

s (n) is the simplest symmetric form for the approximation
of the first derivative & that gives the estimate of the de-
rivative at a sample point. Then

¥ [s(n)] = A% sin* (Q.). (126)
By combining (126) with (58) we obtain
L 1 —cos 20) _ ¥[s(n)]
sin” (@) = 2 = Y 127)
¥’ [x(m)]
2= 2 (128
Ym0

Hence, the constant frequency and absolute amplitude can
be obtained from the following equations:

. \F[x(n + 1) —x(n— 1]
Q, = arcsin

4¥ [x (n)] (129)
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Fig. 2. (a) AM-FM/Linear signal x(n) = a(n) cos [0.27n + x(n — 100)2/4000)] forn =0, + -+, 200 and x(n) = a(n) cos

[0.25xn — w(n — 200)/4000 + = /2] for n = 201, - -

-, 400, where a(n) = [1 + 0.25 cos (wn/100)]. (b)

¥ [x (m)].

(.c) Estimated amplitude envelope using DESA-1. (d) Estimated instantaneous frequency (shown as fraction of 7); the dotted
line shows the average value of the true ©;(n) /. () Error in amplitude estimation. (f) Error in frequency estimation.

_ VY[xn+1) —x(n —
2V [x (n)]

1)]} (130)

1
= 5 arccos [1

2¥ [x(n)]

Al = .
4] V¥x@m + 1) = x(n = 1)]

(131)

Note that if x (n) has been obtained from sampling a con-
tinuous-time signal, then the actual frequency f, (in Hz)

can be found from Q. and the sampling frequency f; as

fo = Q.f, /27

B. AM-FM Signals

Consider first a discrete-time AM-FM signal x(n) =
a(n) cos [¢(n)] whose instantaneous frequency signal
Q;(n) is a finite sum of cosines as in (78), bandlimited
with bandwidth Q; << 1 and with maximum deviation {,,
<< Q,., and whose general amplitude signal a (n) is band-
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limited with bandwidth Q, satisfying (98). Its symmetric
difference is
sy =[x@r + 1) —x(n — D]/2
= D(n) + E(n) (132)
where
c(n)

D) = a(n) f&ys o(n + 1) — cos p(n — l)]/?
(133)

E(m) = [a(n + 1) — a(m)] cos [¢(n + 1]/2
+ [a(n) — a(n — D] cos [¢p(n — 1)]/2.

(134)
Since @, << 1, if follows from (84), (85) that
cn) = —sin [fb(ﬂ + 1) ; o(n — 1)]
sin [d’(" *+ D ; $n = 1)} (135)
~ —sin [Q;(n)] sin [¢ ()] (136)

NoW Dyppx = Gpax SiD (D) max and Eqay = 2amay sin (Qu/z)
Hence, the order of magnitude of D is much larger than
that of E. Thus, ignoring E,

s(n) = —a(n) sin [Q;(n)] sin [¢ (M)]. (137)

Since Q,, << 9., it follows from the approximation (97)
that the amplitude a () sin (Q;(n)) of s(n) has an effective
bandwidth of @, + Q;. Hence, by (72) and (98),

Y[s(m)] = a’(n) sin* [Q;(n)]. (138)
The above analysis yields the following formulas for es-

timating the time-varying frequency and amplitude enve-
lope of the AM-FM signal:

1 _¥Yx( + ) —x(n—D}| _
> arccos [1 29 ()] ] = Q;(n)
(139)
2¥ [x (n)] = la@|.

N¥[x(n + 1) — x(n — 1)]
(140)

We call this the DESA-2 algorithm, where ‘‘2°” implies
the approximation of first-order derivatives by differences
between samples whose time indices differ by 2. This
DESA uses symmetric differences and thus avoids having
to involve values of ©; at noninteger time indices. The
frequency estimation part assumes that 0 < €;(n) <« /2.
Thus, the DESA-2 can be used to estimate instantaneous
frequencies <1 /4 the sampling frequency. This does not
present a problem because by doubling the sampling fre-
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quency it can be used to estimate frequencies up to 1,/2
the original sampling frequency. Note also that the for-
mula with arccos( ) in (139) can be replaced by an arc-
sin( ) expression

. Yxn+1) —x(n—
arcsin 4% [x(0)]

but this comes at the expense of an additional square-root
operation per sample.

We have applied DESA-2 to many cases of AM-FM
signals and found that it performs very similarly to the
DESA-1. Actually, in most cases it is not possible to see
the difference between the DESA-1 and DESA-2 by vis-
ual inspection of the resulting signals. Therefore, we re-
sort to numerical comparisons. For each one of the three
DESAs, Table I shows the mean absolute and rms values
for the amplitude and frequency estimation errors nor-
malized by dividing them with the mean absolute and rms
values of the corresponding signals. These results were
obtained for the following class of AM-FM/Cosine sig-
nals

s T T
1+ — - in | — ;
[ KCOS<1 n>}cos[5n+20)\sm<l n>},

n=01,"-"

1)1) ~ Q) (141

, 400

with instantaneous frequency @;(n) = 0.27[1 + A cos
(wn /100)]. The percent errors in Table I are average val-
ues obtained by computing the corresponding errors for
100 combinations of AM and FM amounts ranging be-
tween 5% and 50% at steps of 5%, i.e., for all values
(k, N) € {(0.05,0.05j):i,j=1, -, 10}. The results
in Table I present strong empirical evidence that, for a
ratio of information bandwidth versus carrier in the order
of Q,/9Q. = Q;/Q. = 1/20, on the average all three DE-
SA’s perform very well with errors smaller than 1%,
measured using both the mean absolute and the rms norm.
Both DESA-1 and DESA-2 clearly outperform DESA-
la. Also, DESA-1 performs slightly better than DESA-
2. The difference in their performance was only in the
order of 0.01%-0.1% and may be attributed to the facts
that DESA-1 uses a smoothing average of the energy sig-
nals from the forward and backward difference and that
DESA-2 uses a 3-sample symmetric difference which is a
coarser approximation to the first time derivative than the
2-sample differences used by DESA-1. However, as dis-
cussed later in Section VI-A, DESA-2 is the fastest of all
three DESA’s; in addition, its mathematical analysis is
the simplest.

