
Fractal dimensions of speech sounds: Computation
and application to automatic speech recognitiona)

Petros Maragosb)

Department of Electrical and Computer Engineering, National Technical University of Athens,
Zografou 15773, Athens, Greece

Alexandros Potamianosc)

AT&T Labs, 180 Park Avenue, Post Office Box 971, Florham Park, New Jersey 07932-0971

~Received 19 September 1996; revised 1 March 1998; accepted 6 November 1998!

The dynamics of airflow during speech production may often result in some small or large degree
of turbulence. In this paper, the geometry of speech turbulence as reflected in the fragmentation of
the time signal is quantified by using fractal models. An efficient algorithm for estimating the
short-time fractal dimension of speech signals based on multiscale morphological filtering is
described, and its potential for speech segmentation and phonetic classification discussed. Also
reported are experimental results on using the short-time fractal dimension of speech signals at
multiple scales as additional features in an automatic speech-recognition system using hidden
Markov models, which provide a modest improvement in speech-recognition performance.
© 1999 Acoustical Society of America.@S0001-4966~99!02403-0#
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INTRODUCTION

The dynamics of speech airflow might create small
large degrees of turbulence during production of spe
sounds by the human vocal-tract system. Static airflow
acoustic characteristics of turbulent speech, e.g., frica
and stop sounds or sounds with aspiration, have been stu
by several researchers; references and related discussio
be found in Fant~1970!, Flanagan~1972!, and Stevens
~1971!. While the majority of work in this area has main
associated turbulence in speech with consonants, it is
possible to have vowels uttered with some~speaker-
dependent! amount of aspiration which adds some small d
gree of turbulence to them. To produce natural-sound
synthetic speech, it was judged necessary to simulate an
piration noise source in speech-synthesis systems~Klatt,
1987!.

Most approaches modeling speech turbulence at
speech-waveform level have focused on the random na
of the corresponding signal component. Another import
aspect of speech sounds that contain frication or aspiratio
the high degree of geometrical complexity and fragmenta
of their time waveforms; due to lack of a better approa
this has been left unmodeled and treated in the past as n
In this paper, we use the theory of fractals~Mandelbrot,
1982! to model the geometrical complexity of speech wav
forms via their fractal dimension, which quantifies the deg
of signal fragmentation. In Sec. I, we provide some motiv
tion and justification from the field of speech aerodynam
for using fractal dimension to quantify the degree of turb

a!The first part of this work was performed while both authors were at
School of E.C.E., Georgia Institute of Technology, Atlanta, GA 303
The second part was done while P. Maragos was at the Institute for
guage and Speech Processing, Athens, Greece.
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lence in speech signals. In Sec. II, a simple and effici
algorithm is described for measuring the fractal dimensi
The algorithm is based on multiscale nonlinear operators
morphological filtering that iteratively expand and contra
the signal’s graph~Maragos, 1994; Serra, 1982!. Some of
our contributions include the measurement and study of
fractal dimension of speech signals in a short-tim
~phoneme-based! and multiscale framework, which we be
lieve is necessary since speech signals are nonstationary
their fragmentation may vary across different time scales
this area, we extend the preliminary experiments in Mara
~1991! by providing measurements averaged over large nu
bers of phonemic instances from the TIMIT and ISOLE
databases. Another contribution is to the field of speech
ognition: the multiscale fractal dimensions of short-tim
speech segments are used as additional features in an
matic speech-recognition system based on hidden Mar
models~HMMs!. As discussed in Sec. III, the fractal featur
can offer a modest improvement to the performance
HMM-based speech recognizers.

