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Morphological  Filters-Part I: Their  Set-Theoretic 
Analysis  and  Relations to Linear  Shift-Invariant 

Filters 
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Abstract-This paper  examines  the  set-theoretic  interpretation of 
morphological  filters  in  the  framework of mathematical  morphology 
and  introduces  the  representation of classical  linear  filters  in  terms of 
morphological  correlations,  which  involve  supremumlinfimum  opera- 
tions and additions.  Binary  signals are classified as sets, and multilevel 
signals  as  functions.  Two  set-theoretic  representations of signals are 
reviewed.  Filters  are  classified  as  set-processing (SP) or function-pro- 
cessing  (FP).  Conditions are  provided  for  certain  FP  filters  that  pass 
binary  signals  to  commute  with  signal  thresholding  because  then they 
can  be  analyzed  and  implemented  as  SP  filters. 

The  basic  morphological  operations of set  erosion,  dilation,  open- 
ing, and closing are  related  to  Minkowski  set  operations  and  are used 
to  construct  FP  morphological  filters.  Emphasis  is  then  given  to  ana- 
lytically and geometrically  quantifying  the  similarities  and  differences 
between  morphological  filtering of signals by sets and functions;  the 
latter  case  allows  the  definition of morphological  convolutions  and  cor- 
relations.  Toward  this  goal,  various  properties of FP morphological 
filters are also  examined. 

Linear  shift-invariant  filters  (due  to  their  translation-invariance)  are 
uniquely  characterized by their  kernel,  which  is  a  special  collection of 
input  signals.  Increasing  linear  filters  are  represented  as  the  supre- 
mum of erosions by their  kernel  functions.  If  the  filters  are  also  dis- 
crete  and  have a finite-extent  impulse  response,  they  can  be  repre- 
sented  as  the  supremum of erosions  only  by  their  minimal  (with  respect 
to  a  signal  ordering)  kernel  functions.  Stable  linear  filters  can be rep- 
resented as  the  sum of (at  most)  two  weighted  suprema of erosions. 
These  results  demonstrate  the  power of mathematical  morphology  as 
a unifying  approach  to  both  linear  and  nonlinear  signal-shaping  strat- 
egies. 

M 
I. INTRODUCTION 

ORPHOLOGICAL filters are  nonlinear signal 
transformations  that locally modify geometric fea- 

tures of signals.  They stem from the  basic  operations of 
a  set-theoretical method for  image  analysis, called math- 
ematical  morphology, which was introduced by Matheron 
[l] and Serra [2]. In  this  method, each signal is viewed 
as  a set in a Euclidean space, and the morphological filters 
are set operations  that transform the graph of the signal 
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and can provide a  quantitative  description of its geomet: 
rical structure.  For binary signals (viewed as sets),  the 
erosion (contraction), dilation (expansion),  opening,  and 
closing are  the simplest morphological operations. Set 
erosion and dilation  are actually Minkowski set subtrac- 
tion and addition [ 3 ] ,  [4], respectively.  These filters were 
extended to multilevel signals  in 121,  151-[8] by using 
mainly the  correspondence between the  shrinkinglex- 
panding of binary signals and the  local min/max of mul- 
tilevel signals [9]. Serra 121 used the cross sections 
(thresholded versions) of the signal to  generalize  the mor- 
phological filtering of multilevel signals. Sternberg [6] 
further generalized morphological filters for multilevel 
signals by considering graytone images as surfaces of 3- 
D volumes (the umbrae). ,“-filters [ 101 are related to mor- 
phological filters via Sternberg’s approach. Lantuejoul and 
Serra [ll] studied properties of generalized  (algebraic) 
openings and closings, which they called M-filters. 

The applications of morphological filters in image pro- 
cessing and analysis are numerous [2], [ 121, [ 131. Areas 
of applications include biomedical image processing [2], 
[6], [8], [14], [15]; automated industrial inspection [16], 
[17]; shape recognition [18]; nonlinear filtering [19], [20]; 
edge detection [SI, 1201, [ 131; noise suppression [ 5 ] ,  [2 11, 
[20], [13]; thinning [2], [5], [21]-[22]; enhancement [2], 
[21]; representation and coding [20], [22]; texture anal- 
ysis [23]; and shape smoothing 121, [20], [22], [24]. Cur- 
rently,  there  are  several commercialized image analyzers 
or other pipelined or parallel  computer  architectures [25]- 
[28] that use morphological filters (mainly for binary sig- 
nals) among their main operations to extract pictorial in- 
formation. 

In this paper (in Section 11), we first introduce a clas- 
sification of signals and filters suitable for morphological 
filtering. Then we discuss the  basic morphological con- 
cepts for representing signals by sets. In Section I11 we 
give  the basic definitions and  properties of the  four sim- 
plest morphological filters. Although [2] is an excellent 
treatment of mathematical morphology,  we  feel  that it is 
worthwhile to present some review material in Sections I1 
and I11 for  completeness and clarity, as well as for  fami- 
liarizing the signal processing society with morphological 
signal analysis.  Throughout Section I11 we  attempt to 
clarify the transition and oscillation between morpholog- 
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ical filtering of binary and multilevel signals. Some anal- 
ysis and examples are provided to quantify the difference 
between morphologically convolving a signal with an- 
other binary or multilevel signal. In addition, some de- 
terministic properties of morphological filters for multi- 
level signals are investigated concerning their commuta- 
bility with thresholding, fixed points, and invertibility. 
Finally, in Section IV, we introduce the representation of 
linear shift-invariant filters in terms of morpho- 
logical filters. That  is, we define the kerne2 of a  linear 
translation-invariant filter as  a special collection of input 
signals and construct a basis of this kernel based on a 
signal ordering.  The kernel or basis functions are then 
used to express a  linear convolution as a supremum of 
subtractive morphological correlations (erosions). 

This paper is the first in a sequence of two papers (Parts 
I and 11). The results in Section IV of this paper (Part I) 
and the results in Part I1 [32] are  all special cases of our 
earlier work in [19] and [20], which showed that a  large 
class of nonlinear  and  linear translation-invariant filters 
can be represented exactly in terms of a minimal combi- 
nation of morphological erosions or  dilations. Both Parts 
I and I1 demonstrate the power of mathematical morphol- 
ogy as a unifying approach to both linear  and nonlinear 
signal-shaping strategies. 

11. REPRESENTATION OF SIGNALS BY SETS 
An m-dimensional (m-D) signal can be represented 

mathematically by a function of m independent variables 
(an m-D function), where m is any positive  integer. This 
function may assume only two distinct values,  in which 
case we can represent the signal as  a set in an m-D Eu- 
clidean space.  For  example,  a binary image can be rep- 
resented by a  functionf ( x )  that assumes only two values, 
Le., zero and one.  Alternatively,  the image foreground 
can be represented by the set S = { x  :f ( x )  = 1 ] and the 
image background by the set complement S‘ = { x  :f ( x )  
= 0 ] . This functionfis c21led the characteristic function 
of S. Henceforth, both functions and sets will be used as 
mathematical representations of  signals, with the distinc- 
tion that an m-Dfunction implies a multilevel m-D signal, 
whereas an m-D set refers to binary m-D signal.  Thus,  a 
binary image will be represented by a 2-D set, whereas a 
graytone image by a 2-D function. This classification of 
signals induces a  similar classification for filters into  set- 
processing and function-processing filters. An m-D set- 
processing (SP) filter is a filter capable of accepting m-D 
binary signals as inputs and producing m-D binary signals 
as  outputs. An m-D function processing (FP) filter is any 
filter capable of accepting m-D functions as inputs and 
producing m-D functions as  outputs.  A subclass of m-D 
FP filters can produce an m-D binary signal whenever the 
input is also  an m-D binary signal; these are calledfunc- 
tion-and-set-processing (FSP) filters. For example, on 
sampled graytone images,  a moving local minimum op- 
eration is a 2-D FSP filter, whereas a moving local aver- 
ager is a 2-D FP (but not an FSP) filter. 