Another issue regarding the DESA’s is how much their
performance deteriorates in the presence of noise. A rig-
orous treatment of this issue goes beyond the scope of this
paper, whose purpose is the development of the basic the-
ory of ESA’s for AM-FM signals with application to rel-
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TABLE I
PERCENT AMPLITUDE AND FREQUENCY ESTIMATION ERRORS USING DESA’s oN AM-FM/COSINE SIGNALS

Amplitude Estimation

Frequency Estimation

Algorithm mean absolute error % rms error % mean absolute error % rms error %
DESA-1a 0.75 0.97 0.82 0.97
DESA-1 0.47 0.57 0.33 0.39
DESA-2 0.53 0.64 0.40 0.47
TABLE I
PERCENT ESTIMATION ERRORS USING DESA-1 ON AM-FM/COSINE SIGNALS WITH NOISE
Median Amplitude Estimation Frequency Estimation
SNR (dB) Filter mean absolute error % rms error % mean absolute error % rms error %
30 no 6.29 10.56 5.55 9.74
30 yes 2.77 4.26 2.68 4.40
20 no 18.19 29.68 17.98 32.11
20 yes 8.93 12.90 10.31 16.04

atively noise-free speech signals. However, for empirical
comparisons we provide in Table II some numerical re-
sults that show the performance of DESA-1 applied to the
same AM-FM/Cosine signals used for Table I in the pres-
ence of added white Gaussian noise at two signal-to-noise
ratio (SNR) levels. We have generally observed that the
estimation errors of the DESA’s usually appear as isolated
spikes of large amplitude. Hence, an effective way to im-
prove the estimated amplitude and frequency signals is to
post smooth them with a median filter. As Table II shows,
the use of a 5-point median post smoothing significantly
improves the performance of DESA-1 in white noise.
Specifically, the DESA-1 followed by a 5-point median
yields amplitude and frequency estimation errors less than
5% when the SNR is 30 dB, whereas when the SNR de-
teriorates to 20 dB the same system yields errors in the
order of 10%.

Now let us apply the DESA-2 to the AM-FM/Linear
signal x (n) = a(n) cos [¢ (n)] with the quadratic phase of
(111). First, consider the symmetric difference

sy =@+ 1) —x(n - 1D]/2

=a() [cos ¢(n + 1) — cos ¢p(n — 1)]/2 + E(n)

~_ g
~

c(n)

(142)

where E(n) is given by (134). From (112) and (113) it
follows that

c(n) = —sin [Q;(n)] sin [dm(n) + Q—A}"] (143)

Ignoring the E (n) term, whose order of magnitude is much
smaller than that of a(n) c(n), yields

s(n) = —a(n) sin [Q;(n)] sin [(b(n) + %ﬁ] (144)

Assuming @,, << Q. and using (97) implies that the ap-
proximate amplitude a (n) sin (©;(n)) of s (n) has effective
bandwidth equal to ;. Therefore, assuming (89) and
(115),

¥Y[s(m)] = a’(n) sin* [ ). (145)
Hence, we can apply the DESA-2 algorithm, exactly as
for the general AM-FM case, to approximately recover
the instantaneous frequency and amplitude of the AM-
FM/Linear signal.

We have performed extensive numerical comparisons
among the three DESA’s applied to AM-FM signals with
sinusoidal amplitude and linearly-varying frequency in the
absence or presence of noise, and the results were very
similar to the ones reported in Tables I and II. Namely,
in the absence of noise, all DESAs yielded amplitude and
frequency estimation errors in the order of 1% or less for
AM amounts of 5%-50% and FM amounts of 2.5%-25%.
The DESA-1 had the best performance. In the presence
of noise with SNR = 30 dB, the DESA-1 followed by
post smoothing via a 5-point median filter yielded errors
less than 10%.

V. APPLICATION TO SPEECH ANALYSIS

The analysis in the previous sections has established
that the ESA’s can track well the time-varying amplitude
and frequency variations in AM-FM signals. Here we ap-
ply them to detect modulations in speech resonances. For
all the experiments in this section we use the DESA-1.

A. Evidences for Speech Modulations

By ‘‘speech resonances,’’ or ‘‘cavity resonators,”’ we
loosely refer to the oscillator systems formed by local vo-
cal tract cavities emphasizing certain frequencies and de-
emphasizing others. There are several experimental and
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theoretical evidences for the existence of modulations in
speech signals. Most of them are centered around recent
ideas of analyzing the dynamics of speech production us-
ing concepts from fluid dynamics to study the properties
of the speech airflow. Our initial inspiration to consider
such issues about speech production has come from Tea-
ger’s work [30]-[34]. In addition, the current availability
of fast computers has made it possible (and an interesting
research area in its own right) to investigate fluid dynam-
ics phenomena during speech production through numer-
ical simulations [9], [10], [35] of the nonlinear partial dif-
ferential equations governing the physics of the speech
airflow in the vocal tract. Next we list and briefly discuss
some evidences for speech modulations.

1) Separated and Unstable Airflow: Teager concluded
from his extensive air velocity measurements in the vocal
tract that the airflow is highly separated. Related discus-
sion can be found in [11], [31], [33], [34]. Quoting from
Teager [33], ““: -+ During phonation, airflow in the
mouth, and most probably in the rest of the vocal tract, is
separated, not isotropic. That is to say, the flow, instead
of being stable and uniform across any cross section dur-
ing a single pitch period, is time varying, concentrated
near surfaces, and can switch many times between those
surfaces - - - .”” One can theoretically predict the sepa-
ration of speech airflow at cavity inlets by using standard
arguments from fluid dynamics [36] about the pressure
and velocity fields. For our work on speech modulations,
the important implication from these considerations is that
the air jet flowing through the vocal tract during speech
production is highly unstable and oscillates between its
walls, attaching or detaching itself, and thereby changing
the effective cross-sectional areas and air masses, which
affects the frequency of a cavity resonator.’