I. SPEECH AERODYNAMICS AND FRACTALS

Conservation of momentum in the airflow during spee
production yields the Navier–Stokes governing equat
~Tritton, 1988!

rS ]u

]t
1u•“uD52¹p1m¹2u, ~1!

where r is the air density,p is the air pressure,u is the
~vector! air-particle velocity, andm is the~assumed constant!
air-viscosity coefficient. It is assumed that flow compre
ibility is negligible @valid since in speech flow
(Mach numbers)2!1#, and hence“•u50. An important pa-
rameter characterizing the type of flow is the Reynolds nu
ber Re5rUL/m, whereU is a velocity scale foru andL is a

e
.
n-
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typical length scale, e.g., the tract diameter. For the air
have very lowm, and hence high Re. This causes the ine
forces @in the left-hand side of Eq.~1!# per unit volume to
have a much larger order of magnitude than the visc
forcesm¹2u. While m is low and may not play an importan
role for the speech airflow through the interior of the voc
tract, it is essential for the formation of boundary laye
along the tract boundaries and for the creation of vortices
vortex is a region of similar~or constant! vorticity v, where
v5“3u. Vortices in the airflow have been experimenta
found above the glottis by Teager and Teager~1990! and
Thomas~1986!, and theoretically predicted by Kaiser~1983!,
Teager and Teager~1990!, and McGowan~1988!, using
simple geometries. There are several mechanisms for the
ation of vortices:~1! velocity gradients in boundary layers
~2! separation of flow, which can easily happen at cav
inlets due to adverse pressure gradients@see Kaiser~1983!,
and Teager and Teager~1990! for experimental evidence o
separated flow during speech production#, and ~3! curved
geometry of tract boundaries, where due to the domin
inertia forces the flow follows the curvature and develo
rotational components. After a vortex has been created, it
propagate downstream as governed by the vorticity equa
~Tritton, 1988!

]v

]t
1u•“v5v•“u1n¹2v, n5m/r. ~2!

The term v•“u causes vortex twisting and stretchin
whereasn¹2v produces diffusion of vorticity. As Re in
creases~e.g., in fricative sounds or during loud speech!, all
these phenomena may lead to instabilities and eventually
sult in turbulent flow, which is a ‘‘state of continuous insta
bility’’ ~Tritton, 1988! characterized by broad-spectrum ra
idly varying ~in space and time! velocity and vorticity. The
transition to turbulence during speech production may oc
for lower Re closer to the glottis because there is an air
flowing out from the vocal cords, and for jets, turbulen
starts at a much lower Re than for flows attached to walls~as
is the case downstream in the vocal tract!.

Modern theories that attempt to explain turbulence~Trit-
ton, 1988! predict the existence of eddies~vortices with a
characteristic sizel! at multiple scales. According to th
energy-cascade theory, energy produced by eddies with l
sizel ~of the order of the boundary-layer thickness! is trans-
ferred hierarchically to the small-size eddies, which actua
dissipate this energy due to viscosity. A related result is
Kolmogorov law

E~k,r !}r 2/3k25/3, ~3!

where k52p/l is the wave number in a finite nonzer
range,r is the energy-dissipation rate, andE(k,r ) is the ve-
locity wave number spectrum, i.e., Fourier transform of s
tial correlations. This multiscale structure of turbulence c
in some cases be quantified byfractals. Mandelbrot~1982!
and others have conjectured that several geometrical as
of turbulence~e.g., shapes of turbulent spots, boundaries
some vortex types found in turbulent flows, shape of part
paths! are fractal in nature. We may also attempt to und
stand aspects of turbulence as cases of chaos. Specifi
1926 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 P. Mara
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chaotic dynamical systems converge to attractors whose
in phase space or related time-series signals can be mod
by fractals; references can be found in the survey by Peit
et al. ~1992!. There are several mechanisms in high-
speech flows that can be viewed as routes to chaos;
vortices twist, stretch, and fold~due to the bounded-trac
geometry! ~Tritton, 1988; Mandelbrot, 1982!. This process
of twisting, stretching, and folding has been found in lo
order nonlinear dynamical systems to give rise to chaos
fractal attractors.

All the above theoretical considerations and experim
tal evidence, and the fact that the speech signal is produ
by a nonlinear dynamical system that often generates s
or large degrees of turbulence, motivated our study of
fractal aspects. In this paper, we use fractals as a mathem
cal and computational vehicle to analyze various degree
turbulence in speech signals. One of the main quantita
ideas that we focus on is the fractal dimension of spe
signals, because it can quantify their graph’s roughn
~fragmentation!. Because the relationship between turb
lence and its fractal geometry or the fractal dimension of
resulting signals is currently not well understood, in this p
per we conceptually equate the amount of turbulence i
speech sound with its fractal dimension. Although this m
be a somewhat simplistic analogy, we have found the sh
time fractal dimension of speech to be a feature useful
speech-sound classification into phonetic classes, segm
tion, and recognition.

