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1 Introduction

The goals of image enhancement include the improvement of the visibility and perceptibility of
the various regions into which an image can be partitioned and of the detectability of the image
features inside these regions. These goals include tasks such as: cleaning the image from various
types of noise; enhancing the contrast among adjacent regions or features; simplifying the image via
selective smoothing or elimination of features at certain scales and retaining only features at certain
desirable scales. While traditional approaches for solving the above tasks have used mainly tools
of linear systems, there is a growing understanding that linear approaches are not well suitable
or even fail to solve problems involving geometrical aspects of the image. Thus there is a need
for nonlinear approaches. A powerful nonlinear methodology that can successfully solve the above
problems is mathematical morphology.

Mathematical morphology is a set- and lattice-theoretic methodology for image analysis, which
aims at quantitatively describing the geometrical structure of image objects. It was initiated [17] in
the late 1960’s to analyze binary images from geological and biomedical data as well as to formalize
and extend earlier or parallel work [13, 12] on binary pattern recognition based on cellular automata
and Boolean/threshold logic. In the late 1970’s it was extended to gray-level images [17]. In the
mid 1980’s it was brought to the mainstream of image/signal processing and related to other
nonlinear filtering approaches [7, 8]. Finally, in the late 1980’s and 1990’s it was generalized to
arbitrary lattices [18, 2]. The above evolution of ideas has formed what we call nowadays the field
of morphological image processing, which is a broad and coherent collection of theoretical
concepts, nonlinear filters, design methodologies, and applications systems. Its rich theoretical
framework, algorithmic efficiency, easy implementability on special hardware, and suitability for
many shape-oriented problems have propelled its widespread usage and further advancement by
many academic and industry groups working on various problems in image processing, computer
vision, and pattern recognition.
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This chapter provides a brief introduction to the application of morphological image processing
to image enhancement and detection. There are several motivations for using morphological filters
for such problems. First, it is of paramount importance to preserve, uncover, or detect the geometric
structure of image objects. Thus, morphological filters which are more suitable than linear filters
for shape analysis, play a major role for geometry-based enhancement and detection. Further,
they offer efficient solutions to other nonlinear tasks such as non-Gaussian noise suppression. This
task can also be accomplished (with similar performance) by a closely related class of nonlinear
systems, the median, rank and stack filters, which also outperform linear filters in non-Gaussian
noise suppression. Finally, the elementary morphological operators1 are the building blocks for
large classes of nonlinear image processing systems, which include rank and stack filters.

2 Morphological Image Operators

2.1 Morphological Filters for Binary Images

Given a sampled2 binary image signal f [x] with values 1 for the image object and 0 for the back-
ground, typical image transformations involving a moving window set W = {y1, y2, ..., yn} of n
sample indexes would be

ψb(f)[x] = b(f [x− y1], ..., f [x− yn]) (1)

where b(v1, ..., vn) is a Boolean function of n variables. The mapping f �→ ψb(f) is called a Boolean
filter. By varying the Boolean function b, a large variety of Boolean filters can be obtained. For
example, choosing a Boolean AND for b would shrink the input image object, whereas a Boolean
OR would expand it. Numerous other Boolean filters are possible, since there are 22n

possible
Boolean functions of n variables. The main applications of such Boolean image operations have
been in biomedical image processing, character recognition, object detection, and general 2D shape
analysis [13, 12].

Among the important concepts offered by mathematical morphology was to use sets to represent
binary images and set operations to represent binary image transformations. Specifically, given a
binary image, let the object be represented by the set X and its background by the set complement
Xc. The Boolean OR transformation of X by a (window) set B is equivalent to the Minkowski set
addition ⊕, also called dilation, of X by B:

X⊕B ≡ {x+ y : x ∈ X, y ∈ B} =
⋃

y∈B

X+y (2)

where X+y ≡ {x + y : x ∈ X} is the translation of X along the vector y. Likewise, if Br ≡ {x :
−x ∈ B} is the reflection of B with respect to the origin, the Boolean AND transformation of X
by Br is equivalent to the Minkowski set subtraction �, also called erosion, of X by B:

X�B ≡ {x : B+x⊆X} =
⋂

y∈B

X−y (3)

1The term ‘morphological operator’, which means a morphological signal transformation, shall be used inter-
changeably with ‘morphological filter’, in analogy to the terminology ‘rank or linear filter’.

2Signals of a continuous variable x ∈ R
d

are usually denoted by f(x), whereas for signals with discrete variable
x ∈ Z

d
we write f [x]. R and Z denote, respectively, the set of reals and integers.
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Cascading erosion and dilation creates two other operations, the opening X◦B ≡ (X�B)⊕B
and the closing X•B ≡ (X⊕B)�B of X by B. In applications, B is usually called a structuring
element and has a simple geometrical shape and a size smaller than the image X. If B has a
regular shape, e.g., a small disk, then both opening and closing act as nonlinear filters that smooth
the contours of the input image. Namely, if X is viewed as a flat island, the opening suppresses
the sharp capes and cuts the narrow isthmuses of X, whereas the closing fills in the thin gulfs and
small holes.

There is a duality between dilation and erosion since X⊕B = (Xc�Br)c; i.e., dilation of an
image object by B is equivalent to eroding its background by Br and complementing the result. A
similar duality exists between closing and opening.

2.2 Morphological Filters for Graylevel Images

Extending morphological operators from binary to graylevel images can be done by using set rep-
resentations of signals and transforming these input sets via morphological set operations. Thus,
consider an image signal f(x) defined on the continuous or discrete plane ID = R

2 or Z
2 and as-

suming values in R = R∪{−∞,∞}. Thresholding f at all amplitude levels v produces an ensemble
of binary images represented by the threshold sets

Θv(f) ≡ {x ∈ ID : f(x) ≥ v} , −∞ < v < +∞ (4)

The image can be exactly reconstructed from all its threshold sets since

f(x) = sup{v ∈ R : x ∈ Θv(f)} (5)

where ‘sup’ denotes supremum3. Transforming each threshold set of the input signal f by a set
operator Ψ and viewing the transformed sets as threshold sets of a new image creates [17, 7] a flat
image operator ψ whose output signal is

ψ(f)(x) = sup{v ∈ R : x ∈ Ψ[Θv(f)]} (6)

For example, if Ψ is the set dilation and erosion by B, the above procedure creates the two most
elementary morphological image operators: the dilation and erosion of f(x) by a set B:

(f⊕B)(x) ≡
∨

y∈B

f(x− y) (7)

(f�B)(x) ≡
∧

y∈B

f(x+ y) (8)

where
∨

denotes supremum (or maximum for finite B) and
∧

denotes infimum (or minimum for
finiteB). Flat erosion (dilation) of a function f by a small convex setB reduces (increases) the peaks
(valleys) and enlarges the minima (maxima) of the function. The flat opening f◦B = (f�B)⊕B
of f by B smooths the graph of f from below by cutting down its peaks, whereas the closing
f•B = (f⊕B)�B smooths it from above by filling up its valleys.