2) Vortices: During speech production vortices can
easily build up that can encircle the air jet passing through.
These vortices can act as modulators of the energy of the
jet. Vortices in the speech airflow have been experimen-
tally found in Teager’s work and in numerical simulations
of the vocal tract [9], [35]. They have also been theoret-
ically predicted in [22], [32] using simple geometries.

3) Oscillators with Time-Varying Elements: Even in
simple second-order oscillators it is known that slow time
variations of the oscillator elements can result in ampli-
tude or frequency modulation of the simple oscillator’s
cosine response. For example, consider an undriven un-
damped oscillator consisting of a mass m and a spring
with stiffness coefficient k. The motion equation is

i+ o0x=0 ol= 5 (146)

2The time varyingness of speech formant frequencies caused by the mod-
ulation phenomena discussed in this paper occur at time scales much smaller
than the pitch period; thus they are a microtime scale phenomenon. There-
fore, they should be distinguished from formant variations caused by vocal
tract movements, which usually occur at larger time scales of about 10
msec [29] and have been well studied in acoustic phonetics with many
speech processing applications as for example recently in [4], [14].
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where x () is the displacement. If m or k are time varying,
then the frequency w; is also time-varying. For example,
assume it can be modeled as

wl(0) = w2 {1 + 2%cos (wft)]. (147)

If w, << wand w; << @, it has been shown in [3], [37]
that the approximate solution of (146) is

x(H) = A cos {wvt + 27 sin (wft)] (148)
wr

which is an FM signal. Similarly second-order oscillators
with time-varying damping generate responses that con-
tain amplitude modulation [38]. Thus, during speech pro-
duction, the time-varying air masses and effective cross-
sectional areas of vocal tract cavities that rapidly vary fol-
lowing the separated airflow can cause modulations of the
pressure and velocity fields.

4) Energy Pulses: Teager [34] found experimental
evidence that speech resonances exhibit modulation struc-
ture that cannot originate from a second-order linear
resonator model. To see this let us assume that we have
a discrete-time second-order linear resonator system with
impulse response

x(n) = Ar" cos (Q.n + 0). (149)
Then applying ¥ to x(n) yields
Y [Ar" cos (Q.n + 0)] = A2r*" sin® (R,). (150)

This is illustrated in Figs. 3(a) and (b). In the same figure
the DESA is used to estimate the exponentially-decaying
amplitude envelope |Ar”"| and the constant frequency ..
Thus, if a signal representing a speech resonance were
produced by a second-order linear resonator, then this sig-
nal would cause an exponentially-decaying output from
the energy operator. In contrast, Teager found that band-
pass filtering speech vowel signals around their formants
and then applying the energy operator often yielded sev-
eral pulses, which he called ‘‘energy pulses,”’ per pitch
period. These energy pulses indicate some kind of mod-
ulation in each formant. In [30], [32] it appears that
Teager also did some work, which he called ‘‘microdis-
section,”’ on trying to isolate the instantaneous amplitude
and frequency of such modulations, although the mathe-
matical details and algorithms used are not described
therein. In our speech experiments [17], [18] we also
found these energy pulses and attempted to model them
using AM-FM signals, as explained next.

B. Speech Resonances

All the previous discussion paved the way and moti-
vates now the modeling of a single speech resonance (in
discrete time) by an exponentially-damped AM-FM
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Fig. 3. (a) Exponentially-damped cosine signal x(n) = (0.995)" cos (0.37n). (b) V¥ [x(n)]. (c) Estimated amplitude envelope
using DESA-1. (d) Estimated instantaneous frequency.

model’

R(n) = a(n) cos [¢ (n)] (151)

= r"A(n) cos [an + Q, SO q(k) dk + d>(0)]

(152)

where (1. is the center frequency value of the formant, the
instantaneous frequency @;(n) = Q. + ©Q,,q(n) models the

3There has been some previous work in modeling nonstationarity in
speech signals. In [21] the speech signal was modeled as a sum of harmonic
sine-wave components (not resonances) with time-varying amplitudes and
frequencies. However, during the estimation part in [21] constant ampli-
tudes and frequencies were assumed over an analysis frame; during the
synthesis part time-varying quadratic frequencies and linear amplitudes were
allowed. In another work [20] nonstationarity in speech signals was mod-
eled by using continuous-time sinusoids with time-varying frequency and
amplitude. However, the amplitude was constrained to be only a Gaussian,
exponential, or constant function, whereas the instantaneous frequency was
constrained to only vary linearly. In contrast, our approach allows for ar-
bitrary amplitude and frequency signals, that are either bandlimited or slow
varying. Also, the above works model speech harmonics whereas our work
deals with resonances. Finally, in [20] the parameters of the sinusoids were
found by minimizing a weighted average squared spectral error criterion
based on short-time Fourier transforms. In contrast, our approach using
energy operators and ESA’s is more efficient due to the simplicity of these
nonlinear operators and can adapt much more rapidly to speech nonstation-
arities due to the almost instantaneous nature of the energy operators.

time-varying formant whose deviation from Q. follows
some modulating signal ¢(n), |q(n)| < 1, A(n) is some
time-varying amplitude, and r € (0, 1) is related to the
rate of energy dissipation. By assuming that the total am-
plitude a(n) and instantaneous frequency ©;(n) do not vary
too fast in time or too greatly compared with the carrier
Q,, it follows from the discussion in Sections III and IV
that

VY[R(m)] = r"|A(n) sin Q. + Quqm)|. (153)
Thus, ¥¥ [R(n)] is an exponentially-damped product of
the envelope and the sine of the instantaneous frequency
of the resonance. For notational simplicity we will hence-
forth hide the decay factor r" into the total amplitude sig-
nal a(n) = r"A(n); this causes no loss of generality be-
cause ¥ [r"x(n)] = r*V¥ [x(n)] for any signal x.

