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The dynamics of airflow during speech production may often result in some small or large degree
of turbulence. In this paper, the geometry of speech turbulence as reflected in the fragmentation of
the time signal is quantified by using fractal models. An efficient algorithm for estimating the
short-time fractal dimension of speech signals based on multiscale morphological filtering is
described, and its potential for speech segmentation and phonetic classification discussed. Also
reported are experimental results on using the short-time fractal dimension of speech signals at
multiple scales as additional features in an automatic speech-recognition system using hidden
Markov models, which provide a modest improvement in speech-recognition performance.
© 1999 Acoustical Society of Amerid&80001-496809)02403-7
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INTRODUCTION lence in speech signals. In Sec. Il, a simple and efficient
algorithm is described for measuring the fractal dimension.
The dynamics of speech airflow might create small orthe algorithm is based on multiscale nonlinear operators of
large degrees of turbulence during production of speechhorphological filtering that iteratively expand and contract
sounds by the human vocal-tract system. Static airflow anghe signal’s graphMaragos, 1994; Serra, 1982Some of
acoustic characteristics of turbulent speech, e.g., fricativgyr contributions include the measurement and study of the
and stop sounds or sounds with aspiration, have been studi¢@ctal dimension of speech signals in a short-time
by several researchers; references and related discussion gphoneme-basedand multiscale framework, which we be-
be found in Fant(1970, Flanagan(1972, and Stevens |ieve is necessary since speech signals are nonstationary and
(1971). While the majority of work in this area has mainly theijr fragmentation may vary across different time scales. In
associated turbulence in speech with consonants, it is als@is area, we extend the preliminary experiments in Maragos
possible to have vowels uttered with sontepeaker- (1991 by providing measurements averaged over large num-
dependentamount of aspiration which adds some small de-pers of phonemic instances from the TIMIT and ISOLET
gree of turbulence to them. To produce natural-soundingjatabases. Another contribution is to the field of speech rec-
synthetic speech, it was judged necessary to simulate an aggnition: the multiscale fractal dimensions of short-time
piration noise source in speech-synthesis systéiatt,  speech segments are used as additional features in an auto-
1987). matic speech-recognition system based on hidden Markov

Most approaches modeling speech turbulence at thgodels(HMMs). As discussed in Sec. Ill, the fractal features
speech-waveform level have focused on the random natuigan offer a modest improvement to the performance of

of the corresponding signal component. Another importaniyvm-based speech recognizers.

aspect of speech sounds that contain frication or aspiration is

the high degree of geometrical complexity and fragmentation

of their time waveforms; due to lack of a better approach,l' SPEECH AERODYNAMICS AND FRACTALS

this has been left unmodeled and treated in the past as noise. Conservation of momentum in the airflow during speech
In this paper, we use the theory of fractdlandelbrot, production yields the Navier—Stokes governing equation
1982 to model the geometrical complexity of speech wave-(Tritton, 1988

forms via their fractal dimension, which quantifies the degree
of signal fragmentation. In Sec. |, we provide some motiva- P &—u+u-Vu) = —Vp+uVa 1)
tion and justification from the field of speech aerodynamics gt '

for using fractal dimension to quantify the degree of turbu-Wherep is the air density,p is the air pressurey is the

(vecton air-particle velocity, angl is the (assumed constant
aThe first part of this work was performed while both authors were at thedir-viscosity coefficient. It is assumed that flow compress-

School of E.C.E., Georgia Institute of Technology, Atlanta, GA30332.jbility is negligible [valid since in speech flow

The second part was done while P. Maragos was at the Institute for Lan, = ; _
guage and Speech Processing, Athens, Greece. (Mach numbers)<1], and henc& -u=0. An important pa