3Given a set X of real numbers, the supremum of X is its lowest upper bound. If X is finite (or infinite but closed
from above), its supremum coincides with its maximum.
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The most general translation-invariant morphological dilation and erosion of a graylevel image
signal f(x) by another signal g are:

(f⊕g)(x) ≡
∨

y ∈ ID
f(x− y) + g(y) (9)

(f�g)(x) ≡
∧

y ∈ ID
f(x+ y) − g(y) (10)

Note that signal dilation is a nonlinear convolution where the sum-of-products in the standard
linear convolution is replaced by a max-of-sums.

2.3 Universality of Morphological Operators4

Dilations or erosions can be combined in many ways to create more complex morphological operators
that can solve a broad variety of problems in image analysis and nonlinear filtering. Their versatility
is further strengthened by a theory outlined in [7, 8] that represents a broad class of nonlinear and
linear operators as a minimal combination of erosions or dilations. Here we summarize the main
results of this theory restricting our discussion only to discrete 2D image signals.

Any translation-invariant set operator Ψ is uniquely characterized by its kernel Ker(Ψ) ≡ {X ∈
Z

2 : 0 ∈ Ψ(X)}. The kernel representation requires an infinite number of erosions or dilations.
A more efficient (requiring less erosions) representation uses only a substructure of the kernel, its
basis Bas(Ψ), defined as the collection of kernel elements that are minimal with respect to the
partial ordering ⊆ . If Ψ is also increasing (i.e., X⊆Y =⇒ Ψ(X)⊆ Ψ(Y )) and upper semicontinuous
(i.e., Ψ(

⋂
nXn) =

⋂
n Ψ(Xn) for any decreasing set sequence Xn), then Ψ has a nonempty basis

and can be represented exactly as a union of erosions by its basis sets:

Ψ(X) =
⋃

A ∈ Bas(Ψ)
X�A (11)

The morphological basis representation has also been extended to graylevel signal operators.
As a special case, if φ is a flat signal operator as in (6) that is translation-invariant and commutes
with thresholding, then φ can be represented as a supremum of erosions by the basis sets of its
corresponding set operator Φ:

φ(f) =
∨

A ∈ Bas(Φ)
f�A (12)

By duality, there is also an alternative representation where a set operator Ψ satisfying the
above three assumptions can be realized exactly as the intersection of dilations by the reflected
basis sets of its dual operator Ψd(X) ≡ [Ψ(Xc)]c. There is also a similar dual representation of
signal operators as an infimum of dilations.

Given the wide applicability of erosions/dilations, their parallellism, and their simple imple-
mentations, the morphological representation theory supports a general purpose image processing
(software or hardware) module that can perform erosions/dilations, based on which numerous other
complex image operations can be build.

4This is a section for mathematically-inclined readers and can be skipped without significant loss of continuity.
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2.4 Median, Rank, and Stack Filters

Flat erosion and dilation of a discrete image signal f [x] by a finite window W = {y1, ..., yn}⊆ Z
2 is

a moving local minimum or maximum. Replacing min/max with a more general rank leads to rank
filters. At each location x ∈ Z

2, sorting the signal values within the reflected and shifted n-point
window (W r)+x in decreasing order and picking the p-th largest value, p = 1, 2, ..., n, yields the
output signal from the p-th rank filter:

(f�pW )[x] ≡ p-th rank of (f [x− y1],...,f [x− yn]) (13)

For odd n and p = (n+1)/2 we obtain the median filter. Rank filters and especially medians have
been applied mainly to suppress impulse noise or noise whose probability density has heavier tails
than the Gaussian for enhancement of image and other signals, since they can remove this type of
noise without blurring edges, as would be the case for linear filtering. A discussion of median-type
filters can be found in Chapter 3.2.

If the input image is binary, the rank filter output is also binary since sorting preserves a signal’s
range. Rank filtering of binary images involves only counting of points and no sorting. Namely,
if the set S⊆ Z

2 represents an input binary image, the output set produced by the p-th rank set
filter is

S�pW ≡ {x : card((W r)+x ∩ S) ≥ p} (14)

where card(X) denotes the cardinality (i.e., number of points) of a set X.
All rank operators commute with thresholding ; i.e.,

Θv[f�pW ] = [Θv(f)]�pW, ∀v , ∀p. (15)

where Θv(f) is the binary image resulting from thresholding f at level v. This property is also shared
by all morphological operators that are finite compositions or maxima/minima of flat dilations and
erosions by finite structuring elements. All such signal operators ψ that have a corresponding
set operator Ψ and commute with thresholding can be alternatively implemented via threshold
superposition as in (6). Further, since the binary version of all the above discrete translation-
invariant finite-window operators can be described by their generating Boolean function as in (1),
all that is needed in synthesizing their corresponding graylevel image filters is knowledge of this
Boolean function. Specifically, let fv[x] be the binary images represented by the threshold sets
Θv(f) of an input graylevel image f [x]. Transforming all fv with an increasing (i.e., containing no
complemented variables) Boolean function b(u1, ..., un) in place of the set operator Ψ in (6) creates
a class of nonlinear signal operators via threshold superposition, called stack filters [1, 7]

φb(f)[x] ≡ sup{v ∈ R : b(fv[x− y1], ..., fv[x− yn]) = 1} (16)

The use of Boolean functions facilitates the design of such discrete flat operators with determinable
structural properties. Since each increasing Boolean function can be uniquely represented by an
irreducible sum (product) of product (sum) terms, and each product (sum) term corresponds to
an erosion (dilation), each stack filter can be represented as a finite maximum (minimum) of
flat erosions (dilations) [7]. Because of their representation via erosions/dilations (which have a
geometric interpretation) and Boolean functions (which are related to mathematical logic), stack
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filters can be analyzed or designed not only in terms of their statistical properties for image denoising
but also in terms of their geometric and logic properties for preserving selected image structures.