In the above classification, set is theprimary notion and 
function  is just a  particular  case, because the prototype 
morphological filters are defined through set operations. 
In addition, some of the FSP filters that this paper ex- 
amines commute with thresholding of functions (ex- 
plained later)  and,  hence, can be reduced to SP filters. In 
this light then, any FP  or  SP filter is viewed as  a set trans- 
formation from one class of sets  into  another class of sets. 
The concept of a  set,  however,  is  more general than 
needed to represent signals.  Therefore, we restrict our- 
selves to a class of sets that is just sufficiently general. 
Assuming [ l ]  that every set representing a signal (viewed 
as an image object) contains its boundary, results in se- 
lecting the class e ( E )  of all closed subsets of a Euclid- 
ean space E as  our general signal space.  However,  before 
any detailed discussion,  it is necessary to introduce some 
notation. 

Notation: The set of real numbers is denoted by R,  and 
the set of integers by 2. Capital letters “ A ,  B ,  C, - - - , 
X ,  Y” mainly denote  sets; points of sets are denoted by 
lower  case  letters “a,   b ,  c, * * , x ,  y ,  z .  ‘’ X“ denotes the 
set complement of X .  The set of points x satisfying a prop- 
erty “P” is denoted by {x: P >. If X E R,  then 
sup( X ), inf ( X  ), max ( X  ), and min ( X  ) denote, respec- 
tively,  the  supremum, infimum, maximum, and minimum 
of X .  (See [29] for the differences between sup/inf and 
max/min, respectively.) Functions are denoted by “f, g ,  
h.” Capital Greek letters, e.g., “q, a,” denote SP fil- 
ters, whereas lower  case Greek letters, e.g., ‘‘4, 4,’’ de- 
note FP filters. If X or f are input signals to filters \E or 
4, then \k (X) and 4 ( f ) denote  output  signals. 

A .  Cross Sections and Umbra of a Function 
We assume that the domain of an m-D functionf ( x )  is 

a subset of the domain space D = 2“ or R”, depending 
on whether the function is sampled or not, respectively. 
We  also  assume that the range off (x) is  a subset of the 
range space V = R or Z ,  depending on whether the am- 
plitude of f ( x )  varies continuously or discretely. Our 
general Euclidean space E will be equal to the Cartesian 
product D X V .  Thus,  all binary m-D signals will be sub- 
sets of D, whereas all multilevel m-D signals will be sub- 
sets of E .  

Since signals can be represented either by functions or 
by sets, and set is the primary notion, the main issue is to 
representfunctions by sets. This  is done by following two 
different but equivalent approaches. That is, an m-D func- 
tion can be represented either by an ensemble of m-D sets 
called its cross sections or by a  single ( m  + 1)-D set 
called its umbra. 

Fig. 1 shows a 1-D functionf,  one of its cross sections, 
and its umbra. The set 

X t (  f )  = { x  E D : f ( x )  2 t ] ,  t E V ,  (1) 

is called the cross section off at level t and is obtained 
by thresholding f at level t .  By considering all different 
levels t we can associate f with a family of sets, which 
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FUNCTION CROSS - SECTION UMBRA 

Fig. 1 .  A functionf, its cross section X , ( f )  at level t ,  and its umbra U( f ) .  

decrease monotonically as t increases. Since we  work in 
the class of closed sets, all the cross sections off must  be 
closed. The corresponding class of functions with  which 
we will always deal is  the class of upper semicontinuous' 
(u. s. c. ) functions on D, denoted as USC( 0). This cor- 
respondence  is established because a real-valued function 
f defined on R" is U.S.C. if and. only  if (iff) its cross sec- 
tions X ,  ( f ) are closed sets in R" for all t E R [3 11. Qual- 
itatively, we can think of U.S.C. (respectively, 1.s.c.) 
functions as resulting from continous functions after the 
addition of some positive (respectively, negative) jumps. 
A sampled function is trivially both U.S.C. and l.s.c., be- 
cause  all  its  cross sections are subsets of 2" and,  hence, 
they are  both closed and  open. 

If we know all the cross sections of a U.S.C. function, 
then we  can  uniquely reconstruct it through a supremum 
operation. This  is illustrated in Fig. 2 which  shows a 1- 
D function f (x) and  two of its cross sections at levels tl 
and t2. In this figure .we observe  that,  for a given point x 
E R ,  x E X,, ( f ) iff f (x) >- t l  . By contrast, we  observe 
that x 6 X , , ( f )  i f f f (x)  < t2. Thus, the value of fa t  x is 
equal to  the "largest" (supremum) of t's such that f ( x )  
>- t or, equivalently, x E X ,  ( f ). The  above discussion is 
formalized by Theorem 1. 

Theorem I (Serra [2]): 
a) Let f (x) be a u. S.C. real-valued function on Rm 

and let X,(  f ), t E R ,  be its cross sections.  Then,  the X,'s 
are closed sets in Rm that are decreasing,  i.e., 

t l  < t 2  =) x,, 2 x,, (2) 

obey a monotonic continuity 

X, = n X,, 
t < T  

and for each x E R" 

f ( x )  = sup ( t  E R : x  E X t ) .  (4) 
b) Conversely, a collection { X ,  : t E R 1, of closed 

sets satisfying conditions (2) and (3) generates a u.s .c .  
functionf (x) through (4). Then,  the cross sections of the 
resulting function f (x) are identical with  the initial sets 
X,'s for all t .  

Note that if V = 2, then (3) becomes X ,  = n , ,X, 
with 7, n E 2, and  hence, (3) is trivially satisfied; (4) 
becomesf(x) = sup { t  E Z:x E X,). 

Another way  of establishing a link  between sets and 
funtions involves the  concept of the  umbra  due  to Stern- 

'These are  defined  in 1291 and 1301 together  with  the lower semicontin- 
uous functions (1.s.c.). 