II. FRACTAL DIMENSIONS OF SPEECH

A. Preliminaries on fractal dimensions

Let the continuous real-valued functionS(t), 0<t<T,
represent a short-time speech signal and let the compact
nar set

F5$„t,S~ t !…PR2:0<t<T%, ~4!

represent itsgraph. Mandelbrot ~1982! defines thefractal
dimensionof F as equal to its Hausdorff dimensionDH ; in
general, 1<DH<2. The signalS is calledfractal if its graph
is a fractal set, i.e., ifDH strictly exceeds 1~5the topological
dimension ofF !. Next, we discuss two other dimension
closely related toDH .

Minkowski–Bouligand dimension DM : This is concep-
tually based on Minkowski’s idea of finding the length
~possibly irregular! curvesF: DilateF with disks of radius«
by forming the union of these disks centered at all points
F and thus create a ‘‘Minkowski cover.’’ Find the areaA(«)
of the dilated set, and set its multiscale length equal
lim«→0L(«), whereL(«)5A(«)/2«. Then,DM is the con-
stantD in the power lawL(«)}«12D as«→0, whichL(«)
obeys ifF is fractal.

Box-Counting dimension DB : Partition the plane with a
grid of squares of side« and count the numberN(«) of
squares that intersect the curve. Then, the box dimensio
obtained by replacing the Minkowski cover area wi
the box cover area, i.e., it is equal toDB

5 lim«→0 log@N(«)#/ log(1/«).
1926gos and A. Potamianos: Fractal dimensions of speech signals
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In general, 1<DH<DM5DB<2. In this work, we focus
only on DM , which we shall henceforth call the ‘‘fracta
dimension’’ D because:~i! It is closely related toDH and
hence able to quantify the fractal aspects of a signal.~ii ! It
coincides withDH in many cases of practical interest.~iii ! It
is much easier to compute thanDH . ~iv! It will be applied to
sampled signals where most approaches can yield only
proximate results.~v! DM can be more robustly estimate
than DB , which suffers from uncertainties due to the gr
translation or its spacing« relative to the signal’s amplitude
Note thatDB5DM in the continuous-time case, but they co
respond to two different algorithms~with different perfor-
mances! for sampled signals.

B. Morphological covering algorithm

As shown by Maragos and Sun~1993!, and Maragos
~1994!, D will not change if we replace the disks in th
Minkowski cover ofF with other compact planar shapesB.
Thus, if «B5$«b:bPB% is an «-scaled shapeB, we can
obtain multiscale multishape-area distributions

AB~«!5area~F% «B! ~5!

whereF% «B is the set resulting from the morphological s
dilation of F by «B:

F% «B5$z1«bPR2:zPF, bPB%. ~6!

The infinitesimal order of the multiscale-area function yie
the fractal dimension ofF, i.e.,

D522 lim
«→0

log@AB~«!#

log~«!
. ~7!

Assuming now thatAB(«)}«22D as«→0 yields that

log@AB~«!#5~22D !log~«!1constant, as«→0. ~8!

Thus, in practice,D can be estimated by least-squares fitti
a straight line to and measuring the slope of the plot of
data log@AB(«)# vs log(«).

Implementing the set dilationF% «B involves represent-
ing the signal graphF as a binary-image signal and dilatin
this binary image. However, this two-dimensional process
of a one-dimensional signalS(t) on the one hand is unnec
essary, and on the other hand increases the requiremen
storage space and the time complexity for implementing
covering method. Thus, for purposes of computational e
ciency, it is desirable to obtain the areaAB(«) by usingone-
dimensional operationson S(t). Toward this goal, let us
consider first the morphological dilation% and erosion* of
the signalS(t) by a real-valued functionG(t) defined as

~S% G!~ t !5sup
x

$S~x!1G~ t2x!%,

~S*G!~ t !5 inf
x

$S~x!2G~x2t !%.