2.5 Morphological Operators and Lattice Theory

A more general formalization [18, 2] of morphological operators views them as operators on complete
lattices. A complete lattice is a set L equipped with a partial ordering ≤ such that (L,≤) has the
algebraic structure of a partially ordered set where the supremum and infimum of any of its subsets
exist in L. For any subset K⊆ L, its supremum

∨K and infimum
∧K are defined as the lowest

(with respect to ≤) upper bound and greatest lower bound of K, respectively. The two main
examples of complete lattices used in morphological image processing are: (i) the space of all
binary images represented by subsets of the plane ID where the

∨
/
∧

lattice operations are the set
union/intersection, and (ii) the space of all graylevel image signals f : ID → R where the

∨
/
∧

lattice operations are the supremum/infimum of sets of real numbers. An operator ψ on L is called
increasing if it preserves the partial ordering, i.e., f ≤ g implies ψ(f) ≤ ψ(g). Increasing operators
are of great importance, and among them four fundamental examples are:

δ is dilation ⇐⇒ δ(
∨
i∈I

fi) =
∨
i∈I

δ(fi) (17)

ε is erosion ⇐⇒ ε(
∧
i∈I

fi) =
∧
i∈I

ε(fi) (18)

α is opening ⇐⇒ α is increasing, idempotent, and anti-extensive (19)

β is closing ⇐⇒ β is increasing, idempotent, and extensive (20)

where I is an arbitrary index set, idempotence means that α(α(f)) = α(f), and (anti-)extensivity
of (α)β means that α(f) ≤ f ≤ β(f) for all f .

The above definitions allow broad classes of signal operators to be grouped as lattice dilations,
or erosions, or openings, or closings and their common properties to be studied under the unifying
lattice framework. Thus, the translation-invariant morphological dilations ⊕, erosions �, openings
◦, and closings • are simple special cases of their lattice counterparts.

3 Morphological Filters for Enhancement

3.1 Image Smoothing or Simplification

3.1.1 Lattice Opening Filters

The three types of nonlinear filters defined below are lattice openings in the sense of (19) and have
proven to be very useful for image enhancement.

If a 2D image f contains 1D objects, e.g. lines, and B is a 2D disk-like structuring element,
then the simple opening or closing of f by B will eliminate these 1D objects. Another problem
arises when f contains large-scale objects with sharp corners that need to be preserved; in such
cases opening or closing f by a disk B will round these corners. These two problems could be
avoided in some cases if we replace the conventional opening with a radial opening

α(f) =
∨
θ

f◦Lθ (21)
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where the sets Lθ are rotated versions of a line segment L at various angles θ ∈ [0, 2π). This has
the effect of preserving an object in f if this object is left unchanged after the opening by Lθ in at
least one of the possible orientations θ. See Fig. 1 for examples.

There are numerous image enhancement problems where what is needed is suppresion of arbitrarily-
shaped connected components in the input image whose areas (number of pixels) are smaller than
a certain threshold n. This can be accomplished by the area opening of size n which, for binary
images, keeps only the connected components whose area is ≥ n and eliminates the rest. The area
opening can also be extended to graylevel images.

Consider now a set X =
⋃

iXi as a union of disjoint connected components Xi and let M⊆Xj

be a marker in the j-th component; i.e., M could be a single point or some feature set in X that
lies only in Xj . Let us define the opening by reconstruction as the operator

MRX(M) ≡ connected component of X containing M . (22)

This is a lattice opening that from the input set M yields as output exactly the component Xj

containing the marker. Its output is called the morphological reconstruction of the component from
the marker. It can extract large-scale components of the image from knowledge only of a smaller
marker inside them. An algorithm to implement the opening by reconstruction is based on the
conditional dilation of M by B within X:

δB|X(M) ≡ (M⊕B) ∩X (23)

If B is a disk with a radius smaller than the distance between Xj and any of the other components,
then by iterating this conditional dilation we can obtain in the limit

lim
n→∞ (δB|X ...(δB|X(δB|X(M)))︸ ︷︷ ︸

n times

= MRX(M)

the whole component Xj . Replacing the binary with graylevel images, the set dilation with function
dilation, and ∩ with ∧ yields the graylevel opening by reconstruction. Openings (and closings)
by reconstruction have proven to be extremely useful for image simplification because they can
suppress small features and keep only large-scale objects without any smoothing of their boundaries.
Examples are shown in Fig. 1.

3.1.2 Multiscale Morphological Smoothers

Multiscale image analysis has recently emerged as a useful framework for many computer vision and
image processing tasks, including (i) noise suppression at various scales and (ii) feature detection
at large scales followed by refinement of their location or value at smaller scales. Most of the
previous work in this area was based on a linear multiscale smoothing, i.e., convolutions with a
Gaussian with a variance proportional to scale. However, these linear smoothers blur or shift image
edges, as shown in Fig. 1. In contrast, there is a variety of nonlinear smoothing filters, including
the morphological openings and closings that can provide a multiscale image ensemble [17, 8] and
avoid the above shortcomings of linear smoothers. For example, Fig. 1 shows three types of clos-
openings (i.e., cascades of openings followed by closings): 1) Flat clos-openings by a 2D disk-like



8 P. Maragos & L. Pessoa: Chapter for The Image and Video Processing Handbook, Acad. Press.

structuring element which preserve the vertical image edges but may distort horizontal edges by
fitting the shape of the structuring element. 2) Radial flat clos-openings that preserve both the
vertical edges as well as any line features along the directions (0o, 45o, 90o, 135o) of the four line
segments used as structuring elements. 3) Gray-level clos-openings by reconstruction which are
especially useful because they can extract the exact outline of a certain object by locking on it
while smoothing out all its surroundings; the marker for the opening (closing) by reconstruction
was an erosion (dilation) of the original image by a disk of radius equal to scale.