%4,0 F-L 
I ----- * 

Fig. 2. Reconstruction of a function from its  cross  sections. 

berg [6 ] ,  [7]. As shown in Fig.  1,  the umbra U( f )  off 
is a subset of E and consists of all those points that  occupy 
the  space  below  the  graph off down  to - 03. We  can  also 
define the  umbra of a set.  For  instance,  Fig.  3(a)  shows 
a closed set B in R 2 .  Its  umbra U ( B )  is  the closed set 
formed as follows. Let the points in E be parametrized by 
their projection x on D and their altitude t perpendicular 
to D (in  Fig. 3 D = R). Suppose  that the opaque  set B is 
"illuminated"  from  above by a point source located at t 
= +03; then the shadow of B is its  umbra U(B) shown 
in Fig.  3(a). Analytically, the  umbra of the closed set B 
is equal to the  Minkowski  sum [defined later in (12)] of 
B and  the negative axis (- 03, 01 of  the  amplitude t's [2]. 
Similarly, the umbra of a functionfis  the Minkowski  sum 
of the  graph of the function and ( - 03, 01, where the 
graph off is the set G( f )  = { ( x ,  t )  E E : f  (x) = t 1 
shown in Fig. 3(b). Analytically, the  umbra o f f  is  the 
subset 

V ( f )  = ((x, t )  E D  x V:f(x) 2 t }  ( 5 )  

of E .  Obviously,  the  umbra  is a set of higher  dimensional- 
ity than the function. Fig. 3(b) shows that a point (x, t )  
belongs  to V (  f ) iff f (x)  2 t. The second property of 
V ( f )  is  that if (x, t )  E V ( f ) ,  then (x, a )  E U ( f )  for 
all a < t [see also Fig. 3(b)], since the  set {x 1 X ( - 03, 
f ( x ) ]  is a subset of U( f ). From U ( f ) we  can  uniquely 
reconstructfbecausef (x) is the "largest" altitude, i.e., 
the  supremum of all t's such  that (x, t ) E U( f ) . The third 
property of U( f ) is that it  is a closed set.  The  class of 
functions whose  umbra is a closed set in E is  the class of 
U.S.C. functions on D; further,  for  each U.S.C. function 
there corresponds a unique  umbra,  and vice versa.  Next 
we formalize the above discussion with  Theorem 2. 

Theorem 2: 
a) To any real-valued U.S.C. functionf(x), x E R", 

there corresponds a unique  umbra U( f ) . This  umbra U 
is a closed set in R"+ such that: 

( x ,  t )  E U d t I f ( x )  o x € X , ( f ) .  (6)  

( x ,  t )  E U * (x, a )  E U,  Va < t. (7 )  

Also  for  each x E R" 
f ( x )  = sup ( t  E R : ( x ,  t )  E U). (8 )  

b) Conversely, to any closed subset U of Rm sat- 
isfying, (7), there corresponds a unique U.S.C. function 
f (x), which  can  be constructed from (8). The  umbra then 
off (x) is  equal  to U. 



1156 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-35, NO. 8, AUGUST I987 

t 

X 

(a)  (b) 

Fig. 3 .  (a)  Umbra of a set B; (bj umbra  and graph of a functionf. 

A  proof of Theorem 2 can  be  found in [20, p. 541. 
Theorem 2 also holds for functions with discrete argu- 
ment or amplitude. By comparing (1) and (5) to (6), we 
see that U( f ) is the union  of the sets [ X ,  ( f ) ] X { t ) for 
all t E V .  
B. Isomorphic Operations Between  Sets and Functions 

Since functions are exactly represented by their um- 
brae,  the  union  and intersection of umbrae must iso- 
morphically induce  two equivalent operations between the 
corresponding functions. Fig. 4 shows  two  functionsfand 
g and  their respective umbrae U( f) and U( g ) .  The in- 
tersection of the two  umbrae is an  umbra  corresponding 
to  a new U.S.C. function. This  function,  shown by the 
dashed  curve in Fig. 4, is equal to  the pointwise minimum 
o f y  and g .  Likewise, the union of the two  umbrae  is the 
umbra of a new U.S.C. function, which is shown by the 
solid curve  is the right part of Fig.  4, equal to the point- 
wise maximum off and g .  We denote these new functions 
as : 

( f A  g) ( 4  = min { f (x) ,  d x ) )  3 x E D  

( f v d ( x )  = m a x { f ( x ) , g ( x ) ) ,   X E D .  
Finally, the set inclusion of umbrae,  which is an ordering 
relation, induces an ordering relation between functions 
too. Set inclusion between the umbrae of two functions f 
and g corresponds to an ordering offunctions. That is, we 
say that “fis less than g,” denoted as “f I g,” i f f f (x)  
5 g (x) Vx E D. Moreover, 

f I g X d f )  c X t ( d  Vt E v * U ( f )  c U ( d .  

(9)  
Table I shows the types of function operations induced 

by set operations on  umbrae or cross sections; e.g., A ( V )  
between f and g is equivalent to fl ( U ) between X ,  ( f ) 
and X,(  g )  for all t E V.  

C. Upper Semicontinuous (u.s. c.) Filters 
A detailed formal definition of  a general u. S.C. filter 

(viewed  as set mapping)  lies  beyond the scope of this pa- 
per. Intuitively speaking, a filter is U.S.C. if it is contin- 
uous “from  above.”  However, if the SP  or  FP filter is 
increasing (see Table I1 for definitions), then we can eas- 
ily verify whether it is U.S.C. as follows. If (X , )  is  a de- 
creasing sequence of closed sets in E ,  let X, S- X denote 
the monotonic set convergence  where X,, + E X, for all 
n and X = n,X,. Then, if ” is  an increasing SP filter in 

Fig. 4. Isomorphic  operations  between  sets  and  functions. 

TABLE I 
ISOMORPHIC OPERATIONS BETWEEN FUNCTIONS, THEIR CROSS SECTIONS, 

AND THEIR UMBRAE 

“for  all x E D. 

( ? ( E ) ,  9 is U.S .C.  iff X, -1 X * “(X,) S- * ( X )  [l]. An 
obvious way to extend these concepts to  FP filters is  to 
consider the umbrae or cross sections of functions. Leav- 
ing details aside, if ( f, ) is a decreasing sequence of u. s.c. 
functions, we  denote by f, .1 f the monotonic  convergence 
toward the u. s .c. function f ,  where f, + 5 f, for all n and 
f (x) = inf, { f, (x) 1 for all x E D. Then, if $ is  an in- 
creasing FP filter in USC(D) ,  + is U.S.C. ifff, S-f * $ ( f,) 

The U.S.C. condition is necessary whenever we require 
filters to  be insensitive to the fine variations in  both the 
amplitude  and region of support of signals. 

D. FSP Filters that Commute with Thresholding 
Let 4 be  an m-D FSP filter, and  let @ be the respective 

m-D SP filter of 4. Then 4 is said to commute with thresh- 
olding iff, for any U.S.C. function f ,  

.1 + ( f > .  

\ 

X , [ d J ( f ) ]  = ‘P[X,(f)I, V t  E v. (10) 

Thus,  for  a general FSP filter dJ satisfying (lo), trans- 
forming the input function f and then thresholding 4( f ) 
at any level t is equivalent to thresholdingfat level t and 
then transforming by @ the set X,( f ). This allows us to 
intrepret such  an FP filter as an SP filter, which, espe- 
cially for sampled  signals,  is simpler to  analyze  and im- 
plement. That is, from  Theorem 1 and (IO) we can syn- 
thesize the output function 4 ( f ) from its SP-filtered cross 
sections; i.e., Vx E D. 

[4(f)]  ( 4  = SUP ( t  E v : t  E @ [ X , ( f ) I } .  (11) 

A necessary condition for  an  FSP filter to commute with 
thresholding is  given by Theorem 3. 