An example of an exponentially-damped AM-FM in-
put signal is shown in Fig. 4(a). Fig. 4(b) shows the
Vs output, which is approximately equal to the product
of the amplitude envelope (AM component) and the sine
of the instantaneous frequency (FM component). How-
ever, the AM component dominates and visually hides the
FM component, because the amount of AM is much larger
than the amount of FM. The relative error magnitude in
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V¥ estimating the product of the AM and FM compo-
nents was 0.2%. Despite the mixing of the two compo-
nents in V¥’s output, the DESA was able to successfully
separate and estimate the amplitude envelope and instan-
taneous frequency as shown in Figs. 4(c) and (d).

We believe that the class of exponentially-damped AM-
FM signals (152) where a(n) and Q;(n) are narrowband
signals that do not vary too fast or too much in time com-
pared to the carrier (e.g., modelable as sums of a few
slow-varying sinusoids within a pitch period) may serve
as a good model for speech resonances for at least three
reasons: i) The shape of the energy pulses in Vs output
when the input is a synthetic exponentially-damped AM-
FM signal with sinusoidal modulating signals matches
well the shape of the energy pulses observed on actual
bandpass filtered speech waveforms. This can be seen by
comparing the energy pulses in the synthetic example of
Fig. 4 and the energy pulses on real speech resonances
shown later. ii) As we have already discussed, there exist
strong experimental and theoretical evidences for speech
resonances to have time-varying formants and ampli-
tudes. iii) The modulating signals in AM-FM models can
be efficiently estimated by using the DESA’s.

Experiments: Here we describe some of our experi-
ments on detecting modulations in speech resonances. We
extract a single resonance by bandpass filtering the speech
with a Gabor filter [7], whose impulse and frequency re-
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Fig. 4. (a) AM-FM signal x(n) = (0.998)"[1 + 0.8 cos (wn/100)] cos [wn/5 + sin (xn/50)]. (b) V¥ [x(@)]. (¢} Estimated
amplitude envelope using DESA-1. (d) Estimated instantaneous frequency.

spons¢ are
h(ty = exp (—a?t?) cos (w ) (154)
e 2 VT < [_ uﬁ}
(@ = 20 xp 4a”
(@ + @)
+ exp {— —“’40{—;’)]) (155)

The reasons for selecting the above bandpass filter are
twofold: i) It is optimally compact in the time and fre-
quency domains, because its rms time and frequency
width product assumes the minimum value in the uncer-
tainty principle inequality; ii) The Gaussian shape of H(w)
avoids producing sidelobes (or big sidelobes after trun-
cation of h) that could produce false pulses in the ¥’s
output.

Our design of the discrete bandpass Gabor filter pro-
ceeds as follows: A center formant frequency f, is selected
from the short-time speech spectrum.® A value of « is

*In this paper we simply position the bandpass filters centered around
manually-found formant spectral peaks. However, automated adjustment
of the filter center frequencies to approximately coincide with the formant
center frequencies is possible as follows: It has been found in [8] that it-
eratively applying the Gabor bandpass filter (initially centered anywhere in
the vicinity of a formant spectral peak) and the DESA by updating the
center filter frequency as the average of the estimated instantaneous fre-
quency converges to the true center formant/filter frequency after a few
iterations.
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Fig. 5. (a) Signal s(n) from speech vowel /E/ sampled at 30 kHz. (b) Spectral magnitude (magnified by 5) of s(n). Dotted line
shows the magnitude response of the Gabor bandpass filter around f, = 1580 Hz (a = 1000, N = 102). (c) Signal x(n) from
Gabor bandpass filtering of s (n). (d) V¥ [x(n)]. (¢) Estimated amplitude envelope using DESA-1. (f) Estimated instantaneous
frequency, smoothed by an 11-point median filter. (The dotted line shows the center formant value.).

selected to control the bandwidth using the rule [7] that
the rms bandwidth of the Gabor filter is equal to
a/ V2r. h(s) is discretized by replacing 7 with nT, where
T is the sampling period, and truncating k(n) to a sym-
metric FIR filter h(n) = exp (—b*n?) cos (Q.n), with —N
=n =< N,b = aT, and Q. = 2xf.T. Then the Gabor
bandpass filtering is performed by convolving the trun-
cated A (n) with the speech signal. The integer N is chosen

to truncate the Gaussian envelope of h(n) essentially to
zero; e.g., exp (—b>N?) = 107°.

Fig. 5 shows (a) a 30 msec segment of a speech vowel
/E/ from the word ‘‘f/ea/ther’’ sampled at f; = 30 kHz;
(b) its spectral magnitude superimposed with the magni-
tude response of a bandpass Gabor filter centered at a for-
mant f. = 1580 Hz; (c) the speech signal part x (n) cor-
responding to this frequency band; (d) the energy operator
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Fig. 6. (a) Signal s(n) from speech vowel /E/ sampled at 30 kHz. (b) Spectral magnitude (magnified by 5) of s(n). Dotted line
shows the magnitude response of the Gabor bandpass filter around f. = 2350 Hz (a = 1000, N = 102). (c) Signal x (n) from
Gabor bandpass filtering of s (n). (d) V¥ [x(n)]. (e) Estimated amplitude envelope using DESA-1. (f) Estimated instantaneous
frequency, smoothed by an 11-point median filter. (The dotted line shows the center formant value.)