bElectronic mail: maragos@cs.ntua.gr rameter characterizing the type of. flow is the Reynolgls num-
®Electronic mail: potam@research.att.com ber Re=pUL/u, whereU is a velocity scale fou andL is a
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typical length scale, e.g., the tract diameter. For the air wehaotic dynamical systems converge to attractors whose sets
have very lowu, and hence high Re. This causes the inertian phase space or related time-series signals can be modeled
forces[in the left-hand side of Eq1)] per unit volume to by fractals; references can be found in the survey by Peitgen
have a much larger order of magnitude than the viscoust al. (1992. There are several mechanisms in high-Re
forcesuV2u. While u is low and may not play an important speech flows that can be viewed as routes to chaos; e.g.,
role for the speech airflow through the interior of the vocalvortices twist, stretch, and folddue to the bounded-tract
tract, it is essential for the formation of boundary layersgeometry (Tritton, 1988; Mandelbrot, 1982 This process
along the tract boundaries and for the creation of vortices. Aof twisting, stretching, and folding has been found in low-
vortexis a region of similaror constantvorticity @, where  order nonlinear dynamical systems to give rise to chaos and
w=V xu. Vortices in the airflow have been experimentally fractal attractors.

found above the glottis by Teager and Tea@®90 and All the above theoretical considerations and experimen-
Thomas(1986), and theoretically predicted by Kais@r983,  tal evidence, and the fact that the speech signal is produced
Teager and Teagefl990, and McGowan(1988, using by a nonlinear dynamical system that often generates small
simple geometries. There are several mechanisms for the crer large degrees of turbulence, motivated our study of its
ation of vortices:(1) velocity gradients in boundary layers, fractal aspects. In this paper, we use fractals as a mathemati-
(2) separation of flow, which can easily happen at cavitycal and computational vehicle to analyze various degrees of
inlets due to adverse pressure gradigste Kaiser(1983, turbulence in speech signals. One of the main quantitative
and Teager and Teagé&t990 for experimental evidence of ideas that we focus on is the fractal dimension of speech
separated flow during speech productioand (3) curved signals, because it can quantify their graph’'s roughness
geometry of tract boundaries, where due to the dominanffragmentation Because the relationship between turbu-
inertia forces the flow follows the curvature and developslence and its fractal geometry or the fractal dimension of the
rotational components. After a vortex has been created, it caresulting signals is currently not well understood, in this pa-
propagate downstream as governed by the vorticity equatioper we conceptually equate the amount of turbulence in a

(Tritton, 1989 speech sound with its fractal dimension. Although this may
PR be a somewhat simplistic analogy, we have found the short-
—+u-Vo=w Vu+rViem, v=ulp. (2)  time fractal dimension of speech to be a feature useful for
ot speech-sound classification into phonetic classes, segmenta-

The term -Vu causes vortex twisting and stretching, ion, and recognition.

whereasrV2w produces diffusion of vorticity. As Re in-

creasege.g., in fricative sounds or during loud spegcall

these phenomena may lead to instabilities and eventually rét. FRACTAL DIMENSIONS OF SPEECH
sult in turbulent flow which is a “state of continuous insta-
bility” (Tritton, 1988 characterized by broad-spectrum rap-
idly varying (in space and timevelocity and vorticity. The Let the continuous real-valued functi@ft), O<t<T,
transition to turbulence during speech production may occufepresent a short-time speech signal and let the compact pla-
for lower Re closer to the glottis because there is an air jefar set

A. Preliminaries on fractal dimensions

flowing out from the vocal cords, and for jets, turbulence F=I(t,S(1)) e RZ0O<t<T}, (4)
starts at a much lower Re than for flows attached to walis ) )
is the case downstream in the vocal tyact represent itsgraph Mandelbrot(1982 defines thefractal

Modern theories that attempt to explain turbulefibgt- ~ dimensionof 7 as equal to its Hausdorff dimensid, ; in
ton, 1988 predict the existence of eddiésortices with a  general, l=Dy=<2. The signaSis calledfractal if its graph
characteristic size\) at multiple scales. According to the IS afractal set, i.e., iby strictly exceeds 1=the topological
energy-cascade theory, energy produced by eddies with |arégmension of F). Next, we discuss two other dimensions
size (of the order of the boundary-layer thicknggstrans- ~ closely related tdy, .
ferred hierarchically to the small-size eddies, which actually  Minkowski-Bouligand dimension R : This is concep-
dissipate this energy due to viscosity. A related result is theually based on Minkowski's idea of finding the length of
Kolmogorov law (possibly irregular curvesF: Dilate F with disks of radius