The required building blocks for the above morphological smoothers are the multiscale dilations
and erosions. The simplest multiscale dilation and erosion of an image f(x) at scales t > 0 are the
flat dilations/erosions of f by scaled versions tB = {tz : z ∈ B} of a unit-scale planar compact
convex set B (e.g., a disk, a rhombus, a square)

δ(x, t) ≡ (f⊕tB)(x) , ε(x, t) ≡ (f�tB)(x) (24)

which apply both to graylevel and binary images. One discrete approach to implement multiscale
dilations and erosions is to use scale recursion, i.e., f⊕(n+ 1)B = (f⊕nB)⊕B where n = 0, 1, 2,...,
and nB denotes the n-fold dilation of B with itself. An alternative and more recent approach that
uses continuous models for multiscale smoothing is based on partial differential equations (PDEs).
This was inspired by the modeling of linear multiscale image smoothing via the isotropic heat
diffusion PDE ∂U/∂t = ∇2U , where U(x, t) is the convolution of the initial image f(x) = U(x, 0)
with a Gaussian at scale t. Similarly, the multiscale dilation δ(x, t) of f by a disk of radious (scale)
t can be gererated as a weak solution of the following nonlinear PDE

∂δ

∂t
= ||∇δ|| (25)

with initial condition δ(x, 0) = f(x), where ∇ denotes the spatial gradient operator and || · ||
is the Euclidean norm. The generating PDE for the erosion is ∂ε/∂t = −||∇ε||. A review and
references of the PDE approach to multiscale morphology can be found in [6]. In general, the
PDE approach yields very close approximations to Euclidean multiscale morphology with arbitrary
subpixel accuracy.

3.1.3 Noise Suppresion by Median and Alternating Sequential Filters

In their behavior as nonlinear smoothers, as shown in Fig. 2, the medians act similarly to an open-
closing (f◦B)•B by a convex set B of diameter about half the diameter of the median window
[7]. The open-closing has the advantages over the median that it requires less computation and
decomposes the noise suppression task into two independent steps, i.e., suppressing positive spikes
via the opening and negative spikes via the closing.

The popularity and efficiency of the simple morphological openings and closings to suppress im-
pulse noise is supported by the following theoretical development [19]. Assume a class of sufficiently
smooth random input images which is the collection of all subsets of a finite mask W that are open
(or closed) with respect to a set B and assign a uniform probability distribution on this collection.
Then, a discrete binary input image X is a random realization from this collection; i.e., use ideas
from random sets [17] to model X. Further, X is corrupted by a union (or intersection) noise N
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which is a 2D sequence of i.i.d. binary Bernoulli random variables with probability p ∈ [0, 1) of
occurrence at each pixel. The observed image is the noisy version Y = X ∪ N (or Y = X ∩ N).
Then, the maximum-a-posteriori estimate [19] of the original X given the noisy image Y is the
opening (or closing) of the observed Y by B.

Another useful generalization of openings and closings involves cascading open-closings βtαt

at multiple scales t = 1, ..., r, where αt(f) = f◦tB and βt(f) = f•tB. This generates a class of
efficient nonlinear smoothing filters

ψasf (f) = βrαr...β2α2β1α1(f) (26)

called alternating sequential filters, which smooth progressively from the smallest scale possible
up to a maximum scale r and have a broad range of applications [18]. Their optimal design is
addressed in [16].

3.2 Edge or Contrast Enhancement

3.2.1 Morphological Gradients

Consider the difference between the flat dilation and erosion of an image f by a symmetric disk-like
set B containing the origin whose diameter diam(B) is very small:

edge(f) =
(f⊕B) − (f�B)

diam(B)
(27)

If f is binary, edge(f) extracts its boundary. If f is gray-level, the above residual enhances its
edges [9, 17] by yielding an approximation to ||∇f ||, which is obtained in the limit of (27) as
diam(B) → 0. See Fig. 3. Further, thresholding this ‘morphological gradient’ leads to binary edge
detection.

The symmetric morphological gradient (27) is the average of two asymmetric ones: the erosion
gradient f − (f�B) and the dilation gradient (f ⊕B) − f . The symmetric or asymmetric morpho-
logical edge-enhancing gradients can be made more robust for edge detection by first smoothing
the input image with a linear blur [4]. These hybrid edge detection schemes that largely contain
morphological gradients are computationally more efficient and perform comparably or in some
cases better than several conventional schemes based only on linear filters.

3.2.2 Toggle Contrast Filter

Consider a graylevel image f [x] and a small-size symmetric disk-like structuring element B con-
taining the origin. The following discrete nonlinear filter [3] can enhance the local contrast of f by
sharpening its edges:

ψ(f)[x] =

{
(f⊕B)[x] if (f⊕B)[x] − f [x] ≤ f [x] − (f�B)[x]
(f�B)[x] if (f⊕B)[x] − f [x] > f [x] − (f�B)[x]

(28)

At each pixel x, the output value of this filter toggles between the value of the dilation of f by B
(i.e., the maximum of f inside the moving window B centered) at x and the value of its erosion
by B (i.e., the minimum of f within the same window) according to which is closer to the input
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value f [x]. The toggle filter is usually applied not only once but is iterated. The more iterations,
the more contrast enhancement. Further, the iterations converge to a limit (fixed point) [3] reached
after a finite number of iterations. Examples are shown in Fig. 4 and Fig. 5.