These signal dilations and erosions are one-dimensional
linear signal operators whose computational structure
similar to a convolution and correlation, respectively. Th
~Maragos and Sun, 1993; Maragos, 1994!, if we select asB
1927 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 P. Mara
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any compact single-connected and symmetric planar set,
if we define

G«~ t !5sup$yPR:~ t,y!P«B% ~9!

as the function~structuring element! whose graph is the top
boundary of«B, we obtain

AB~«!5E
0

T

@~S% G«!~ t !2~S*G«!~ t !#dt1O~«2!,

~10!

whereS% G« andS*G« are the dilation and erosion, respe
tively, of S by G at scale«. Thus, instead of creating th
cover of a one-dimensional signal by dilating its graph in t
plane by a setB ~which means two-dimensional processing!,
S(t) can be transformed via an erosion and a dilation
functions G« . These dilations and erosions create an a
strip as a layer either covering or being peeled off from
graph of the speech signal at various scales. We refer to
whole approach as themorphological covering method.

Discrete covering method:To adapt our previous discus
sion to the case of a discrete-time finite-length speech sig
S@n#, n50,1,...,N, we use covers at discrete scales«
51,2,..., andB becomes a finite set of pixels in the discre
plane. If we restrict the discrete setB to be convex and of
radius51, then the corresponding functionG@n# ~at scale
«51! is restricted to have a centered three-sample sup
and only two possible shapes: atriangle, defined byGt

@21#5Gt@1#50 andGt@0#5h>0, or arectangle, defined
by Gr@21#5Gr@0#5Gr@1#5h>0. The heighth is allowed
to vary and match the amplitude range of the signalS. The
main result in the discrete case is the following sca
recursive algorithm~Maragos, 1994!:

S% G@n#5 max
21<k<1

$S@n1k#1G@k#%, «51

S*G@n#5 min
21<k<1

$S@n1k#2G@k#%,

~11!
S% G«115~S% G«! % G, «>2

S*G«115~S*G«!*G,

where«51,2,3,...,«max. For n50, N, the local max/min op-
erations take place only over the available samples. Next
compute the areasAB@«# by replacing the*0

T in ~10! with
summation(n50

N . Finally, we fit a straight line using least
squares to the plot of~logAB@«#, log«!. The slope of this line
is an estimate of 22D and gives us the fractal dimension o
S. For real-world signals with some fractal structure, the
sumption of a constantD at all scales« may not be true.
Hence, instead of a global dimension, we estimate themul-
tiscale fractal dimensionMFD@«#, which for each« is equal
to the slope of a line segment fitted via least-squares to
log–log plot of ~8! over a short moving window$«,«
11,...,«1w% of w scales, where in practicew ranges from 3
to 10. Throughout this paper, we have usedw510.

The heighth5G@0# of the structuring functionG is
important because it controls the finesse or coarseness o
multiscale-area measurements. A good practical rule is to
h less than or equal to the signal’s dynamic range divided
the number of its samples. We experimentally observed
1927gos and A. Potamianos: Fractal dimensions of speech signals
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FIG. 1. Top row shows waveforms from speech sounds sampled at 30 kHz. Bottom row shows their multiscale fractal dimensions estimated ov
windows of 10 scales.
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this rule performs very similarly to the caseh50. Whenh
50, i.e., when the functionG becomes a flat function corre
sponding toB being a horizontal segment, Dubucet al.
~1989! have shown that the fractal dimension can still
computed from the above covering method~for continuous-
time signals!. This case has two advantages: the erosio
dilations can be performed faster, and the algorithm yie
local fractal dimensions that are invariant to any affine tra
formation S(t)°aS(t)1b of the amplitude range (a.0).
Therefore, we henceforth selecth50.