E(K,r)ocr 2350 3) by forming the union of these disks centered at all points of

' ’ F and thus create a “Minkowski cover.” Find the ar8és)

where k=2#/\ is the wave number in a finite nonzero of the dilated set, and set its multiscale length equal to
range,r is the energy-dissipation rate, aigk,r) is the ve-  lim,_gL(e), whereL(e)=A(g)/2¢. Then,Dy, is the con-
locity wave number spectrum, i.e., Fourier transform of spastantD in the power lam_(g)xe' P ase—0, whichL(g)
tial correlations. This multiscale structure of turbulence carobeys if F is fractal.
in some cases be quantified byctals Mandelbrot(1982 Box-Counting dimension g Partition the plane with a
and others have conjectured that several geometrical aspegsd of squares of side and count the numbeN(e) of
of turbulence(e.g., shapes of turbulent spots, boundaries obquares that intersect the curve. Then, the box dimension is
some vortex types found in turbulent flows, shape of particleobtained by replacing the Minkowski cover area with
pathg are fractal in nature. We may also attempt to underthe box cover area, i.e., it is equal toDg
stand aspects of turbulence as cases of chaos. Specificalbylim,_ olog[N(e)]/ log(1k).
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In general, =D <D,,=Dg=<2. In this work, we focus any compact single-connected and symmetric planar set, and
only on Dy, which we shall henceforth call the “fractal if we define
dimension” D becausefi) It is closely related tdD,, and _ .
hence able to quantify the fractal aspects of a sigial It G.(t)=sudy e R:(ty) e B} ©)
coincides withDy in many cases of practical interefti) It as the functior(structuring elementwhose graph is the top
is much easier to compute th&xn, . (iv) It will be appliedto  boundary ofeB, we obtain
sampled signals where most approaches can yield only ap- T
proximate results(v) Dy, can be more robustly estimated AB(8)=f [(S®G,)(t)— (SOG,)(t)]dt+0(&?),
than Dy, which suffers from uncertainties due to the grid 0
translation or its spacing relative to the signal’s amplitude. (10
Note thatDg =D, in the continuous-time case, but they cor- whereS® G, andSOG,, are the dilation and erosion, respec-
respond to two different algorithm@vith different perfor-  tively, of S by G at scales. Thus, instead of creating the
mances for sampled signals. cover of a one-dimensional signal by dilating its graph in the
plane by a seB (which means two-dimensional processing
S(t) can be transformed via an erosion and a dilation by
As shown by Maragos and Sui993, and Maragos functionsG,. These dilations and erosions create an area
(1994, D will not change if we replace the disks in the strip as a layer either covering or being peeled off from the
Minkowski cover of 7 with other compact planar shapBs  graph of the speech signal at various scales. We refer to this
Thus, if eB={eb:beB} is an e-scaled shapd, we can whole approach as thmorphological covering method
obtain multiscale multishape-area distributions Discrete covering method:o adapt our previous discus-
sion to the case of a discrete-time finite-length speech signal
Ag(e)=ared 7o zB) ®) S[n], n=0,1,..N, we use covers at disgcreteIO scalesg

whereF@ B is the set resulting from the morphological set =1.2,..., andB becomes a finite set of pixels in the discrete

B. Morphological covering algorithm

dilation of 7 by ¢B: plane. If we restrict the discrete sBtto be convex and of
radius=1, then the corresponding functidB[n] (at scale
FoeB={z+ebeR%zec F, beB}. (6)  £=1) is restricted to have a centered three-sample support

and only two possible shapes: tdangle, defined byG;
[-1]=G{1]=0 andG,[0]=h=0, or arectangle defined
by G,[ —1]=G,[0]=G,[1]=h=0. The heightis allowed

The infinitesimal order of the multiscale-area function yields
the fractal dimension of, i.e.,

~ log[Ag(e)] to vary and match the amplitude range of the sigdalhe
D=2- “mlogT' (7 main result in the discrete case is the following scale-
e=0 recursive algorithm(Maragos, 1994
Assuming now thaf\g(e)*e2 P ase—0 yields that S®G[n]= max {S[n+k]+G[k]}, e=1
log[Ag(e)]=(2—D)log(e) +constant, ase—0. (8) e
S©G[n]= min {Sn+k]-G[Kk]},
Thus, in practiceD can be estimated by least-squares fitting —1<ks<1
a straight line to and measuring the slope of the plot of the (11)
data l0gAg(e)] vs l0gE). S8G,+1=(S8G,)®8G, =2
Implementing the set dilatioff® B involves represent- S6G, ., ,=(S9G,)O06,

ing the signal grapl¥ as a binary-image signal and dilating .