Theorem 3: Let 4 : 3 -+ USC(D)  be  an FSP filter de- 
fined on  a class 3 of U.S.C. functions closed under point- 
wise  infimum. If 4 commutes  with thresholding and @ is 
its respective SP filter, then both 4 and @ are increasing 
and U.S.C. 
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Properties SP filter * FP  filter $ 

"x, y E D and c E V. 

Proof: 
a) (Increasing): Let A ,  B be  two closed sets in D 

such that A G B. Let h be a U.S.C. function defined as 
h ( x )  = 2 f o r x ~ A , h ( x )  = l f o r x ~ B n A ~ , a n d h ( x )  
= 0 forx  E B". Then + ( A )  = +[X,(h)] = & [ 4 ( h ) I  
E X,[+(h)]  = +[X,(h)] = + ( B ) .  Thus, + is increas- 
ing for sets. Now letf I g e X,( f )  E X,( g )  Vt E V. 
ThenX, l+( f ) l  = +[X,(f) l  E +[Xr(g)l = X t [ d , ( g ) I  
v t  E V ,  which implies that + ( f )  s +( g ) .  Hence, 4 is 
increasing for functions too. 

b) (u.s.c.):  Let S be  the set class of all cross sec- 
tions of functions in 5 ;  then S is closed under intersection 
because 5 is closed under  infimum.  Let (X,) be any de- 
creasing sequence of closed sets in s; then X, l. X E S.  By 
generalizing the method of proof in a), we  can set X, = 
X,( f )  for some U.S.C. function f where t,+ 2 tn for all 
n , t=sup,{tn},andX=Xr(f) .From(2)and(3) ,s ince 
+ ( f )  is a U.S.C. function,  we  have  +(X,) = Xtn[4( f ) ]  
l. X t [ 4 ( f ) ]  = +(X) .  Thus, + is U.S.C. Likewise,  let 
( f,) be a decreasing sequence of U.S.C. functions such 
thatf, l . f ~  5 .  Thenf, i f*  Xr(f,) l. & ( f )  * Xt[4(fn)I 
= +[Xt( f ) I  l. +[Xr(f)I  = & [ 4 ( f ) I  V ~ E  V * 
2 4 ( f n + l )  and [ 4 < f > l  ( x )  = SUP { t : x  E X # [ 4 ( f ) l  
[ 4 ( f> I  ( x )  2 t v n }  = i n fn{ [4 ( f ) l  ( x ) ) .  Thus, 4 ( f )  
l. 4(  f ) ,  and  hence, 4 is U.S.C. Q.E.D. 

Theorem 3 suggests a straightforward way to construct 
an FSP filter that  commutes  with thresholding from  an 
increasing and U . S . C .  SPfiZter +. That  is, if 9 operates 
individually on all the cross sections of a u. S.C. function 
f, the family of filtered cross sections { 4) [ X t  ( f ) ] : t E V 3 
satisfies both conditions (2)  and  (3).  Hence,  Theorem 1 
guarantees that the function g ( x )  = sup { t E V :  x E 
+[X,(f)]  ) is a U.S.C. function and that X,( g )  = 
+[X,(f)]  for all t E V. Thus, by setting g = +(f), we 
construct an  FSP filter 4 that  commutes  with thresholding 
and  whose respective SP filter is 9. 

Theorem 3 becomes a necessary and sufficient condi- 
tion by requiring (b to be translation-invariant. Let A, = 
{ a  + z: a E A )  denote the translate of a set A by the 
vector z. An SP filter i# is translation-invariant iff i# ( A , )  
= [ i# ( A ) ]  ,, for all z E E ,  and all sets A in a set collection 
S closed under  vector translation. If A = U( f ), transla- 
tion of A by z = ( y, c )  corresponds  to a shift of the  ar- 
gument off (x) by y E D and  to a shift of the amplitude 
off  by c E V. Thus,  we define herein an FP filter I) as 
translation-invariant iff I) [ f (x - y ) + c ]  = [ I) ( f ) ] (x 
- y )  + c ,  for  all ( y, c )  E D X Vand  all functions f ( x )  

in a function class 5 closed under  such translation. Then 
we  have  Theorem 4. 

Theorem 4: A translation-invariant FSP filter 4 : 5 + 

USC( 0)  , where 5 is a class of u. s .c. functions closed 
under translation and pointwise infimum,  commutes  with 
thresholding iff it is increasing and  u. s . c. 

Proof: The necessity was  proven in Theorem 3. Suf- 
ficiency: Throughout this proof we will make  use of the 
SP,  FSP,  and  FP erosions filters which  are defined in Sec- 
tion 111. Let + be  the respective m-D SP filter of the m-D 
filter 4. 9 is defined on the set class S of the cross sections 
of the functions in 5 .  Since 4 is a translation-invariant 
and increasing FP filter, it is equal to  the supremum of 
FP erosions by a class X of fnctions [20]. These functions 
must be binary, i.e., m-D sets,  because otherwise 4 would 
not pass an rn-D binary signal as  binary.  Thus, 4(  f ) ( x )  
= supBEX { f e B' ( x )  ), where f e BS ( x )  = inf 
{ f ( y )  : y E B,} is  the  FSP erosion of f  by B and  com- 
mutes  with thresholding. Hence, i f f  is binary and thus 
equal to the characteristic function of a set Y,  then  the 
above expression for +( f )  becomes + ( Y )  = UBEx Y 
e B', where Y e Bs = { z : B, E Y ) is  the  SP erosion 
of Y by B. However, % is a translation-invariant and  in- 
creasing SP filter and,  hence, equal to  the  union of SP 
erosions by all sets B in its kernel X (9 ) = {X E S : 0 E 
ip (X)  ) [l] . Thus, the class X in the  above representbtion 
of 4 is actually the kernel of its SP filter +, and  hence, 

In addition, Vt E V, 

= U x,(f e B ~ ) .  
B€X(+)  

Since 9 is increasing and u.s.c., the set class 
{ 9 [X,( f)] : t E V ] creates a u.s.c. function g ( x )  = sup 
{ t  E V : x  E +[X,(f)])  = sup ( t : x  E Xt(f e BS) e f 
e BS(x) 2 t ,  for  some B E X (+) 1 = supBEx(+) { f e 
B' ( x )  ) . Hence, g = 4 ( f ). The cross sections of g are 
(Theorem 1) X, ( g )  = + [X,( f )], and  thus, 4 commutes 
with thresholding. Q.E.D. 

Not all FSP filters commute  with thresholding. Exam- 
ples of FSP filters that commute with thresholding include 
median  and order-statistic filters [32] as well as  erosion, 
dilation, opening,  and closing of functions by sets,  bhich 
are defined in Section 111-C. 
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111. MORPHOLOGICAL FILTERS 
In morphological filtering, each signal is viewed as  a 

set, and its geometrical features  are modified by mor- 
phologically convolving the signal with a structuring ele- 
ment, which is  another set of simple  shape and size [2]. 
By varying the structuring element we can  extract differ- 
ent types of information from the  signal. According to  the 
four quantification principles of mathematical morpho- 
logy [2], each morphological filter (viewed as  a  set map- 
ping) must be: 1) translation-invariant, 2) scale-invariant 
(in R”),  3) dependent only on local knowledge of the sig- 
nal, and 4) U.S.C. A sufficient condition for  a morpho- 
logical convolution to  be u. s. c.  is to use compact sets or 
functions with a compact region of support as structuring 
elements. 