As discussed in [15, 6], the above discrete toggle filter is closely related to the operation and
numerical algorithm behind a nonlinear (shock-wave) PDE proposed in [10] to deblur images and/or
enhance their contrast by edge sharpening. For 1D images such a PDE is

∂u

∂t
= −

∣∣∣∣∂u∂x
∣∣∣∣ sign

(
∂2u

∂x2

)
(29)

Starting at t = 0, with the blurred image u(x, 0) = f(x) as the initial data, and running the
numerical algorithm implementing this PDE until some time t yields a filtered image u(x, t). Its
goal is to restore blurred edges sharply, accurately and in a nonoscillatory way by propagating
shocks (i.e., discontinuities in the signal derivatives). Steady state is reached as t → ∞. Over
convex regions (∂2u/∂x2 > 0 ) this PDE acts as a 1D erosion PDE ∂u/∂t = −|∂u/∂x| which models
multiscale erosion of f(x) by the horizontal line segment [−t, t] and shifts parts of the graph of
u(x, t) with positive (negative) slope to the right (left) but does not move the extrema or inflection
points. Over concave regions (∂2u/∂x2 < 0) it acts as a 1D dilation PDE ∂u/∂t = |∂u/∂x| which
models multiscale dilation of f(x) by the same segment and reverses the direction of propagation.
For certain piecewise-constant signals blurred via linear convolution with finite-window smooth
tapered symmetric kernels, the shock filtering u(x, 0) �→ u(x,∞) can recover the original signal and
thus achieve an exact deconvolution [10]; an example of such a case is shown in Fig. 4.

4 Morphological Filters for Detection

4.1 Morphological Correlation

Consider two real-valued discrete image signals f [x] and g[x]. Assume that g is a signal pattern to
be found in f . To find which shifted version of g “best” matches f a standard approach has been
to search for the shift lag y that minimizes the mean squared error E2[y] =

∑
x∈W (f [x+ y] − g[x])2

over some subset W of Z
2. Under certain assumptions, this matching criterion is equivalent to

maximizing the linear cross-correlation Lfg[y] ≡ ∑
x∈W f [x+ y]g[x] between f and g. A discussion

of linear template matching can be found in Chapter 3.1.
Although less mathematical tractable than the mean squared error criterion, a statistically more

robust criterion is to minimize the mean absolute error

E1[y] =
∑
x∈W

|f [x+ y] − g[x]|

This mean absolute error criterion corresponds to a nonlinear signal correlation used for signal
matching; see [8] for a review. Specifically, since |a − b| = a + b − 2 min(a, b), under certain
assumptions (e.g., if the error norm and the correlation is normalized by dividing it with the average
area under the signals f and g), minimizing E1[y] is equivalent to maximizing the morphological
cross-correlation

Mfg[y] ≡
∑
x∈W

min(f [x+ y], g[x]) (30)
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It can be shown experimentally and theoretically that the detection of g in f is indicated by a
sharper matching peak in Mfg[y] than in Lfg[y]. In addition, the morphological (sum of minima)
correlation is faster than the linear (sum of products) correlation. These two advantages of the
morphological correlation coupled with the relative robustness of the mean absolute error criterion
make it promising for general signal matching.

4.2 Binary Object Detection and Rank Filtering

Let us approach the problem of binary image object detection in the presence of noise from the
viewpoint of statistical hypothesis testing and rank filtering. Assume that the observed discrete
binary image f [x] within a mask W has been generated under one of the following two probabilistic
hypotheses:

H0 : f [x] = e[x], x ∈ W .
H1 : f [x] = |g[x− y] − e[x]|, x ∈ W .

Hypothesis H1 (H0) stands for ‘object present’ (‘object not present’) at pixel location y. The object
g[x] is a deterministic binary template. The noise e[x] is a stationary binary random field which is
a 2D sequence of independent identically distributed (i.i.d.) random variables taking value 1 with
probability p and 0 with probability 1 − p, where 0 < p < 0.5. The mask W = G+y is a finite set
of pixels equal to the region G of support of g shifted to location y at which the decision is taken.
(For notational simplicity, G is assumed to be symmetric, i.e., G = Gr.) The absolute-difference
superposition between g and e under H1 forces f to always have values 0 or 1. Intuitively, such a
signal/noise superposition means that the noise e toggles the value of g from 1 to 0 and from 0 to
1 with probability p at each pixel. This noise model can be viewed either as the common binary
symmetric channel noise in signal transmission or as a binary version of the salt-and-pepper noise.
To decide whether the object g occurs at y we use a Bayes decision rule that minimizes the total
probability of error and hence leads to the likelihood ratio test

Pr(f/H1)
Pr(f/H0)

H1

>

<

H0

Pr(H0)
Pr(H1)

(31)

where Pr(f/Hi) are the likelihoods of Hi with respect to the observed image f , and Pr(Hi) are
the a priori probabilities. This is equivalent to

Mfg[y] =
∑
x∈W

min(f [x], g[x− y])

H1

>

<

H0

θ =
1
2

(
log[Pr(H0)/Pr(H1)]

log[(1 − p)/p]
+ card(G)

)
(32)

Thus, the selected statistical criterion and noise model lead to compute the morphological (or equiv-
alently linear) binary correlation between a noisy image and a known image object and compare it
to a threshold for deciding whether the object is present.
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Thus, optimum detection in a binary image f of the presence of a binary object g requires
comparing the binary correlation between f and g to a threshold θ. This is equivalent5 to performing
a r-th rank filtering on f by a set G equal to the support of g, where 1 ≤ r ≤ card(G) and r is related
to θ. Thus, the rank r reflects the area portion of (or a probabilistic confidence score for) the shifted
template existing around pixel y. For example, if Pr(H0) = Pr(H1), then r = θ = card(G)/2 and
hence the binary median filter by G becomes the optimum detector.

4.3 Hit-Miss Filter

The set erosion (3) can also be viewed as Boolean template matching since it gives the center points
at which the shifted structuring element fits inside the image object. If we now consider a set A
probing the image object X and another set B probing the background Xc, the set of points at
which the shifted pair (A,B) fits inside the image X is the hit-miss transformation of X by
(A,B):

X⊗(A,B) ≡ {x : A+x⊆X, B+x⊆Xc} (33)

In the discrete case, this can be represented by a Boolean product function whose uncomplemented
(complemented) variables correspond to points of A (B). It has been used extensively for binary
feature detection [17]. It can actually model all binary template matching schemes in binary pattern
recognition that use a pair of a positive and a negative template [13].

In the presence of noise, the hit-miss filter can be made more robust by replacing the erosions
in its definitions with rank filters that do not require an exact fitting of the whole template pair
(A,B) inside the image but only a part of it.