this binary image. However, this two-dimensional processingVherée =1,2,3,..6max. Forn=0, N, the local max/min op-

of a one-dimensional sign&(t) on the one hand is unnec- erations take place only over the aya|labIeT'sgmpIes. I\_Iext, we
essary, and on the other hand increases the requirementsGAMPUte theNareaA_B[s] by replacing thef, in (10) with
storage space and the time complexity for implementing théUmmation=,_, . Finally, we fit a straight line using least-
covering method. Thus, for purposes of computational effiSduares to the plot dfog Ag[¢], loge). The slope of this line
ciency, it is desirable to obtain the ardg(s) by usingone- IS @n estimate of 2_D and gives us the fractal dimension of
dimensional operation®n S(t). Toward this goal, let us S For real-world signals with some fractal structure, the as-

consider first the morphological dilation and erosior® of ~ Sumption of a constard at all scaless may not be true.

the signalS(t) by a real-valued functios(t) defined as ~ Hence, instead of a global dimension, we estimatentioé
tiscale fractal dimensioMFD[¢], which for eache is equal
(S®G)(t)=sudS(x) +G(t—x)}, to the slope of a line segment fitted via least-squares to the
X

log—log plot of (8) over a short moving window{e,e
+1,...e+w} of wscales, where in practicg ranges from 3
to 10. Throughout this paper, we have usesd 10.

The heighth=G[0] of the structuring functionG is
These signal dilations and erosions are one-dimensional noimportant because it controls the finesse or coarseness of the
linear signal operators whose computational structure isnultiscale-area measurements. A good practical rule is to set
similar to a convolution and correlation, respectively. Thenh less than or equal to the signal’s dynamic range divided by
(Maragos and Sun, 1993; Maragos, 199fwe select aB  the number of its samples. We experimentally observed that

(S©G)(t)=inf{S(x) — G(x—1t)}.
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FIG. 1. Top row shows waveforms from speech sounds sampled at 30 kHz. Bottom row shows their multiscale fractal dimensions estimated over moving
windows of 10 scales.
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this rule performs very similarly to the cage=0. Whenh the sine, increasing the sampling frequency decreases the
=0, i.e., when the functio® becomes a flat function corre- error. We conjecture that this error depends on the oversam-
sponding toB being a horizontal segment, Dubwat al.  pling ratio, i.e., the ratio of the sampling frequency divided
(1989 have shown that the fractal dimension can still beby the sine frequency. As indicative values from tf@speri-
computed from the above covering meth@ar continuous-  mentally found error law, withw=5, to obtain an estimated
time signal$. This case has two advantages: the erosionsdimension<1.1 (i.e., an error<10%) we need an oversam-
dilations can be performed faster, and the algorithm yieldpling ratio of at least 20:1, whereas an estimated dimension
local fractal dimensions that are invariant to any affine trans=<1.01(i.e., an error<1%) requires an oversampling ratio of
formation S(t)—aS(t) +b of the amplitude rangea>0). at least 70:1. At present, we have no such guidelines for
Therefore, we henceforth seldtt 0. more general signals, but increasing the sampling frequency
Applying the morphological covering method on a decreases the error.
sampledsignal incurs a discretization error in the estimated
fractal dimension. Namely, the graph of the sampled signal , ) , .
has lost some of the degree of fragmentation inherent in thé- Experiments on measuring fractal dimension of
graph of the continuous-time signal or presents a distorteapeeCh signals
view of the geometry of the continuous-time graph due to a  Figure 1 shows 30-ms segments of an unvoiced frica-
small number of available samples and/or a small number dive, a voiced fricative, and a vowel speech sound extracted
available scales. Thus, the error depends on the samplirfgpom words spoken by a male speaker and sampled at 30 kHz
frequency and the essential bandwidtke., the frequency (N=900), together with their corresponding profiles of
range containing most of the area under the square amplituddFD[¢] for scalesec =1,...,120. This range of corresponds
spectrum of the signal Analytic formulas for the error cur- to time scales from 1/30 to 4 ms. The reason for using a
rently do not exist, but experimenting with special caseshigher than usual sampling rate is to approximate as closely
could be instructive. We have applied the above discrete flaais possible the geometrical roughness of the continuous-time
covering algorithm to the particular case of a sampled sinspeech signal and decrease the discretization error in the es-
and measured the error between the estimated fractal dimetimated fractal dimension. However, similar results have
sion (at scales = 1) versus the theoretically correct value of been observed at lower sampling rafé6 and 16 kHx and
1. By analyzing sampled sine signals over a fixed finite-timeare reported in the following sections. We have conducted
interval, we experimentally observed that for a fixed sam-many experiments similar to the ones shown in Fig. 1, from
pling frequency, increasing the frequency of the sine in-which we conclude the following{l) Unvoiced fricatives
creases the dimension error. Further, for a fixed frequency dff/, /th/, /s)), affricates, stopgduring their turbulent phage
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and some voiced fricatives like /z/ have a high fractal 07 MEAN SQUARE AMPLITUDE
dimension:[1.6,1.9 at all time scalegmostly constant at