In a morphological convolution, the signal and  the 
structuring element could be either  sets or functions. 
Thus,  in this section we  present  the similarities and dif- 
ferences between the basic SP and FP morphological fil- 
ters and examine some of their properties. 

A. Morphological  Filters of Sets by Sets 
Morphological filters of sets by sets  are SP filters pro- 

cessing input rn-D sets by interacting them via Minkowski 
set addition or subtraction with structuring elements that 
are compact n-D sets ( n  I m ) .  The Minkowski set ad- 
dition [3], [4] of the sets A ,  B E R” is  the set 

A 8 B = ( a  + b : a E A ,   b E B )  = U Ab, (12) 

where Ab = { a  + b :  a E A } .  The Minskowski set sub- 
traction [4] of B from A is the set 

beB 

A e B = (A< CB B ) <  = n A ~ .  (13) 
beB 

Let Bs = { - b  : b E B 1 denote  the symmetric set of B with 
respect to  the  origin, and 0 denotes  the empty set.  The 
basic SP morphological filters are the erosion X e B“, 
dilation X o B”, opening X,, and closing X B  of X by B ,  
defined in [1] as: 

X e B” = ( z : B ,  C X >  = f l  X-b (14) 
b € B  

x GB B” = ( z : B ,  n x # QI) = u (15) 
b€B 

xB = (x 0 B S )  O B (16) 

X B  = ( X  CB B ” )  8 B.  (17) 

From (14)-(17) and Fig. 5 we  observe  the following. 
Geometrically,  the erosion of X and B is defined as the set 
of all points z such that  the  translate B, is contained in the 
original set X, the dilation of X by B is defined as the set 
of all points z such that B, intersects X .  Algebraically,  the 
erosion of X by B is equal to the Minkowski set subtrac- 
tion of B” from X ;  the dilation of X by B is  the Minkowski 
sum of X and B S .  Dilating X is equivalent to eroding X‘ 
and complementing the result as implied by (13). The 
opening of X by B is  the  set resulting from erosion of X 

EROSION : X 0 B DILATION : X 0 B 

OPENING: X,, CLOSING : XB 

Fig. 5 .  Erosion, dilation, opening, and closing ofXby B (the  shaded  areas 
correspond to the  interior of the sets, the  dark solid curve to the  boundary 
of the  transformed sets, and  the  dashed  curve  to  the  boundary of the 
original set). 

by B followed by Minkowski sum with B; this cascade 
does not generally recover X, but rather a subset of X 
which is the morphologically most essential part with re- 
spect to B.  From (12),  (14), and (16) it follows that 

Similarly, the closing of X by B results from dilating X by 
B and then Minkowski subtracting B from the  result; in 
general, the closing of X is a  set containing X. Closing X 
is equivalent to  opening X“ and complementing the result. 

To visualize geometrically these morphological filters, 
we  assume that we deal with 2-D sets, which may repre- 
sent binary images. Thus,  let  the closed set X represent a 
binary image and the compact set B a structuring element, 
such as the island and the disk, respectively, of Fig. 5. 
Then,  Fig. 5 shows that erosion shrinks the set X ,  whereas 
dilation expands X. The opening suppresses the  sharp 
capes and cuts the narrow isthmuses of X ,  whereas the 
closing fills in the thin gulfs and small lobes.  Thus, if the 
structuring element B has  a  regular  shape, both opening 
and closing can be thought of  as nonlinear filters which 
smooth the contours of the input signal. 

Parallel to the evolution of all these morphological op- 
erations in [l] and [2], since  the 1960’s there have been 
many other researchers who have been using similar op- 
erations of the  shrink/expand type (or  cascades of shrink/ 
expand) for digital (binary) image processing and  with 
cellular array computers designed for image analysis. 
Surveys of these approaches can be found in [21] and [33]. 
In addition to its original contributions, mathematical 
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morphology  formalized all the above collections of image 
operations. 

Fig. 6 shows  examples of dilations and erosions of dis- 
crete  sets.  It  also illustrates the difference between  Min- 
kowski addition/subtraction and  dilation/erosion, respec- 
tively. Of course,  there  is no difference between these two 
pairs of operations if B is  symmetric. Discrete erosions 
and dilations accept simple parallel implementations. 
From (14) and (15), the erosion or dilation of X by B is 
equal to  the  set intersection or union, respectively, of all 
translates X, of X ,  where  the vector b sweeps B S .  Using 
this property, Sternberg [34] suggested parallel computer 
architectures to  implement the SP erosion and dilation fil- 
ters,  which actually involve parallel logical AND'S and 
OR'S between binary image  planes.  We discussed the 
computational  complexity of these implementations in 
[20] and [22]. In [32] we  also  give  an alternative nonpar- 
allel  implementation  for the SP erosion and dilation using 
linear  convolution concepts. 

B. Umbra Interpretation of FP Morphological Filters 
The  four  morphological SP filters can  also  be  used  for 

functions by viewing  the  morphological FP filters as spe- 
cial cases of SP filters that process the umbrae or cross 
sections of the input functions. The  most general case of 
a  morphological transformation of a function f is the 
transformation of U( f ) by a structuring element B that is 
a  compact subset of E .  For  example, iff is a  1-D  function, 
B could  be  a  2-D disk, such as the  one  shown in Fig.  7(a). 
In  general, B is a set of the same or lower dimensionality 
than  that  of U( f ), but not necessarily a function. Thus, 
Minkowski addition f Q B and subtraction f e B of the 
U.S.C. m-D functionf with  a  compact ( m  + 1)-D  set B 
can  be defined [2] by finding their respective umbrae: 

U ( f  Q B )  = U ( f )  Q B = U ( f )  Q U ( B )  (19) 

U ( f  e B )  = U ( f )  e B" = U ( f )  e [ U ( B ) ] '  (20) 

where B' = { ( x ,  - t )  E D X V :  ( x ,  t )  E B )  is the re- 
jected set of B with respect to D.  Thus, transforming 
U (  f ) by B is equivalent to transforming U (  f ) by U (  B ) .  

Sternberg [6], [7] investigated the morphological filter- 
ing of 2-D  graytone  images by isotropic 3-D compact sets 
such  as  spheres,  cones, paraboloids, -and cylinders. In this 
paper, however,  we focus on only two special cases  for 
B. First, B becomes  the  graph of an m-D U.S.C. function 
g with  compact region of support, as  shown,  for  example, 
in Fig.  7(b),  and,  hence,  we transform U (  f )  by the um- 
bra of g. We  shall  call this case a morphologicaljilter of 
a  function f by a  (structuring)  function g. Second, B be- 
comes an rn-D compact set S lying at t = 0, as  Fig. 7(c) 
shows.  In this case, transforming U (  f ) by S is equivalent 
to transforming U (  f ) by the  umbra of S, which is a half- 
infinite solid of top S formed by the  Minkowski  sum of S 
and  the negative t-axis. We henceforth call this case a 
morphological jilter of a  function f by a (structuring) set 
S. Transforming f by a  set S C D is  a special case of 

. .+. @ + = .+. 
(e) 

0 . .  . 0 . .  