applied on x(n); (e) the amplitude envelope and (f) the
instantaneous frequency extracted using the DESA. The
frequency signal was post-smoothed by a median filter to
suppress a few isolated impulse-like spikes occurring at
amplitude valleys. The experiment reported in Fig. 5 is
repeated for the same speech vowel segment but for its
next two higher formants, i.e., 2350 Hz in Fig. 6 and
3400 Hz in Fig. 7. As Figs. 5(d), 6(d), and 7(d) show,

there are present two (2-3) energy pulses per pitch period.
We have seen similar numbers of energy pulses in many
other of our experiments with signals from speech vow-
els. As explained before, these multiple energy pulses per
pitch period in the output of ¥ applied on a speech reso-
nance signal indicate the existence of modulations.
Namely, if the resonance were linear with constant am-
plitude and frequency, then the energy operator’s output
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shows the magnitude response of the Gabor bandpass filter around f, = 3400 Hz (¢ = 1000, N = 102). (c) Signal x (n) from
Gabor bandpass filtering of s(n). (d) V¥ [x(n)]. (¢) Estimated amplitude envelope using DESA-1. (f) Estimated instantaneous
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would be a damped exponential with no pulses as in (150).
The structure of the damped AM-FM signal (152) with
sinusoidal AM and FM modulating signals (or superpo-
sitions of a few sinusoids) and its output (153) from ¥
may approximately explain the shape of these measured
energy pulses. This is further supported by the shape of
the actual amplitude envelope and instantaneous fre-
quency that the separation algorithm has extracted from
the speech resonances.

As Figs. 5(e), (f), 6(e), (f), and 7(e), (f) show, the
energy separation algorithm uncovers some interesting
modulation structures in speech resonances. We see there
very strong AM modulation; further the amplitude enve-
lope seems to closely follow the energy operator’s output.
Thus the AM component seems to visually dominate the
FM component in the energy operator’s output. Never-
theless, the FM is strong especially in the two higher for-
mants. Specifically, the estimated instantaneous fre-
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quency signals seem to oscillate around their center
formant value with the frequency deviations whose local
maxima can reach 200 Hz. However, the instantaneous
variation of the lower formant is sometimes small, as
shown in the first part of Fig. 5(f) where it increases in
the second part of the speech segment. In higher formants
we have generally observed stronger modulations, e.g.,
see Fig. 7(f). We have also found that the instantaneous
frequency profiles estimated via the DESA often contain
isolated narrow spikes, which are usually caused either
by amplitude valleys or by the onset of a new pitch pulse;
the latter issue is further explained in a subsequent sec-
tion. At valleys of the amplitude envelope, the energy sig-
nal goes close to zero, thereby creating abrupt spikes in
the frequency profile. Excluding these narrow spikes, in
vowels the instantaneous frequency and amplitude enve-
lope profiles follow a roughly sinusoidal pattern. Note that
the signals used in Figs. 5-7 were sampled at 30 kHz.
The reason for using this rather high sampling frequency
was to be able to observe the variations of the amplitude
and frequency signals at finer time scales. We have ob-
served very similar patterns for a 10 kHz sampling fre-
quency. Finally, there have been a few cases of signals
from low formants of vowels where we observed only one
major energy pulse per pitch period. This may be partially
explained by a large amount of damping, or by a low
amount of AM-FM modulation for the specific speaker/
sound/formant combination.

Fig. 8 shows a similar speech experiment but for the
voiced fricative /Z/ and for a formant around f. = 6300
Hz. We observe there that the instantaneous frequency
and amplitude envelope profiles have more complicated
shapes than the amplitude/frequency profiles observed in
vowels. This is perhaps due to the random bursts of en-
ergy that accompany frication. Our understanding of the
modulation occurring during frication is still incomplete.
As a preliminary model, we speculate that a resonance of
a fricative speech signal can be modeled as an AM-FM
signal whose imodulating signals a (n) and g (n) are mostly
random.

Note that our modeling of a single resonance in the vo-
cal tract output using an AM-FM signal does not explic-
itly take into consideration the facts that actual speech
vowels are quasi-periodic and usually consist of multiple
resonances. Both of these phenomena introduce an addi-
tive component to the single resonance which may alter
the output of the energy operator and the DESA esti-
mates. Next we briefly analyze these two issues.

C. Effects of Pitch

The jumps in the output of ¥ in the vicinity of the onset
of a new pitch period can be explained by observing that
the input single-resonance signal in the neighborhood of
a pitch impulse can be modeled as the product of an AM-
FM signal x (n) = a(n) cos [¢(n)] and a unit step signal
u(n), where the time origin n = 0 has been taken at the
location of some pitch ‘‘impulse.”’ The output of ¥ to
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such a signal is
Yx(mu@] = ¥[x@]un) + é(n)
Cx0) - ¥axm),-a (156)

since ¥ [u(n)] = 6(n) where 8 is the discrete-time unit
impulse. Hence the output of ¥ contains a right-sided ver-
sion of ¥ [x(n)] = a’(n) sin® [Q;(n)] and an impulse at
the location of the pitch impulse. These impulse jumps in
the output of ¥ due to the pitch periodicity account for
some of the observed jumps in the amplitude envelope
and the spikes in the instantaneous frequency estimated
from applying the DESA to the speech resonance signal.