scales>1 mg, consistent with the turbulence phenomena
present during their productiofi2) Vowels at small scales o , : , . .

(<0.1 m9 have a small fractal dimensierf1,1.3]. This is 07 . . _ ZERO CROSSINGS RATE i .
consistent with the absence or small degree of turbulence

(e.g., for loud or breathy speeckduring their production. M\ _/W
However, at scale®2-3 ms, i.e., at scales of the same order P : ,

0 . . . .
as the distance between the major consecutive peaks in th , . . _ FRACTAL DIMENSION . .

speech waveform, their fractal dimension increases apprecia}-g
bly. Here, we observe a phenomenon similar to the previ-14
ously mentioned increase of the estimated fractal dimensior'2 . .
of a fixed-time segment of a sine when the sampling fre- |,
guency remains constant and the sine frequency increase
(3) Some voiced fricatives like /v/ and /th/ have a mixed ©
behavior. If they do not contain a fully developed turbulence _, . . . s . . . . .
state, their fractal dimension is medium-to-high3, 1.4 at L - N A
scales<0.1 ms, increases at large scale$ ms (for the

same reasons as for voweland may decrease for interme- FIG. 2_. Speech waveform of the word “.soothi_ng” sampled at 10 kHz and
diate scales. Overall, their dimension is highl.G), al- _short-tlme speegh measuremefftactal Q|men3|0n at scale=1, normal-

. - _ized zero-crossings rate, and normalized mean-square amplitvee a
though often somewhat lower than the dimension of theiro-ms window, computed every 1 ms and postsmoothed by a 3-point me-
unvoiced counterparts. Thus, we have found that the shortlian filter.
time fractal dimensionD (computed over~10-30-ms
frames and evaluated at a scal®.1 mg can roughly dis- Related to the Kolmogorov 5/3-lalEq. (3)] is the fact
tinguish three classes of speech souriidszowels(smallD),  that the variance between particle velocities at two spatial
(i) low-turbulence voiced fricatives, e.g., /v/, fttthedium  |ocationsP andP+ AP varieso (A P)?3. These distributions
D), and(iii) unvoiced fricatives, high-turbulence voiced fri- have identical form to the case of fractional Brownian mo-
catives, stops, and affricatérge D). Thus, the fractal di- tjon (Mandelbrot, 198Pwhose variances scale with time dif-
mension consistently quantifies the well-known fact that theferencesT as T?", 0<H<1, the frequency spectra vary
geometrical fragmentation of the waveforms of these three:1/f2"*1 and time signals are fractal with dimensi@n
speech classes increases in the same order. However, fer2—H. Thus, puttingH=1/3 leads toD =5/3 for speech
loud speech(where the air velocity and Re increase, andturbulence. Of course, Kolmogorov's law refers to wave
hence turbulence occurs more ofteor for breathy voice number(not frequency spectra, and we dealt with pressure
(especially for female speakershe fractal dimension of (not velocity signals from the speech flow. Thus, we should
several speech sounds, e.g., vowels, may significantly inbe cautious on how we interpret this result for speech. How-
crease. In general, the fractal-dimension estimates may hever, it is interesting to note that in our experiments with
affected by several factors including) the time scale(b) fricative sounds, we observél (for time scales<0.1 m3 in
the specific discrete algorithifusually most algorithms for the rangg1.65, 1.7 or often exactly 5/31.67. In previous
sampled signals underestimate the true fractal dimensiowork, Pickover and Khorasafii986 reported global fractal
since some signal’s roughness has been lost during sandimensions ofD=1.66 for speech signals. However, they
pling), and (c) the speaking style. Therefore, we do not as-made no connection to the 5/3 law. Further, they used much
sign any particular importance to the absolute estimates bubnger time scales, i.e., 10 ms to 2 s, and a different algo-
only to their average ranges for classes of speech sounds arithm for computing fractal dimension. Thus, their work re-
to their relative differences. ferred to time scales above the phoneme level, whereas our