Fig. 6. Dilations and erosions of discrete sets: (a) Minkowski subtraction; 
(b) erosion; (c) Minkowski addition, (d) dilation; (e) forming  larger sets 
as the Minkowski sum of simpler sets. ( = set points; + marks origin 
(0,O) of 22.) 

1.t 
bX Ix 

(a)  (b) (c) 
Fig. 7. A 2-D structuring element B,  a 1-D structuring  function g, a 1-D 

structuring set S, and  their  umbrae. 

transforming f by a function g. That  is, if g is flat 
(binary), then it can  be represented by a set S. 

Concluding, (19) and (20) geometrically interpret the 
erosion/dilation of a function f by a function g or by a 
set S as the erosion/dilation of the umbra off by the  um- 
brae of g or S, respectively. In what follows, we will an- 
alytically define the morphological filters of a function by 
a structuring function or  set. 

C. Molphological  Filters of Functions by Sets 
These are  FSP filters where  the input signals are m-D 

U.S.C. functions and the structuring elements  are compact 
n-D sets.with n 5 m. Their analysis is  easy,  since they 
commute  with thresholding because of their construction. 
For  example, if 9 is  the SP erosion filter by B,  then [2] 
defines an FSP erosion by B as follows. Since 9 is in- 
creasing and u. s.  c., for any input function f, the set class 
{*[X,( f ) ]  = X,( f )  e B S : t  E V }  satisfies (2) and (3) 
and,  hence,  through (4) it creates an output function h by 
setting X ,  ( h )  = 9 [ X ,  ( f ) 3 .  This output function is the 
erosion off by  B, denoted by f e BS.  Likewise,  we  can 
define the dilation f Q Bs ,  the opening f B ,  and  the closing 
f B  of a U.S.C. function f by a  compact set B.  Below  we 
give their analytical definitions, which  show how these 
filters operate both  on  the function f as  a whole  and  on 
each  one of its cross sections: 
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Thus, the erosion (dilation) o f f  by B at any point x is 
obtained by shifting the  set B to location x and taking the 
infimum (supremum) of f inside  this shifted set.  This 
structuring set B plays the  same  role  as  a moving window. 

For sampled signals,  the set B is  discrete; B must also 
be compact. Hence, in the  discrete  case, B is  a Jinite set 
(window). Therefore, erosion  (dilution) of a sampled m- 
D function by a finite set B C 2" is equal to the moving 
local minimum (maximum) of the function inside  the win- 
dow B. The erosion or dilation of the characteristic func- 
tion of a set shrinks or expands,  respectively,  the  set.  The 
correspondence between shrink/expand of binary images 
and local min/max of graytone  images,  as well as the 
commuting of min/max with thresholding, was proven in 
[9] and later used in [5 ] .  

Fig. 8 shows some examples of morphologically filter- 
ing a 1-D sampled function f of 80 samples by a small 
convex set B = { -2, - 1 , 0, 1 ,  2 }. We see  that erosion 
of a function by such a  set reduces the peaks and enlarges 
the minima of the function. The dilation o f f  by B in- 
creases the valleys and enlarges the maxima of the  func- 
tion. Fig. 8 shows that the opening by B smooths the graph 
off from below by cutting down its  peaks.  The closing 
smooths the graph offfrom above by filling up its valleys. 
Subtracting fromfits opening or closing by B gives the 
peaks and  valleys, respectively, off. The width of these 
peaks and valleys depends on the size of B. Thus,  opening 
and closing of functions by sets can be used for detection 
of peaks and valleys in signals. In addition, opening and 
closing by a convex set B can be used effectively to  sup- 
press impulse noise in signals [2], [5], [SI, [14], [21], 
[20]. By impulse noise it is meant that  a signal is cor- 

P 

4. 
U 

U II I I 

OPENING BY SET B C161=53 CLOSING BY SET B CIBI=51 
I 

I 

Fig. 8. Erosion, dilation, opening, and closing  of a function by a set B = 
{ -2, -1 ,  0, 1, 2 ) .  (The  dashed  curve  refers to the  original function.) 

rupted by impulses (spikes), i.e., very large positive or 
negative values of short duration. Opening or closing by 
B can eliminate,  respectively, such positive or negative 
noise impulses, if the  impulse width does not exceed the 

g off and g. (See [35] for  a  proof.)  The Minkowski func- 
tion subtraction f e g of g from f is defined similarly. 
Thus,  from (8), (19), and (20), we have, for each x E D, 

size of B .  

D. Morphological Filters of Functions by Functions (f e d ( x )  = inf { f ( Y )  - d x  - Y ) } .  (26) 

U.S.C. function f and the structuring element is  an n-D The U.S.C. functions may be real-valued only on a subset 
U.S.C. function g ( n  I m )  with a compact region of sup- ofD. However, foreachxED,f(x) = sup [A(x)], where 
port. A cross-section interpretation of such filters can be A ( x )  = { t E V :  x E X,  ( f ) 1. Iff (XO) @ V for  some x0 E 
found in [2]. Here,  we  limit  our discussion only to an D, then we can still definef(x0) = sup [ A ( x 0 )  = a]  = 
umbra interpretation [2]. That is, if we replace B with -m.  If A ( X o )  = V,  we definef (xo)  = sup ( V )  = +a. 
U (  g )  in (19), the Minkowski sum of U ( f )  and U( g )  Thus, we can assume thatfand g are defined over  all D. 
gives the umbra of the Minkowski function addition f @ We call the region of support of such a  functionf, denoted 

Y E D  
These  are FP filters where the input signal is  an m-D 
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by R o s ( f ) ,  the subset of D on  whichf(x) # -00. For 
the morphological filtering off by g  to  be a U.S.C. filter, 
it is sufficient that Ros ( g )  be a compact ( jnite,  for sam- 
pled signals) subset of D.  

The relation between  Minkowski subtraction/addition 
and erosion/dilation, respectively, of functions is the same 
as for  sets.  That  is, if gs(x) = g (  -x) denotes the sym- 
metric function of g  with respect to the origin, Serra [2] 
defines: 

Eros ionoffbyg: ( fe   gs ) (x)  = f ( x )  e g(-x) (27) 

Dilation 0ffby.g:  (f 8 g’) (x) = f ( x )  8 g (  -x) (28) 

Opening offby  g:f ,(x) = [(f e gS) 8 g]  ( 4  (29) 

Closing offby  g:fg(x) = [(f 8 g’) e g] (x). (30). 

Thus,  the Minkowski  sum off  and  g  is defined through 
an additive convolution  between f and  g  and  then taking 
a supremum,  as  opposed  to  summation  or integration for 
linear convolutions. Likewise, the Minkowski subtraction 
of g  from f is defined through a subtractive convolution 
betweenfand g  and  then  taking‘an  infimum. We shall call 
the Minkowski addition and subtraction of  two functions 
morphological convolutions. From (25) and (28) we see 
that the relation between  Minkowski function addition and 
dilation is  the  same  as  between convolution and correla- 
tion  of two functions, respectively; likewise for  Min- 
kowski function subtraction and erosion. Thus,  we shall 
call the dilation and erosion of  two functions morpho- 
logical correlations. Of course, if g (x) = g ( - x )  is even, 
the above difference disappears,  because  thenf  g = f 
8 g’andf e g = f e  gs. 