4.4 Morphological Peak/Valley Feature Detection

Residuals between openings or closings and the original image offer an intuitively simple and math-
ematically formal way for peak or valley detection. Specifically, subtracting from an input image
f its opening by a compact convex set B yields an output consisting of the image peaks whose
support cannot contain B. This is the top-hat transformation [9]

peak(f) = f − (f◦B) (34)

that has found numerous applications in geometric feature detection [17]. It can detect bright blobs,
i.e., regions with significantly brighter intensities relative to the surroundings. The shape of the
detected peak’s support is controlled by the shape of B, whereas the scale of the peak is controlled
by the size of B. Similarly, to detect dark blobs, modeled as image intensity valleys, we can use the
valley detector

valley(f) = (f•B) − f (35)

See Fig. 3 for examples.

5An alternative implementation and view of binary rank filtering is via thresholded convolutions, where a binary
image is linearly convolved with the indicator function of a set G with n = card(G) pixels and then the result is
thresholded at an integer level r between 1 and n; this yields the output of the r-th rank filter by G acting on the
input image.
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The morphological peak/valley detectors are simple, efficient, and have some advantages over
curvature-based approaches. Their applicability in situations where the peaks or valleys are not
clearly separated from their surroundings is further strengthened by generalizing them in the fol-
lowing way. The conventional opening in (34) is replaced by a general lattice opening such as an
area opening or opening by reconstruction. This generalization allows a more effective estimation
of the image background surroundings around the peak and hence a better detection of the peak.

5 Optimal Design of Morphological Filters for Enhancement

5.1 Brief Survey of Existing Design Approaches

Morphological and rank/stack filters are useful for image enhancement and are closely related since
they can all be represented as maxima of morphological erosions [7]. Despite the wide application
of these nonlinear filters, very few ideas exist for their optimal design. The current four main
approaches are: (a) designing morphological filters as a finite union of erosions [5] based on the
morphological basis representation theory (outlined in Section 2.3); (b) designing stack filters via
threshold decomposition and linear programming [1]; (c) designing morphological networks using
either voting logic and rank tracing learning or simulated annealing [20]; (d) designing morpholog-
ical/rank filters via a gradient-based adaptive optimization [14]. Approach (a) is limited to binary
increasing filters. Approach (b) is limited to increasing filters processing nonnegative quantized
signals. Approach (c) needs a long time to train and convergence is complex. In contrast, approach
(d) is more general since it applies to both increasing and non-increasing filters and to both binary
and real-valued signals. The major difficulty involved is that rank functions are not differentiable,
which imposes a deadlock on how to adapt the coefficients of morphological/rank filters using a
gradient-based algorithm. The methodology described in this section is an extension and improve-
ment to the design methodology (d), leading to a new approach that is simpler, more intuitive and
numerically more robust.

For various signal processing applications it is sometimes useful to mix in the same system both
nonlinear and linear filtering strategies. Thus, hybrid systems, composed by linear and nonlinear
(rank-type) sub-systems, have frequently been proposed in the research literature. A typical exam-
ple is the class of L-filters that are linear combinations of rank filters. Several adaptive algorithms
have also been developed for their design, which illustrated the potential of adaptive hybrid filters
for image processing applications, especially in the presence of non-Gaussian noise.

Given the applicability of hybrid systems and the relatively few existing ideas to design their
nonlinear part, in this section we present a general class of nonlinear systems, called morphologi-
cal/rank/linear (MRL) filters [11], that contains as special cases morphological, rank, and linear
filters, and we develop an efficient method for their adaptive optimal design. MRL filters consist of
a linear combination between a morphological/rank filter and a linear FIR filter. Their nonlinear
component is based on a rank function, from which the basic morphological operators of erosion
and dilation can be obtained as special cases.
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5.2 MRL Filters

We shall use a vector notation to represent the values of the 1D or 2D sampled signal (after some
enumeration of the signal samples) inside an n-point moving window. Let x = (x1, x2, · · · , xn) in
R

n represent the input signal segment and y be the output value from the filter. The MRL filter
is defined as the shift-invariant system whose local signal transformation rule x �→ y is given by

y ≡ λα+ (1 − λ)β ,
α = Rr(x+ a) = Rr(x1 + a1, x2 + a2, · · · , xn + an) ,

β = x · bT = x1b1 + x2b2 + · · · + xnbn ,

(36)

where λ ∈ R, a, b ∈ R
n, and ‘(·)T ’ denotes transposition. Rr(t) is the r-th rank function of

t ∈ R
n. It is evaluated by sorting the components of t = (t1, t2, · · · , tn) in decreasing order, t(1) ≥

t(2) ≥ · · · ≥ t(n), and picking the r-th element of the sorted list; i.e., Rr(t) ≡ t(r) , r = 1, 2, · · · , n.
The vector b = (b1, b2, · · · , bn) corresponds to the coefficients of the linear FIR filter, and the vector
a = (a1, a2, · · · , an) represents the coefficients of the morphological/rank filter. We call a the “struc-
turing element” because for r = 1 and r = n the rank filter becomes the morphological dilation
and erosion by a structuring function equal to ±a within its support. For 1 < r < n, we use a to
generalize the standard unweighted rank operations to filters with weights. The median is obtained
when r = �n/2 + 1�. Besides these two sets of weights, the rank r and the mixing parameter λ will
also be included in the training process for the filter design. If λ ∈ [0, 1], the MRL-filter becomes a
convex combination of its components, so that when we increase the contribution of one component,
the other one decreases. From (36) it follows that, computing each output sample requires 2n+ 1
additions, n+ 2 multiplications and an n-point sorting operation.

Due to the use of a gradient-based adaptive algorithm, derivatives of rank functions will be
needed. Since these functions are not differentiable in the common sense, we will propose a simple
design alternative using ‘rank indicator vectors’ and ‘smoothed impulses’. We define the unit sample
function q(v), v ∈ R, as

q(v) ≡
{

1 , if v = 0
0 , otherwise

(37)

Applying q to all components of a vector v ∈ R
n, yields a vector unit sample function

Q(v) ≡ (q(v1), q(v2), · · · , q(vn)).