To further understand the effects of pitch, we next ex-
amine the structure of the amplitude and frequency sig-
nals obtained by applying the DESA to resonances from
simple vowel-like signals synthesized using time-invari-
ant linear resonators. The motivation is to compare them
with our experimental results from real speech reso-
nances. First note from Fig. 3 that a signal produced by
a second-order linear resonator with no pitch periodicity
yields an exponentially-decaying amplitude envelope and
a constant frequency. If we add the pitch periodicity, e.g.,
by exciting the above linear resonator with a periodic im-
pulse train of period 100 samples, then we obtain the sig-
nal in Fig. 9. This signal mimics the structure of a syn-
thetic vowel with a single constant formant at 1500 Hz
and a pitch frequency of 100 Hz. (The sampling fre-
quency was set equal to 10 kHz). Then Fig. 9 shows that

the V¥ output and the estimated amplitude envelope via
the DESA consist of exponentially-decaying segments in-
terrupted by discontinuity jumps at the time locations of
the pitch impulses. The estimated frequency signal is
everywhere roughly constant, as it should be, except at
the location of pitch impulses where it has large spikes.
Finally, Fig. 10 shows a segment from a synthetic vowel
generated from the parallel superposition of two single-
formant vowel synthesizers of the same type as used in
Fig. 9. This synthetic signal has two formants, one at 500
Hz with relative gain 1 and the other at 1500 Hz with
relative gain 0.5. The rest of Fig. 10 reports the same
experiment as in the real speech experiments of using a
Gabor bandpass filter to extract the formant around 1500
Hz and then using the energy operator and the DESA to
estimate the instantaneous amplitude and frequency of this
resonance. As expected, the amplitude signal consists of
exponential-decaying segments with jumps at pitch im-
pulse locations, whereas the frequency signal is every-
where constant except for some narrow doublet-like pulses
around the pitch impulse locations. These pitch-induced
doublets have a very small height of 20 Hz and are blurred
counterparts of the spikes in Fig. 9.

Concluding, the DESA applied to signals correspond-
ing to resonances of vowels synthesized using linear time-
invariant resonators yields exponentially-decaying ampli-
tude envelopes and constant formant frequencies except
for some narrow pitch-induced spikes. In contrast, the
DESA has uncovered energy pulses in the amplitude and
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Fig. 8. (a) Speech signal s (n) from fricative /Z/ sampled at 30 kHz. (b) Spectral magnitude (magnified by 3) of s(n). Dotted

6300 Hz (@ = 1500, N = 68). (c) Signal x(n) from Gabor

bandpass filtering of s(n). (d) N2 [x(m)]. (¢) Estimated amplitude envelope. (f) Estimated instantaneous frequency, smoothed
by a 9-point median filter. (The dotted line shows the center formant value.)

frequency signals of real speech resonances, which indi-
cates the existence of modulations in real speech signals.

D. Effects of Neighboring Formants

Consider the case that arises when, inside the passband
of the bandpass filter used to extract a speech resonance,
there are two formants closely spaced with approximately

equal gains. Let us model this situation with the signal
x(¢) = sin (w;t + 20) + sin (w,?)
= 2 cos (w,t + 0) sin (w .1 + 6) (157)

where w,, w, are the formant center frequencies and w; <
w,. Then x () is an AM signal whose carrier and envelope
frequencies are w, = (w; + wy)/2 and w, = (w; — w1) /2,
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Fig. 9. (a) Signal x(n) from synthetic speech vowel with one formant at 1500 Hz and pitch frequency of 100 Hz. (b)
V¥ [x(n)]. (c) Estimated amplitude envelope using DESA-1. (d) Estimated instantaneous frequency.

respectively. Thus, V¥ [x(?)] = 2w,| cos (w,t + 6){, and
hence V¥ will track the envelope, if the relative approx-
imation error [19] (1 — d)z/(l + d)? is <<1, where d
= w;/w; < 1. For this error to be <10%, we must have
d > 0.5, i.e., the two formants must be less than an oc-
tave apart. Then, we observe an AM modulation of one
formant by the other. Consider also the case of two con-
secutive pitch harmonics falling within the resonance
bandwidth and passing through the bandpass filter. Then,
the above two-sine model holds and may predict a possi-
ble tracking of a pitch-related AM envelope. However,
this envelope varies with a frequency roughly equal to the
pitch frequency and thus the modulation does not intro-
duce additional pulses over a pitch period. In addition,
we have experimentally observed in voiced speech reso-
nances that the estimated instantaneous frequency may
contain ‘‘parasitic’’ small-magnitude (+10 — 30 Hz) rip-
ples due either to the pitch harmonics or to neighbor for-
mants if the bandpass filter has not completely rejected
the neighbor formants. A preliminary model we have
thought for this case could be a sum of two cosines, one
at the center resonance frequency w, and another at some
neighbor frequency w, with much smaller amplitude by a
factor 8 << 1 (to model a residual frequency peak not

completely rejected by the filter):
y() = cos (w.1) + B cos (w.t + 8)
=~ cos [w.z — B sin (wpt — )]
~— —

—~—
FM

+ ﬂicos (wst — 6) cos (w‘cL) (158)

—~—
AM

where wy = w, — w,. Thus, imperfect bandpass filtering
may introduce a parasitic FM component with a very small
modulation index 8 << 1 whose modulating frequency is
the difference between the central and the neighbor fre-
quency peak and the carrier is the central frequency. The
parasitic AM component has a smaller (by 8) order of
magnitude than the FM and hence can be ignored. If the
neighbor peak is a pitch harmonic, then w; will be the
pitch frequency and hence this parasitic FM will be very
slow varying. The maximum frequency deviation in the
estimated instantaneous frequency using an energy sepa-
ration algorithm will be approximately equal to Buwy; it is
this product that determines the peak ripple of the ob-
served parasitic FM component. Preliminary experiments
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Fig. 10. (a) Signal x(n) from a synthetic speech vowel with two formants at 500 and 1500 Hz and pitch frequency of 100 Hz.
(b) Spectral magnitude (magnified by 3) of s (n). Dotted line shows the magnitude response of the Gabor bandpass filter around
f. = 1500 Hz (o = 1000, N = 34). (c) Signal x () from Gabor bandpass filtering of s (n). (d) V¥ [x (n)]. (e) Estimated amplitude

envelope using DESA-1. (f) Estimated instantaneous frequency.

confirm the above implications of this conjectured model
for parasitic FM.