Applying the morphological covering method on
sampledsignal incurs a discretization error in the estimat
fractal dimension. Namely, the graph of the sampled sig
has lost some of the degree of fragmentation inherent in
graph of the continuous-time signal or presents a disto
view of the geometry of the continuous-time graph due t
small number of available samples and/or a small numbe
available scales. Thus, the error depends on the samp
frequency and the essential bandwidth~i.e., the frequency
range containing most of the area under the square ampli
spectrum of the signal!. Analytic formulas for the error cur-
rently do not exist, but experimenting with special cas
could be instructive. We have applied the above discrete
covering algorithm to the particular case of a sampled s
and measured the error between the estimated fractal dim
sion ~at scale«51! versus the theoretically correct value
1. By analyzing sampled sine signals over a fixed finite-ti
interval, we experimentally observed that for a fixed sa
pling frequency, increasing the frequency of the sine
creases the dimension error. Further, for a fixed frequenc
1928 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 P. Mara
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the sine, increasing the sampling frequency decreases
error. We conjecture that this error depends on the overs
pling ratio, i.e., the ratio of the sampling frequency divid
by the sine frequency. As indicative values from this~experi-
mentally found! error law, withw55, to obtain an estimated
dimension<1.1 ~i.e., an error<10%! we need an oversam
pling ratio of at least 20:1, whereas an estimated dimens
<1.01~i.e., an error<1%! requires an oversampling ratio o
at least 70:1. At present, we have no such guidelines
more general signals, but increasing the sampling freque
decreases the error.

C. Experiments on measuring fractal dimension of
speech signals

Figure 1 shows 30-ms segments of an unvoiced fri
tive, a voiced fricative, and a vowel speech sound extrac
from words spoken by a male speaker and sampled at 30
(N5900), together with their corresponding profiles
MFD@«# for scales«51,...,120. This range of« corresponds
to time scales from 1/30 to 4 ms. The reason for using
higher than usual sampling rate is to approximate as clo
as possible the geometrical roughness of the continuous-
speech signal and decrease the discretization error in the
timated fractal dimension. However, similar results ha
been observed at lower sampling rates~10 and 16 kHz! and
are reported in the following sections. We have conduc
many experiments similar to the ones shown in Fig. 1, fr
which we conclude the following:~1! Unvoiced fricatives
~/f/, /th/, /s/!, affricates, stops~during their turbulent phase!,
1928gos and A. Potamianos: Fractal dimensions of speech signals
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and some voiced fricatives like /z/ have a high frac
dimensionP@1.6,1.9# at all time scales~mostly constant at
scales.1 ms!, consistent with the turbulence phenome
present during their production.~2! Vowels at small scales
~,0.1 ms! have a small fractal dimensionP@1,1.3#. This is
consistent with the absence or small degree of turbule
~e.g., for loud or breathy speech! during their production.
However, at scales.2–3 ms, i.e., at scales of the same ord
as the distance between the major consecutive peaks in
speech waveform, their fractal dimension increases appre
bly. Here, we observe a phenomenon similar to the pre
ously mentioned increase of the estimated fractal dimen
of a fixed-time segment of a sine when the sampling f
quency remains constant and the sine frequency increa
~3! Some voiced fricatives like /v/ and /th/ have a mix
behavior. If they do not contain a fully developed turbulen
state, their fractal dimension is medium-to-high@1.3, 1.6# at
scales,0.1 ms, increases at large scales.5 ms ~for the
same reasons as for vowels!, and may decrease for interme
diate scales. Overall, their dimension is high~.1.6!, al-
though often somewhat lower than the dimension of th
unvoiced counterparts. Thus, we have found that the sh
time fractal dimensionD ~computed over;10–30-ms
frames and evaluated at a scale,0.1 ms! can roughly dis-
tinguish three classes of speech sounds:~i! vowels~smallD!,
~ii ! low-turbulence voiced fricatives, e.g., /v/, /th/~medium
D!, and~iii ! unvoiced fricatives, high-turbulence voiced fr
catives, stops, and affricates~large D!. Thus, the fractal di-
mension consistently quantifies the well-known fact that
geometrical fragmentation of the waveforms of these th
speech classes increases in the same order. Howeve
loud speech~where the air velocity and Re increase, a
hence turbulence occurs more often! or for breathy voice
~especially for female speakers!, the fractal dimension of
several speech sounds, e.g., vowels, may significantly
crease. In general, the fractal-dimension estimates ma
affected by several factors including~a! the time scale,~b!
the specific discrete algorithm~usually most algorithms for
sampled signals underestimate the true fractal dimen
since some signal’s roughness has been lost during s
pling!, and ~c! the speaking style. Therefore, we do not a
sign any particular importance to the absolute estimates
only to their average ranges for classes of speech sounds
to their relative differences.