Given a vector t = (t1, t2, · · · , tn) in R
n, and a rank r ∈ {1, 2, · · · , n}, the r-th rank indicator

vector c of t is defined by

c(t, r) ≡ Q(z1 − t)
Q(z1 − t) · 1T

, z = Rr(t) , (38)

where 1 = (1, 1, · · · , 1). Thus, the rank indicator vector marks the locations in t where the z value
occurs. It has many interesting properties [11], which include the following. It has unit area:

c · 1T = 1

It yields an inner-product representation of the rank function:

c · tT = Rr(t)
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Further, for r fixed, if c is constant in a neighborhood of some t0, then the r-th rank function Rr(t)
is differentiable at t0 and

∂Rr(t)
∂t

∣∣∣∣
t=t0

= c(t0, r). (39)

At points in whose neighborhood c is not constant, the rank function is not differentiable.
At points where the function z = Rr(t) is not differentiable, a possible design choice is to assign

the vector c as a one-sided value of the discontinuous ∂z/∂t. Further, since the rank indicator vector
will be used to estimate derivatives and it is based on the discontinuous unit sample function, a
simple approach to avoid abrupt changes and achieve numerical robustness is to replace the unit
sample function by a smoothed impulse qσ(v) that depends on a scale parameter σ ≥ 0 and has
at least the following required properties:

qσ(v) = qσ(−v) (symmetry)
qσ(v) → q(v) ∀ v as σ → 0,
qσ(v) → 1 ∀ v as σ → ∞.

(40)

Functions like exp
[
−1

2(v/σ)2
]

or sech2(v/σ) are natural choices for qσ(v).
From the filter definition (36), we see that our design goal is to specify a set of parameters

a, b, r and λ in such a way that some design requirement is met. However, instead of using the
integer rank parameter r directly in the training equations, we work with a real variable ρ implicitly
defined via the following rescaling

r ≡
⌊
n− n− 1

1 + exp(−ρ) + 0.5
⌋
, ρ ∈ R , (41)

where �· + 0.5� denotes the usual rounding operation and n is the dimension of the input signal
vector x inside the moving window. Thus, the weight vector to be used in the filter design task is
defined by

w ≡ (a, ρ, b, λ) , (42)

but any of its components may be fixed during the process.

5.3 LMS Approach to Designing Optimal MRL Filters

Our framework for adaptive design is related to adaptive filtering, where the design is viewed as
a learning process and the filter parameters are iteratively adapted until convergence is achieved.
The usual approach to adaptively adjust the vector w, and therefore design the filter, is to define a
cost function J(w), estimate its gradient ∇J(w), and update w by the iterative (recursive) formula

w(i+ 1) = w(i) − µ0∇J(w)|w=w(i) , (43)

so that the value of the cost function tends to decrease at each step. The positive constant µ0 is
usually called the step size and regulates the tradeoff between stability and speed of convergence of
the iterative procedure. The iteration (43) starts with an initial guess w(0) and is terminated when
some desired condition is reached. This approach is commonly known as the method of steepest
descent.
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As cost function J , for the i-th update w(i) of the weight vector, we use

J(w(i)) =
1
M

i∑
k=i−M+1

e2(k) , (44)

where M = 1, 2, · · · is a memory parameter, and the instantaneous error

e(k) = d(k) − y(k) (45)

is the difference between the desired output signal d(k) and the actual filter output y(k) for the
training sample k. The memory parameter M controls the smoothness of the updating process.
If we are processing noiseless signals, it is sometimes better to simply set M = 1 (minimum
computational complexity). On the other hand, if we are processing noisy signals, we should use
M > 1 and sufficiently large to reduce the noise influence during the training process. Further, it
is possible to make a training process convergent by using a larger value of M .

Hence, the resulting adaptation algorithm, called the averaged least mean square (LMS) algo-
rithm, is

w(i+ 1) = w(i) +
µ

M

i∑
k=i−M+1

e(k)
∂y(k)
∂w

∣∣∣∣∣∣
w=w(i)

, i = 0, 1, 2, · · · , (46)

where µ = 2µ0. From (42) and (36)

∂y

∂w
=
(
∂y

∂a
,
∂y

∂ρ
,
∂y

∂b
,
∂y

∂λ

)
=

[
λ
∂α

∂a
, λ

∂α

∂ρ
, (1 − λ)x, α− β

]
. (47)

According to (39) and our design choice, we set

∂α

∂a
= c =

Q(α1 − x− a)
Q(α1 − x− a) · 1T

, α = Rr(x+ a). (48)

The final unknown is s = ∂α/∂ρ, which will be one more design choice. Notice from (41) and (36)
that s ≥ 0. If all the elements of t = x + a are identical, then the rank r does not play any role,
so that s = 0 whenever this happens. On the other hand, if only one element of t is equal to α,
then variations in the rank r can drastically modify the output α; in this case s should assume a
maximum value. Thus, a possible simple choice for s is

∂α

∂ρ
= s ≡ 1 − 1

n
Q(α1 − x− a) · 1T , α = Rr(x+ a) , (49)

where n is the dimension of x.
Finally, to improve the numerical robustness of the training algorithm, we will frequently re-

place the unit sample function by smoothed impulses (obeying (40)), in which case an appro-
priate smoothing parameter σ should be selected. A natural choice of a smoothed impulse is
qσ(v) = exp[−1

2(v/σ)2], σ > 0. The choice of this nonlinearity will affect only the gradient estima-
tion step in the design procedure (46). We should use small values of σ such that qσ(v) is close
enough to q(v). A possible systematic way to select the smoothing parameter σ could be to set
|qσ(v)| ≤ ε for |v| ≥ δ, so that, for some desired ε and δ, σ = δ/

√
ln(1/ε2).

Theoretical conditions for convergence of the training process (46) can be derived under the
following considerations. The goal is to find upper bounds µw to the step size µ, such that (46) can
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converge if 0 < µ < µw. We assume the framework of system identification with noiseless signals,
and consider the training process of only one element of w at a time, while the others are optimally
fixed. This means that given the original and transformed signals, and three parameters (sets) of
the original w∗ = (a∗, ρ∗, b∗, λ∗) used to transform the input signal, we will use (46) to track
only the fourth unknown parameter (set) of w∗ in a noiseless environment. If the training process
(46) is convergent, then limi→∞ ‖w(i) −w∗‖ = 0, where ‖ · ‖ is some error norm. By analyzing the
behavior of ‖w(i)−w∗‖, under the above assumptions, conditions for convergence have been found
in [11].