The  morphological filtering of a function f by a set B 
is a simple  case of filtering f by a function g. That  is, 
if g (x)  = 0 for  all x E Ros( g) ,  then (27)-(30) reduce, 
respectively, to (21)-(24) by setting B = Ros( g). The 
difference between a binary and a multilevel structuring 
function g  is  also depicted in Fig. 9. Consider a cosine 
function f (x) = cos w, x E R, and a structuring func- 
tion 

where 11 * 1) denotes  the absolute value, 0 I A I 1, and 
0 s L I a / (2o ) .  Thus, g(x)  is a scaled top of the co- 
sine. If A = 0, g  is  binary; if A > 0, g  is multilevel. Fig. 
9(a) shows  the  opening fg for  three different structuring 
functions corresponding  to  three different values of A = 
0, 0.5,  1.  If A = 0, the FP openingf, reduces to the FSP 
opening fB, where B =’ Ros ( g ) = [ -L, L] . This  open- 
ing cuts  down  the  peaks of the cosine. We  can  symmetrize 
this by considering the open-closing  (opening  followed 
by closing by the same structuring function) ( fg) shown 
in Fig.  9(b).  Similar results can  be  observed if we  con- 
sider the clos-opening (closing followed by opening by 
the same structuring function) ( fg’) g. (The  open-closing 
and  clos-opening  are new morphological filters intro- 
duced in [20] and  used  for  image noise suppression and 

(coswz)g w 
A= 1 

1161 

A=O 

Fig. 9. Morphological filtering of a cosine  cos cox by the  structuring func- 
tion g(x) = A(cos ox - cos wL), - L  5 x c: L.  ( L  = 0.39a/o.) 

for providing fixed points of median filters; see also [32] .) 
For A’ = 0 the FSP open-closing  cuts  down the peaks  and 
fills up the valleys off. This clipping effect of the open- 
closing is very similar to the behavior of the analog  me- 
dian filter [36]. Fig.  9(a)  and (b) ( A  # l).suggests that 
opening  and  open-closing  have  both “low-pass’’ and 
“high-pass” filtering characteristics. Indeed,  both atten- 
uate the basic frequency o off and introduce higher har- 
monics; the opening  also introduces a dc-offset [20]. 
However,  the  frequency analysis of the effects of opening 
or closing is of  very limited importance,  because these 
effects  are  dependent  on the input signal,  and they cannot 
be generalized since linear superposition does not apply. 
Of general importance,  however, is the following geo- 
metric interpretation that we  give  for the opening. 

For any functions f and g ,  the  umbra of the opening fg 
is equal to  the  union of all  the translates of U( g )  that can 
“fit” inside U( f); i.e., for z = ( y, c )  E D X V ,  

A similar geometrical interpretation can  be  given  for  the 
closing by g,.since ( f g )  = - ( -fg). For  example, in Fig. 
9 the closer A is to  one, the more  g  resembles  the cosine 
peak,  the  closer the fitting of g  under  the  peaks  or  above 
the valleys off, and  hence the closerf, or ( f,) is  toward 
f. In  the limit when A = 1 ,  g  becomes  equal  to  the cutoff 
cosine peak,  and  both fg and ( fg) are  equal  to f for all 

Next  we  provide  some  examples of discrete  FP mor- 
phological filtering. Fig. 10 shows a 1-D original sampled 
function representing 250 samples of graytone  image in- 
tensity profile (after  the addition of a dc-offset); its me- 
dian filtered version by an 11-point window;  and its fil- 
tered versions by six  morphological filters (erosion, 
dilation, opening,  closing, open-closing, and  clos-open- 

L s 7r/(2o). 
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Fig. 10. A 1-D original functionfand its morphological filtering by a rect- 
a n g l e ( B = { n E Z : - 5 < n < 5 ) ) , a d i s k ( g ( n ) = 5 = , n E  
B ) ,  and aparabola ( h ( n )  = 2(25 - nz), n E B ) .  
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Fig. 10 

ing),  each operated by three differently shaped discrete 
structuring elements  with a convex 11-point region of 
support. The first structuring element  is a set B ,  and  the 
other  two  are functions g ,  h: 

B = ( ~ E z : - ~ I ~ I ~ )  

g ( n )  = G - &LC‘?, -5 I n I 5 

h ( n )  = H - (25 - n‘) ,  -5  I n I 5 ,  

and g ( n )  = h ( n )  = --oo if 11 n (1 > 5 .  In  Fig. 10 the 
scaling factors of g and h were G = 5 and H = 2. The 
umbra U(B) is a semiinfinite rectangle of top B ,  and (if 
G = H = 1)  U( g )  and U ( h )  are  the  umbrae of a disk 
and a parabola, respectively. As explained in Section III- 
B, morphological filtering offby B ,  g ,  h results in a func- 
tion whose  umbra is identical to  the  umbra resulting from 
morphological filtering of U( f )  by U ( B ) ,  U( g ) ,   U ( h ) .  
Therefore, in Fig.  10  we called these three cases filtering 
by “rectangle,  disk,  parabola, ” respectively. The follow- 
ing qualitative observations are evident from Fig. 10. 1) 
The erosion and dilation prohuce, respectively, a smaller 
(with respect to function I ) and  larger function. 2) The 
opening or closing by a rectangle produce signals whose 
peaks or valleys, respectively, consist of  flat plateaus not 
smaller than the  size of the rectangle top; this flatness in- 
creases with the size of the rectangle top. They  also pre- 
serve the vertical boundaries of the signal they transform 
and  commute  with thresholding. 3) Morphological filter- 
ing by g or h does not commute with thresholding and 
tends to  shape  the original signal f similarly to the shape 
of g or h. Specifically, opening or closing by g and h tends 
to penetrate inside the  peaks or valleys off.  The amount 
and  shape of this penetration depends on the amplitude 
range, support width, and  shape of g and h. Thus,  the 

(Continued.) 

parabola h penetrates more  than  the  disk g since it has a 
narrower  and sharper shape. 4) Both the open-closing and 
clos-opening offer a balanced  mixing of the properties of 
opening  and closing, and they transform f very similarly 
to the median  (see  also [20] and [32]). Finally,  the orig- 
inal function in Fig. 10 was selected 1-D  for an  easier 
visualization of the geometrical effects of morphological 
filtering, but the  above observations are general and  apply 
to signals of higher dimensionality too. 

The principal point of the  above discussion and  exam- 
ples is that,  for  an intuitive understanding of morpho- 
logical filtering, any  structuringfunction  g should be seen 
first  as a  geometrical pattern. For  instance, (31) implies 
that the opening of a signal by g is the geometrical (inclu- 
sive) content of the signal in  this pattern g .  Thus, if the 
signal is not smooth  and g is  smooth,  then  the  opening by 
g will be  smoother  than  the original signal. However, if 
the signal is  smooth  and g is less smooth, then the  opening 
by g may be  less  smooth  than the original signal. 