We also usedD estimated at a single small time sca
i.e., MFD@«51#, as a short-time feature for purposes
speech segmentation and for signaling important eve
along the speech signal. Figure 2 shows the waveform of
word ‘‘soothing’’ and its short-time fractal dimension, ave
age zero-crossing rate, and mean-square amplitude as
tions of time. While the fractal dimensionD behaves simi-
larly with zero crossings, it has several advantages:
example, it can segment and distinguish between a vo
and a voiced fricative, whereas the zero crossings usually
because the rapid fluctuations of the voiced fricative may
appear as fluctuations around zero amplitude, which wo
increase the zero-crossing rate but as a graph fragment
which increasesD. We have also observed cases whereD
could detect voiced stops but the zero crossings could n
1929 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 P. Mara
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Related to the Kolmogorov 5/3-law,@Eq. ~3!# is the fact
that the variance between particle velocities at two spa
locationsP andP1DP varies}(DP)2/3. These distributions
have identical form to the case of fractional Brownian m
tion ~Mandelbrot, 1982! whose variances scale with time di
ferencesT as T2H, 0,H,1, the frequency spectra var
}1/f 2H11, and time signals are fractal with dimensionD
522H. Thus, puttingH51/3 leads toD55/3 for speech
turbulence. Of course, Kolmogorov’s law refers to wa
number~not frequency! spectra, and we dealt with pressu
~not velocity! signals from the speech flow. Thus, we shou
be cautious on how we interpret this result for speech. Ho
ever, it is interesting to note that in our experiments w
fricative sounds, we observedD ~for time scales,0.1 ms! in
the range@1.65, 1.7# or often exactly 5/351.67. In previous
work, Pickover and Khorasani~1986! reported global fractal
dimensions ofD51.66 for speech signals. However, the
made no connection to the 5/3 law. Further, they used m
longer time scales, i.e., 10 ms to 2 s, and a different al
rithm for computing fractal dimension. Thus, their work r
ferred to time scales above the phoneme level, whereas
work is clearly below the phoneme time scale.

D. Experiments averaged over multiple phonemic
instances

In Fig. 3, the short-time fractal dimensionD is shown
computed over scales from 1/16 to 4 ms, using a 20-
analysis window. For each phoneme, the mean and stan
deviation ~shown as error bars! of the MFD is computed
from 200 instances~100 from male and 100 from femal
speakers! of each phoneme in the TIMIT database. The
experiments reinforce the claims made in the previous s
tion that the short-time fractal dimensionD in small scales
can help discriminate among broad phonemic classes. N
that the standard deviation of the MFD distribution is typ

FIG. 2. Speech waveform of the word ‘‘soothing’’ sampled at 10 kHz a
short-time speech measurements~fractal dimension at scale«51, normal-
ized zero-crossings rate, and normalized mean-square amplitude! over a
10-ms window, computed every 1 ms and postsmoothed by a 3-point
dian filter.
1929gos and A. Potamianos: Fractal dimensions of speech signals
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FIG. 3. Mean and standard deviation~error bars! of the multiscale fractal dimension distribution for the phonemes /aa/, /b/, /en/, /f/, /m/, /r/ calculated
the TIMIT database~20-ms analysis window, updated every 10 ms!.
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cally smaller forD computed over smaller time scales~,1
ms!, with the exception of the phoneme /b/. Further, the d
ferences among the average fractal dimensions are large
smaller~,1 ms! time scales.

In Fig. 4~a!, we compare the multiscale fractal dime
sion for the unvoiced fricative /sh/, the corresponding voic
fricative /zh/, and the vowel /uh/, averaged over 200 pho
mic instances obtained from the TIMIT database. Clea
the small- and medium-scale fractal dimension measurem
is smaller for voiced than for unvoiced sounds. The MFD
very small for vowels.

Plosives are a highly confusable set of phonemes. M
tiscale fractal dimension is able to discriminate betwe
voiced and unvoiced plosives produced with identical voc
tract configuration~thus having very similar short-time spe
tral envelopes!, i.e., /p/ and /b/, /t/ and /d/, etc. For examp
in Fig. 4~b! we show the MFD for the voiced–unvoiced plo
sive pair /d/ and /t/ averaged over 200 occurrences. Ag
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the MFD is smaller for the voiced /d/ than for the unvoic
/t/. The discriminative power of the fractal dimension f
fricatives and plosives, where traditional spectral features
inadequate, could be a valuable asset for speech recogn
as discussed next.