The above discussion implies that the passband of the
bandpass filters extracting speech resonances should not
be too wide because then they will include significant
contributions from neighboring formants which may cause
parasitic modulations. On the other hand, the bandpass
filters should not have a very narrow passband because
this would miss or deemphasize some of the modulations.

Optimal decision schemes for choosing the filter band-
width are presently being investigated.

VI. DiIsCUSSION
In this section we conclude by briefly discussing a va-

riety of issues related to the ESA’s and their application
to speech analysis.
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TABLE 111
COMPUTATIONAL COMPLEXITY OF DESA’s
(NUMBER OF OPERATIONS PER SAMPLE)

Algorithm Additions Multiplications arccos () JO w
En. Op. ¥ () 1 2 0 0 3
DESA-la 5 8 1 1 4
DESA-1 6 8 1 1 5
DESA-2 4 8 1 1 5

A. Computational Complexity of DESA’s

The DESAs are very simple algorithms to implement
with almost trivial computational complexity. Table III
compares the complexity of the three DESAs, by assum-
ing that additions and subtractions have the same com-
plexity, and so do multiplications and divisions. Thus all
DESAs have linear complexity O (N) where N is the length
of the analyzed signal segment in samples and the con-
stants in this O (N) are very small. DESA-2 is the fastest
and DESA-1 is the slowest, but the differences are very
small. In addition, note that all three DESA’s behave al-
most as instantaneous signal operators because they are
defined based on an extremely short moving window.
Specifically, DESA-1 and DESA-2 involve only a mov-
ing window of five samples (at times n, n + 1, n + 2),
whereas DESA-1a involves a 4-sample moving window
(attimesn,n + 1, n — 2).

B. Alternative Amplitude/Frequency Separation
Algorithms

In addition to the ESA’s that we developed in this pa-
per, it is possible to find other approaches to estimate the
amplitude and frequency components of an AM-FM sig-
nal. Next, we comment on three such approaches.

1) Continuous-Time Energy Separation: For a cosine

x(H) = A cos (w.t + 0)

the following formulas were provided in [39, p. 159] (and
in [28] only for the frequency) to exactly compute its con-
stant amplitude 4 and frequency w,:

wl= - ;% (159)
2 _ 2. X@OFQ0)
A% = x2(@) T (160)

We note that the above algorithm contains implicitly the
energy operator only in the amplitude estimator; i.e.,
(160) can be written as

P 160 16)

£ (=i/x @l
Comparing the amplitude and frequency estimation equa-
tions of our CESA with the above algorithm, we note a
fundamental and important difference: In the CESA of
(13) and (14) both estimation equations are the quotients
of two functions each of which is approximately a low-

A* = x? (161)

bandwidth function, whereas in the above algorithm these
functions are the signals and their derivatives themselves
and hence are not low-bandwidth but rapidly-changing
functions. Thus we would expect the CESA to give more
stable and less noisy output estimates than the above al-
gorithm.

2) Discrete-Time Energy Separation: In addition to
the three DESA’s we discussed previously, it is possible
to develop alternative algorithms by combining various
shifted versions of the signal and their outputs from ¥ to
obtain a set of equations whose solution yields estimates
of the amplitude and frequency signals. Next we provide
one such algorithm, starting from the case of a cosine

x(n) = A cos (Q.n + 0)
with constant amplitude and frequency. Note that
x(n + 1)+ x(n— 1) =24 cos () cos (Q.n + 6)
= 2 cos () x(n) (162)

Hence, the constants Q. and |4| can be found from the
formulas

_ x(mn+ 1D +x(n—1)
Q. = arccos{ 20 J (163)
1| = Yixml _ ¥ [x ()
1 — cos? (Q,) x(r+ ) +x(n— n*
4x%(n)
(164)

This algorithm has the advantage that it contains no signal
differences; instead, it averages. Hence, it may be more
robust. However, it does not generalize well to the time-
varying case. Specifically, let x(n) = a(n) cos [¢(n)] be
an AM-FM signal. Then we could use the formulas (163)
and (164) to approximately estimate the time-varying am-
plitude envelope |a(n)| and instantaneous frequency £, (n)
provided that the following conditions were true; i) a(n)
is bandlimited with bandwidth @, << ., ii) Q;(n) is
bandlimited with bandwidth @; << 1 and has deviation
Q, << Q, and iii) sin (2,;) << cos (R2,.). Although con-
ditions i) and ii) are quite realistic, condition iii) presents
a serious problem: It is true only if Q. is close to zero or
to =, i.e., for very small or very high carrier frequencies.
For intermediate frequencies €, around w /2, condition
iii) cannot be generally true.
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3) Hilbert Transform: Given a real AM-FM signal
x () = a(f) cos [¢(£)], an alternative approach to estimate
its envelope |a(#)| and instantaneous frequency w;(f) =
& (0 is to use the Hilbert transform of x (7). Specifically,
if X (w) is the Fourier transform of x(f), its Hilbert trans-
form is the signal £ (¢) with Fourier transform X(w) = —j
sgn (w) X(w). The related complex-valued analytic signal
is

analytic signal: x(r) + j&(1) = r(e’®®  (165)

with r() = 0. Thus, the Hilbert transform can provide
an envelope r(t) = X2 + £2(¢) and an instantaneous
frequency 6(r), where 0(r) = arctan [£(2) /x(®]. In gen-
eral, r(7) and @ (¢) will be different from their counterparts
|a(®)| and w;(r) imposed by the AM-FM model. How-
ever, conditions exist [23] that guarantee that the error
between the Hilbert transform £ (f) and the quadrature sig-
nal a(¢) sin [¢ ()] is small. Similar arguments can be de-
veloped to compare () and §(¢) with |a ()| and w; (?).