We also used estimated at a single small time scale, work is clearly below the phoneme time scale.
i.e., MFO e=1], as a short-time feature for purposes of
speech segmentation and for signaling important events . . )
along the speech signal. Figure 2 shows the waveform of thB- EXPeriments averaged over multiple phonemic
word “soothing” and its short-time fractal dimension, aver- Instances
age zero-crossing rate, and mean-square amplitude as func- In Fig. 3, the short-time fractal dimensidd is shown
tions of time. While the fractal dimension behaves simi- computed over scales from 1/16 to 4 ms, using a 20-ms
larly with zero crossings, it has several advantages: Foanalysis window. For each phoneme, the mean and standard
example, it can segment and distinguish between a vowaleviation (shown as error baysof the MFD is computed
and a voiced fricative, whereas the zero crossings usually fafrom 200 instance€100 from male and 100 from female
because the rapid fluctuations of the voiced fricative may nospeakers of each phoneme in the TIMIT database. These
appear as fluctuations around zero amplitude, which woul@xperiments reinforce the claims made in the previous sec-
increase the zero-crossing rate but as a graph fragmentatitdion that the short-time fractal dimensi@n in small scales
which increase®. We have also observed cases whBre can help discriminate among broad phonemic classes. Note
could detect voiced stops but the zero crossings could not.that the standard deviation of the MFD distribution is typi-

5

L L )
SPEECH SIGNAL: / SOOTHING /
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FIG. 3. Mean and standard deviati¢error barg of the multiscale fractal dimension distribution for the phonemes /aa/, /b/, /en/, /fl, /m/, It/ calculated from
the TIMIT databas€20-ms analysis window, updated every 10)ms

cally smaller forD computed over smaller time scalesl the MFD is smaller for the voiced /d/ than for the unvoiced

ms), with the exception of the phoneme /b/. Further, the dif-/t/. The discriminative power of the fractal dimension for

ferences among the average fractal dimensions are larger féicatives and plosives, where traditional spectral features are

smaller(<1 mg time scales. inadequate, could be a valuable asset for speech recognition,
In Fig. 4a), we compare the multiscale fractal dimen- as discussed next.

sion for the unvoiced fricative /sh/, the corresponding voiced

frl_cat_|ve /zh/, and th_e vowel /uh/, averaged over 200 phonel-”. APPLICATION TO AUTOMATIC SPEECH

mic instances obtained from the TIMIT database. CIearlyRECOGNlTlON

the small- and medium-scale fractal dimension measurement

is smaller for voiced than for unvoiced sounds. The MFD is It has been demonstrated that the multiscale fractal di-

very small for vowels. mension can potentially be used to discriminate among pho-
Plosives are a highly confusable set of phonemes. Mulnetic classes. Here, we attempt to incorporate the fractal di-

tiscale fractal dimension is able to discriminate betweermension in a hidden Markov mod¢éHMM )-based speech

voiced and unvoiced plosives produced with identical vocaltecognizer; mixtures of Gaussian distributions are used to

tract configuratior(thus having very similar short-time spec- model the observation probabilities for each HMM state.

tral envelopes i.e., /p/ and /b/, /t/ and /d/, etc. For example, To successfully incorporate a feature in a pattern classi-

in Fig. 4(b) we show the MFD for the voiced—unvoiced plo- fier, the new features must contdiifi possible only infor-

sive pair /d/ and /t/ averaged over 200 occurrences. Agaimationrelevantto the discrimination task, i.e., not be redun-
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TABLE I. Word percent correct for th&-set recognition task using 5-mixture Gaussians per HMM state.