III. APPLICATION TO AUTOMATIC SPEECH
RECOGNITION

It has been demonstrated that the multiscale fractal
mension can potentially be used to discriminate among p
netic classes. Here, we attempt to incorporate the fracta
mension in a hidden Markov model~HMM !-based speech
recognizer; mixtures of Gaussian distributions are used
model the observation probabilities for each HMM state.

To successfully incorporate a feature in a pattern cla
fier, the new features must contain~if possible! only infor-
mationrelevantto the discrimination task, i.e., not be redu
0

FIG. 4. Multiscale fractal dimension:
~a! phonemes /sh/, /zh/, /uh/ and~b!
phonemes /t/, /d/; averaged over 20
phonemic instances from the TIMIT
database~20-ms analysis window, up-
dated every 10 ms!.
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TABLE I. Word percent correct for theE-set recognition task using 5-mixture Gaussians per HMM state.

$A,C1 ,...,C12 ,DA,DC1 ,...,DC12% $A,C1 ,...,C12 ,DA,DC1 ,...,DC12%
1 1

$A,C1 ,...,C12 ,DA,DC1 ,...,DC12% $D1 ,DD1% $D1 ,D11 ,DD1 ,DD6 ,DD11 ,DD16%

81.2% 83.5% 84.5%
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dant or irrelevant. The fractal dimension of a speech signa
defined in this paper to be a two-dimensional~2-D! distribu-
tion in time and scale. The main issue is how to repres
this 2-D distribution so that it fits in the HMM framework
The feature vectors used in speech recognition are typic
computed over a 20–30-ms window and are updated e
5–10 ms. Fractal dimension is a feature with high tempo
resolution; thus, it might be advantageous to avoid ov
smoothing. An 8-ms averaging window~updated every 10
ms!1 was arbitrarily chosen, and is being used to compute
fractal features in the remainder of this paper. The ‘‘sta
dard’’ speech-recognition features~i.e., cepstrum and mean
square amplitude! are computed using a 20-ms window.

The second issue to be resolved is the dimensionalit
the fractal-feature vector. Smaller dimensionality presen
computational advantage, but comes with a performa
tradeoff if relevant information is lost during the dimensio
ality reduction process. It is clear from Figs. 3 and 4 that
fractal dimensions of adjacent scales are highly correla
Further, the fractal dimension of large scales~.1.5 ms! pro-
vide little information relevant to the discrimination task
hand. Various empirical procedures exist for decorrelatin
feature vector. In this paper, we chose the simplistic
proach of sparsely sampling the low end of fractal scales~,1
ms!.

The feature vector augmented with fractal features
described above was applied to the speech-recognition
of the highly confusablee-set consisting of the following
spoken letters: b, c, d, g, p, t, v, and z. Thee-subset of the
ISOLET database consists of 2700 word occurren
sampled at 16 kHz~Cole et al., 1990!. The HMM-based
HTK recognition package was used for all experime
~Young, 1995!. A hold-one-out~‘‘round-robin’’ ! procedure
was used during training so that all 2700 words were av
able for testing. As a result, the statistical significance
recognition performance comparisons was five times hig
than in Singer and Lippmann~1992!.

The standard-feature set consisted of the mean-sq
amplitude~usually called ‘‘energy’’2! A, the first twelve cep-
strum coefficientsC1 ,...,C12 computed from a mel filter-
bank ~Davis and Mermelstein, 1992! and their first time de-
rivatives DA and DC1 ,...,DC12. The standard feature
oc. Am., Vol. 105, No. 3, March 1999 P. Mara
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vector was augmented by the fractal dimension of scale
D15MFD@1# and its first time derivativeDD1 . Scale one
corresponds to a time scale of 1/16 ms. The fractal featu
are assumed to be independent of the standard features a
belong in separate probability ‘‘streams.’’3 Five-state left–
right hidden Markov models were used in these experime
As shown in Table I, combining the standard and the frac
features gives a modest 12% reduction in the word-error
over using the standard features alone. Further improvem
is achieved when the higher-scale fractal dimensions~scales
6, 11, and 16, corresponding to time scales of 0.38, 0.69,
1 ms! are used in addition toD1 as shown in the third col-
umn of Table I; this yields an error reduction of 18%. Fu
ther augmentation of the fractal-feature vector has not sho
experimentally any performance improvement. Hencefo
we refer to the feature vector consisting
$D1 ,D11,DD1 ,DD6 ,DD11,DD16% as the ‘‘fractal’’-feature
vector.