For discrete-time signals a Hilbert transform can be ap-
proximately implemented using either the discrete Fourier
transform (i.e., FFT) or an FIR filter, as explained in [24].
In a comparative work [25], experiments on N-sample
synthetic AM-FM signals indicate that when the ratios of
carrier . versus the information signals’ bandwidths Q,
and Q; are in the order of 10, as is the case in speech
applications, then the Hilbert transform (implemented via
an FIR filter) can give a smaller error but at a computa-
tional complexity O(N?) which is higher than the very
low O (N) complexity of the DESA. (Also the complexity
of the Hilbert transform implemented using FFT’s is O (N
log, N).) Decreasing the complexity of the Hilbert trans-
form to an O(N) by using a shorter impulse response
makes its error larger than that of the DESA. In addition,
if the ratios of Q. versus Q, and €, are in the order of 100
or higher, as in communications applications, then the
DESA yields a smaller error than the more complex Hil-
bert transform approach. Experiments on real speech sig-
nals indicate that both approaches yield similar estimates.
In very few cases, the Hilbert transform yielded some-
what smoother amplitude and frequency signals, but a
very short FIR smoothing of the energy signals makes the
DESA achieve similar smoothness and still maintain lower
complexity [25]. Another advantage of the DESA is that
(for each output sample) it uses an extremely short win-
dow (of 5 samples) which allows it to instantaneously
adapt during speech transitions between phonemes,
whereas the Hilbert transform often needs a window
whose length is of the same order as the length of the
speech analysis frame.

C. General Conclusions

In this paper we have developed a theory for estimating
the time-varying amplitude envelope and instantaneous
frequency of arbitrary AM-FM signals using nonlinear
energy-tracking operators. The only constraint imposed is
that the amplitude and frequency signals do not vary too
fast or too greatly with time compared with the carrier.
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The continuous-time theoretical analysis is accompanied
with the development of efficient energy separation al-
gorithms for discrete-time signals. We have developed
three DESA’s and numerically compared their perfor-
mance on synthetic AM-FM signals. We have found that
the DESA’s work quite effectively for estimating the am-
plitude envelope and instantaneous frequency under fairly
broad ranges of amounts of amplitude and/or frequency
modulation. In addition, their computationally complex-
ity is very small, i.e., linear in the number of signal sam-
ples with a small proportionality constant.

We have also applied the DESA’s to the analysis of
speech resonances, modeled using AM-FM signals. The
DESA'’s uncovered interesting AM and FM structure in
signals from speech resonances within a single pitch pe-
riod. Speech formants with time-varying nonexponential
amplitude envelopes and oscillating instantaneous values
have been frequently observed. These results support a
general model for a short-time speech segment as a su-
perposition of AM-FM resonances, as proposed in [18],
[19]. However, our experimental results on speech are
only a beginning. Much more work remains to be done in
refining this AM-FM model for speech and the estimation
of its parameters. In the meantime, we strongly believe
that the energy operators and ESA’s, due to their simplic-
ity and instantaneous-adapting nature, offer valuable sig-
nal processing tools for detecting interesting modulation
patterns in speech and other time-varying signals.

APPENDIX

The error analysis in this appendix uses the same type
of approximations as in [18].

Let us assume that a(?) and ¢ (f) = w;(¢) are bandlim-
ited with bandwidths w, << w, and wy << w,, respec-
tively. Also assume w,, << ..

By physical order of magnitude O(c) for a constant ¢
we shall mean the power of 10 closest to ¢. Due to the
oscillatory nature of the signals analyzed herein, we de-
fine the order of magnitude of a signal x () to be the order
of magnitude of its maximum absolute value; i.e.,

Ox(®) £ O (Xnan)- (166)

For example,
0(w;) = O(w, + w,). (167)

Since we will compare dominant and error terms with very
different orders of magnitude, we use the following ap-
proximate laws for O( ): for4, B > 0

0(4B) = 0(A)O(B)

0 + B) = max [0(4), O(B)]. (168)
In this paper, we assume that
0 ma) = O (po) (169)

for bandlimited signal x (#). This implies that for the am-
plitude a and the frequency modulating signal g we have
O(a) = O(p,) and O(g) = O(1).
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To find the order of the error terms in ¥ (x) — a’w?,
note that combining (20)-(22) yields

VY&) =a’w!+ E

where E is the total approximation error equal to

(170)

E= ()"1)2 —“nNh =2yt ity
— 0.5a%$2¢ sin 2¢) + [a2¥ () + $> ¥ (a)]

-+ sin’ () (71
and, by (20),
y1 = d cos ¢ — a¢ sin ¢ (172)
¥ = (@ — ap?) cos ¢ — Qd¢p + ad)sin¢ (173)
j, = (a¢ + ad) sin ¢ + ad? cos ¢ (174)
¥, = (dp + 2ad + ap — ad>) sin ¢
+ (a¢* + 3add) cos . (175)
From Lemma 1 and (33) it follows that
0@ = O(aw,) (176)
0@) = 0aw;) a7
0($) = O(wnwy) 178)
O(y) = O(aw,w;) (179)
0(y) = O(aw}) (180)
0(3) = O(aw, @) (181)
O(5) = 0@w)). (182)
Hence, the orders of the terms in E are
0(y) =~ 0@’ wiv]) (183)
Oy ) = 0@ wiwl) (184)
Oy 3) = 0@’ w}) (185)
Oy 9) = 0(@*w,0}) (186)
O(J1y) = 0@’ w,0)}) (187)
0(a’¢’¢) = 0@’ w!w,wy) (188)
0la’¥($)] = 0@’ w} w}) (189)
0[¢>¥ (@) = 0@’ wiw}). (190)

Thus, the order of the total error is
O(E) = 0(a*) max [0(w,w}), O(wnww}), Owfw])].
(191)

Since the desired energy term is a’w? and w,, w,, wp <<
w,, it follows that O (E) << O(a’w?). Thus, the domi-
nant term in (170) is a*w?, which yields the final approx-
imation (40).
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