{A.C,...C15, AAAC,,... ACst {A.C;,...C1,AAAC,,... ACy}

+ +
{A,Cq,..., C1,,AAAC,..., ACq,} {D,,AD,} {D,,D1;,AD;,ADg,AD;,,AD¢}
81.2% 83.5% 84.5%

dant or irrelevant. The fractal dimension of a speech signal isector was augmented by the fractal dimension of scale one
defined in this paper to be a two-dimensiof@&D) distribu- D;=MFD[1] and its first time derivative\D,. Scale one

tion in time and scale. The main issue is how to representorresponds to a time scale of 1/16 ms. The fractal features
this 2-D distribution so that it fits in the HMM framework. are assumed to be independent of the standard features and to
The feature vectors used in speech recognition are typicallpelong in separate probability “streams’'Five-state left—
computed over a 20—30-ms window and are updated evemjght hidden Markov models were used in these experiments.
5-10 ms. Fractal dimension is a feature with high temporaAs shown in Table I, combining the standard and the fractal
resolution; thus, it might be advantageous to avoid overfeatures gives a modest 12% reduction in the word-error rate
smoothing. An 8-ms averaging windowpdated every 10 over using the standard features alone. Further improvement
m9)* was arbitrarily chosen, and is being used to compute thés achieved when the higher-scale fractal dimensisoales
fractal features in the remainder of this paper. The “stan-6, 11, and 16, corresponding to time scales of 0.38, 0.69, and
dard” speech-recognition featur@se., cepstrum and mean- 1 m9g are used in addition t®; as shown in the third col-
square amplitudeare computed using a 20-ms window. umn of Table [; this yields an error reduction of 18%. Fur-

The second issue to be resolved is the dimensionality ofher augmentation of the fractal-feature vector has not shown
the fractal-feature vector. Smaller dimensionality presents axperimentally any performance improvement. Henceforth,
computational advantage, but comes with a performanceve refer to the feature vector consisting of
tradeoff if relevant information is lost during the dimension-{D,,D;,AD,,ADg,AD;,AD,¢ as the “fractal’-feature
ality reduction process. It is clear from Figs. 3 and 4 that thevector.
fractal dimensions of adjacent scales are highly correlated. Next, we attempted to improve overall performance by
Further, the fractal dimension of large scalesl.5 mg pro-  augmentation of our feature set with the second time deriva-
vide little information relevant to the discrimination task attives of the energy and cepstrum features
hand. Various empirical procedures exist for decorrelating §AAA,AAC4,...,AAC,,} and by doubling the complexity
feature vector. In this paper, we chose the simplistic apof the HMM models, i.e., using ten instead of five Gaussian
proach of sparsely sampling the low end of fractal scedes  distributions per mixture per state. As shown in Table II, as
ms). the complexity of the models and/or the dimensionality of

The feature vector augmented with fractal features ashe standard features increases, the improvement in perfor-
described above was applied to the speech-recognition tagskance achieved by using the fractal features becomes mar-
of the highly confusables-set consisting of the following ginal. Note that similar recognition performancabout
spoken letters: b, ¢, d, g, p, t, v, and z. Té&subset of the 10%-15% word-error rajewas reported for the ISOLET
ISOLET database consists of 2700 word occurrenceslatabase in Singer and Lippmaf(iB92.
sampled at 16 kHZCole et al, 1990. The HMM-based Preliminary experiments on general phoneme-
HTK recognition package was used for all experimentsrecognition tasks have shown similar performance improve-
(Young, 1995. A hold-one-out(“round-robin™) procedure  ments when the standard-feature vector was augmented with
was used during training so that all 2700 words were availfractal features. Overall, fractal features can provide modest
able for testing. As a result, the statistical significance ofimprovement to recognition performance with a small in-
recognition performance comparisons was five times highecrease in the dimensionality of the feature vector.
than in Singer and Lippman(1992.