5.4 Application of Optimal MRL Filters to Enhancement

The proper operation of the training process (46) has been verified in [11] through experiments
confirming that, if the conditions for convergence are met, our design algorithm converges fast to
the real parameters of the MRL-filter within small error distances.

We illustrate its applicability to image enhancement via an experiment.6 The goal here it to
restore an image corrupted by non-Gaussian noise. Hence, the input signal is a noisy image, and the
desired signal is the original (noiseless) image. The noisy image for training the filter was generated
by first corrupting the original image with a 47 dB additive Gaussian white noise, and then with
a 10% multi-valued impulse noise. After the MRL-filter is designed, another noisy image (with
similar type of perturbation) is used for testing. The optimal filter parameters were estimated after
scanning the image twice during the training process. We used the training algorithm (46) with
M = 1 and µ = 0.1, and started the process with an unbiased combination between a flat median
and the identity, i.e.,

a0 =




0 0 0
0 0 0
0 0 0


 , b0 =




0 0 0
0 1 0
0 0 0


 , ρ0 = 0, λ0 = 0.5 .

The final trained parameters of the filter were:

a =




0.75 0.00 0.05
−0.46 −0.01 0.71
−0.09 −0.02 −0.51


 , b =




0.01 0.19 −0.01
0.13 0.86 0.07
0.00 0.13 −0.02


 , r = 5, λ = 0.98 ,

which represents a biased combination between a non-flat median filter and a linear FIR filter,
where some elements of a and b present more influence in the filtering process.

Figure 6 shows the results of using the designed MRL-filter with a test image, and its comparison
with a flat median filter of the same window size. The noisy image used for training is not included
there because the (noisy) images used for training and testing are simply different realizations of
the same perturbation process. Observe that the MRL-filter outperformed the median filter by

6Implementation details: The images are scanned twice during the training process, following a zig zag path
from top to bottom, and then from bottom to top. The local input vector x is obtained at each pixel via column-
by-column indexing of the image values inside a n-point square window centered around the pixel. The vectors a

and b are indexed the same way. The unit sample function q(v) is approximated by qσ(v) = exp
[
− 1

2 (v/σ)2
]
, with

σ = 0.001. The image values are normalized to be in the range [0, 1].
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about 3 dB. Spatial error plots are also included which show that, the optimal MRL-filter preserves
better the image structure since its corresponding spatial error is more uncorrelated than the error
of the median filter.

For the type of noise used in this experiment, we must have at least part of the original (noiseless)
image, otherwise we would not be able to provide a good estimate to the optimal filter parameters
during the training process (46). In order to validate this point, we repeated the above experiment
using 100x100 sub-images of the training image (only 17% of the pixels), and the resulting MRL-
filter still outperformed the median filter by about 2.3dB. There are situations, however, where
we can use only the noisy image together with some filter constraints and design the filter that is
closest to the identity [14]. But this approach is only appropriate for certain types of impulse noise.

An exhaustive comparison of different filter structures for noise cancellation is beyond the scope
of this chapter. Nevertheless, this experiment was extended with the adaptive design of a 3x3 L-
filter under the same conditions. Starting the L-filter with a flat median, even after scanning the
image four times during the training process, the resulting L-filter was just 0.2dB better than the
(flat) median filter.
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Original

Gaussian Linear Convolutions

Morphological Clos-Openings

Morphological Radial Clos-Openings

Morphological Clos-Openings by Reconstruction

scale=4 scale=8 scale=16 scale=32

Figure 1: Linear and morphological multiscale image smoothers. (The scale parameter was defined
as: the variance of the Gaussians for linear convolutions; the radius of the structuring element for
clos-openings; the scale of the marker for the reconstruction filters.)
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(a) (b)

(c) (d)

Figure 2: (a) Original clean image. (b) Noisy image obtained by corrupting the original with
two-level salt-and-pepper noise occuring with probability 0.1 (PSNR=18.9 dB). (c) Open-closing
of noisy image by a 2 × 2-pel square (PSNR=25.4 dB). (d) Median of noisy image by a 3 × 3-pel
square (PSNR=25.4 dB).
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(a) (b)

(c) (d)
(c) (d)

Figure 3: Morphological edge and blob detectors. (a) Image f . (b) Edges: morphological gradient
f⊕B − f�B, where B is a small discrete disk-like set. (c) Peaks: f − f◦B. (d) Valleys: f•B − f .
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Figure 4: (a) Original signal (dashed line) and its blurring (solid line) via convolution with a finite
positive symmetric tapered impulse response. (b) Filtered versions of the blurred signal in (a)
produced by iterating the 1D toggle filter (with B = {−1, 0, 1}) until convergence to the limit
signal reached at 125 iterations; the displayed filtered signals correspond to iteration indexes that
are multiples of 20.
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(a) (b)

(c) (d)

Figure 5: (a) Original image f . (b) Blurred image g obtained by an out-of-focus camera digitizing
f . (c) Output of the 2D toggle filter acting on g (B was a small symmetric disk-like set containing
the origin). (d) Limit of iterations of the toggle filter on g (reached at 150 iterations).



26 P. Maragos & L. Pessoa: Chapter for The Image and Video Processing Handbook, Acad. Press.

ORIGINAL TEST (19.3dB)

(a) (b)
MEDIAN FILTER (25.7dB) MRL-FILTER (28.5dB)

(c) (d)
SPATIAL ERROR / MEDIAN SPATIAL ERROR / MRL-FILTER

(e) (f)

Figure 6: (a) Original clean texture image (240x250). (b) Noisy image: Image (a) corrupted by a
hybrid 47dB additive Gaussian white noise and 10% multi-valued impulse noise (PSNR = 19.3dB).
(c) Noisy image restored by a flat 3x3 median filter (PSNR = 25.7dB). (d) Noisy image restored
by the designed 3x3 MRL-filter (PSNR = 28.5dB). (e) Spatial error map of the flat median filter;
lighter areas indicate higher errors. (f) Spatial error map of the MRL-filter.