Next, we attempted to improve overall performance
augmentation of our feature set with the second time der
tives of the energy and cepstrum featur
$DDA,DDC1 ,...,DDC12% and by doubling the complexity
of the HMM models, i.e., using ten instead of five Gauss
distributions per mixture per state. As shown in Table II,
the complexity of the models and/or the dimensionality
the standard features increases, the improvement in pe
mance achieved by using the fractal features becomes
ginal. Note that similar recognition performance~about
10%–15% word-error rate! was reported for the ISOLET
database in Singer and Lippmann~1992!.

Preliminary experiments on general phonem
recognition tasks have shown similar performance impro
ments when the standard-feature vector was augmented
fractal features. Overall, fractal features can provide mod
improvement to recognition performance with a small
crease in the dimensionality of the feature vector.

IV. CONCLUSIONS

In this paper, motivated by considerations based on
dynamics of the speech airflow, we have conjectured t
short-time speech sounds contain various degrees of tu
TABLE II. Word percent correct for theE-set recognition task.

Features

Models $A,C,DA,DC,DDA,DDC%

$A,C,DA,DC,DDA,DDC%
1

$D,DD%

5-mixture Gaussians 85.6% 86.3%
10-mixture Gaussians 88.6% 88.9%
1931gos and A. Potamianos: Fractal dimensions of speech signals
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lence at multiple time scales below the phoneme time sc
To quantify these various degrees of turbulence, we h
proposed the use of the multiscale fractal dimension~MFD!,
measured via an efficient signal-processing algorithm ba
on simple morphological dilation/erosion operators. Seve
experimental observations have been made by measurin
MFD of short-time speech sounds and demonstrating its
tential for classification into certain broad phonetic clas
and for speech segmentation.

Motivated by the novel information that the MFD ca
extract from the speech waveforms, we investigated the
plication of MFD as a fractal-feature vector to the problem
HMM-based automatic speech recognition. By augment
the standard-feature vector~containing short-time spectral in
formation! used in current speech-recognition systems w
elements of the MFD vector, we have experimentally o
served an improvement in performance, i.e., a modest re
tion in the error of certain word-recognition tasks ov
standard-speech databases.

For future research, there are certain issues relatin
the design of the classifier and the augmentation of the
ture vector with fractal features that deserve further inve
gation. Such issues include the dimensionality of the frac
feature vector and the time scales of the fractal dimens
used as features during recognition. The choice of the d
tion of the short-time analysis frame and alternative ways
incorporating the fractal-feature vector in the HMM fram
work should also be considered more carefully. Addition
performance improvements may be achieved with a m
careful choice of these parameters. Further, despite the
elty of the information represented by the MFD vector, t
improvement in performance that we observed when co
bining spectral and fractal features turned out to be relativ
modest for HMM models with high complexity. This rela
tively small improvement in performance could be due to
correlation between the standard fractal features and the
tiscale fractal dimension. Specifically, preliminary expe
ments lead us to pose a question whether the fractal dim
sion is correlated with the high-frequency part of t
spectrum. Thus, a formal study might be useful to investig
the existence and degree of any possible correlation betw
spectral features and multiscale fractal dimension.
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1We chose to update all features every 10 ms because it is unclear ho
incorporate features sampled with different frequencies in the HMM fra
work.

2We prefer the term ‘‘mean-square amplitude’’ over the term ‘‘energ
because, as Kaiser~1990! has discussed, the energy in an oscillatory sig
is more appropriate to be related to the physical energy of the so
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producing this signal. Such an energy is proportional both to the oscilla
amplitude squared and the frequency squared and can be measured v
Teager–Kaiser energy operator.

3All stream weights are assumed to be unity.
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