The standard-feature set consisted of the mean-squafe
amplitude(usually called “energy'®) A, the first twelve cep-
strum coefficientsC,,...,C1, computed from a mel filter- In this paper, motivated by considerations based on the
bank (Davis and Mermelstein, 1992nd their first time de- dynamics of the speech airflow, we have conjectured that
rivatives AA and AC,,...,AC,,. The standard feature short-time speech sounds contain various degrees of turbu-

. CONCLUSIONS

TABLE Il. Word percent correct for th&-set recognition task.

Features
{A,C,AA,AC,AAA,AAC}
JF
Models {A,C,AA,AC,AAAAAC} {D,AD}
5-mixture Gaussians 85.6% 86.3%
10-mixture Gaussians 88.6% 88.9%
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lence at multiple time scales below the phoneme time scaleproducing this signal. Such an energy is proportional both to the oscillation
To quantify these various degrees of turbulence, we haveamplitude squared and the frequency squared and can be measured via the
proposed the use of the multiscale fractal dimengMRD), ~ Teager—Kaiser energy operator. _
measured via an efficient signal-processing algorithm based"! Steam weights are assumed to be unity.
on simple morphological dilation/erosion operators. Several
experimental observations have been made by measuring the
MFD of short-time speech sounds and demonstrating its po-
tential for classification mt_o certain broad phonetic cIassesCoIe’ R.. Muthusamy, Y., and Fanty, M1990. “The ISOLET Spoken
and for _SpeeCh Segmentatlon' . Letter Database,” Tech. Rep. CSE 90-004, Oregon Graduate Institute of

Motivated by the novel information that the MFD can  science and Technology, Portiand, Oregon.
extract from the speech waveforms, we investigated the appavis, S., and Mermelstein, P1992. “Comparison of Parametric Repre-
plication of MFD as a fractal-feature vector to the problem of sentations for Monosyllabic Word Recognition in Continuously Spoken
HMM-based automatic speech recognition. By augmenting Sentences,” [EEE Trans. Acoust., Speech, Signal Pro@@s857-366.
the standard-feature vect@ontaining short-time spectral in- PuPuc, B., Quiniou, J. F., Roques-Carmes, C,, Tricot, C., and Zucker, S. W.
formation used in current speech-recognition systems with %%%%lsivzaluatmg the Fractal Dimension of Profiles,” Phys. Rev38,
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served an improvement in performance, i.e., a modest redu@tanagan, J. L.(1972. Speech Analysis, Synthesis, and Perception
tion in the error of certain word-recognition tasks over (Springer-Verlag, New York
standard-speech databases. Kaiser, J. F(1983. “Some Observations on Vocal Tract Operation from a

For future research, there are certain issues relating toFluid Elow Point of View,” in Vocgl Fold Physiplogy: Biomechanics,
the design of the classifier and the augmentation of the fea-/coustics, and Phonatory Cony@dited by I. R. Titze and R. C. Scherer

. . . (The Denver Center for the Performing Arts, Denver,)Cfap. 358—386.

turg vector W|_th fract.al features that de_servc_a further investiy icer. 1. F(1990. “On a Simple Algorithm to Calculate the ‘Energy’ of a
gation. Such issues include the dimensionality of the fractal- signal,” in Proceedings of the IEEE International Conference on Acous-
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used as features during recognition. The choice of the dura-384.
tion of the short-time analysis frame and alternative ways of</att, D. H. (1987. “Review of Text-To-Speech Conversion for English,”
incorporating the fractal-feature vector in the HMM frame- J- Acoust. Soc. Am82, 737-793,

. . Mandelbrot, B. B(1982. The Fractal Geometry of Natur@reeman, New
work should also be considered more carefully. Additional York) 1982 Y i

performanc_e improvements may be achieved Wi_th a MOIfaragos, P(1991). “Fractal Aspects of Speech Signals: Dimension and
careful choice of these parameters. Further, despite the novinterpolation,” in Proceedings of the IEEE International Conference on
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