E. Properties of Morphological Filters 
Some properties of arbitrary SP and FP filters are  de- 

fined  in Table 11. Referring to  these definitions, both SP 
and FP  erosions,  dilations, and  all  their  cascades (e.g., 
opening,  closing, open-closing, and clos-opening) or 
parallel combinations [using n ( U ) for sets or pointwise 
A ( V  ) for functions] are translation-invariant and in- 
creasing filters. Further, if 0 denotes  the origin of D, we 
have Property 1. 

Property 1 (Ordering): The opening  is  always antiex- 
tensive filter ( fg s f ), whereas  the closing is  always ex- 
tensive ( f 2 f ). If g ( 0 )  5: 0, then  the erosion by g is 
antiextensive, whereas  the dilation by g is  an extensive 
filter. Thus, if g (  0)  1 0,  
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f e g s f g I f s f g s f e g .  ( 3 2 )  zontal segment) and  then eroding the result by B, (the 3- 
pixel vertical segment), because B = B, 8 B,. Thus, this 
2-D erosion becomes a  cascade of 1-D erosions. 

Diference Between Structuring  Function  and  Set: The 
difference in geometrical effects between opening (or 
closing) of a function by a binary and multilevel structur- 
ing function can be  seen  in  Figs. 9 and 10. Next we quan- 

Proof: If g ( 0 )  2 0,  vx ED, f e g(x )  = inf { f ( z )  
- g ( x  - Z):Z ED}  I f  ( X )  - g ( 0 )  5 f (x) * f e g 
I f .  Likewise, f o g 1 f. 

From (27)-(29), and Vg, f g ( x )  = sup, {inf,( f ( y)  - 
g(Y - z > >  + g(x  - z > >  * 

f,(x> 5 inf {SUP ( f ( Y )  - g(Y - d + s ( x  - z ) } } .  
Y Z  

(See also [29, p. 431.) Selecting y = x in the  above in- 
equality yields: f g ( x )  I supz { f ( x ) }  = f (x) * f, = f. 
Likewise, f 1 f can be  proved. Q.E.D. 

Property 1 also holds for SP filters. That  is, XB E X C 
X’ for any sets X ,  B; moreover, if 0 E B, X 8 B C XB 
E X C XB G X o B.  The validity of Property 1 can be 
observed in Fig. 5 for  SP filters and in Fig. 10 for FP 
filters. 

The  SP and FP opening and closing are idempotent; 
i.e., ( fg) = fg and ( f  ,) = f s. Similarly we have  Prop- 
erty 2. 

Property 2: The  SP and FP open-closing and clos- 
opening filters are idempotent. 

Proof (SP Open-Closing): Let Y = Then Y 

= (YE)’. Similarly we prove that the SP clos-opening 
(X,)  , is idempotent. By replacing X with a  functionf, B 
with a structuring set or  function,  and set E with function 
I , the property is proved for functions too. Q. E.  D. 

Equations (14), (15) and (16), (17) imply that there is 
a duality with respect to set complementation between set 
erosion and  dilation-as well as between set opening and 
closing. Likewise,  there is a duality with respect to func- 
tion negation between the corresponding FP filters. That 
i s , ( - f )  e g =  -(f @ g)and( - f ) ,=   - ( fg ) ,where  
( - f ) (x) = - f (x) for  all x. More  details  about prop- 
erties of SP filters can be found in [2] and [22]. Hence- 
forth, we will focus only on some properties of FP mor- 
phological filters. 

Dilation off by g is both commutative and associative. 
Erosion is neither commutative  nor  associative. More- 
over,  we have Properties 3-5. 

Property 3 (Distributivity): (f  V g )  o h = (f 8 h)  
V ( g  o h ) a n d ( f A g )  e h = ( f  e h ) A ( g  e h). 

Property 4 (Parallel Composition): f e ( g V h )  = (f 

Property 5 (Serial Composition): ( f  o g )  o h = f 
o ( g  o h ) a n d ( f  e g )  e h = f e ( g  o h). 

The proofs of Properties 3-5 result from interchanging 
sup /inf with max/min, respectively, and other  similar 
properties of sup/inf. Properties 3-5 also hold for  FSP 
erosions and dilations of functions by sets if  we replace 
the g v h or g A h of two functions by the union A U B 
or intersection A n B ,  respectively, of two  sets. 

Property 5 makes erosion and  dilation inherently sep- 
arable filters. For  example,  the erosion of a  2-D set or 
function by the  discrete 3 X 3-pixel set B of Fig. 6(e) can 
also  be obtained by eroding first by B1 (the 3-pixel hori- 

= YE 1> (YE)’ = [((XB)B)B]B 2 [(XB),]’ = Y =) y 

e g)  A ( f  e h) .  

tify analytically this difference. 
Property 6: If g is  a bounded real-valued structuring 

function with a  compact region of support B = Ros ( g ), 
then,  for any function f, Vx E D, 

Proofi Both s = sup { g ( z )  : z E B } and r = inf 
{ g ( z )  : z E B > are real numbers because g is bounded. 
Then,&(x) = sup { f e g ” ( z )  + g ( x  - z ) : z  E D }  - 
&(x) 5 s + sup { f e g”(z ) : z  E (B’)),}. Also, f e 
gs(z) = inf ( f ( y )  - g ( y  - z ) : y  E B,} s f  e B s ( z )  
- r. Thus, fg(x) 5 sup { f e B’((z):z E (B’)),} + s - 
r = fB(x) + s - r. Likewise,  we can prove that f g ( x )  2 
fB(x) - s + r,  and  the proof is complete. Q.E.D. 

The result (33) applies  also  to the closing o f f  by g 
sincefg = - ( - f )g .  For sampEed signals,  the  sup/inf of 
g over  the  compact Ros( g )  = B become  the  max/min of 
g over  the finite Ros ( g). For  example, referring to the 
original function f and the structuring elements B,  g,  h of 

I 50 for each x. 
Fixed Points of Opening  and  Closing  by a Structuring 

Function: In [ 11 and [l 11 it was shown that the opening 
and closing filters can be completely specified from their 
fixed points, i.e., signals invariant to these filters. The 
interest in the fixed points of the openings and closings 
also arises from their  direct relations to  the fixed points 
of median filters [20], [32]. The following theorem clas- 
sifies the fixed points of the FP opening and closing fil- 
ters. (A proof  of a  similar theorem for SP openings/clos- 
ings can be found in [2].) 

Theorem 5: A function f is  a fixed point of the opening 
(respectively, closing) filter by a function g ifff = h 8 g 
(respectively, f = h e g ) ,  where h is an arbitrary func- 
tion.  Likewise,  for any set B,  f = fB e f = h o B and f 
= f # f = h e B, for some function h. 

Pro08 I f f  = fg, then we simply set h = f e g’. 
Conversely, iff = h @ g  for some function h, from Prop- 
erty 1 and since  dilation is increasing filter, 

Fig* 10, IIfg(x) - f E ( x > I I  5 25 and 11 h ( x )  - fB(x>II 

h @ &? 2 (h @ d g  = [(h 8 g )  e g’l @ g 

= h g S  g 2 h CB g. 

Thus, fg = (h  8 g ) ,  = h o g = f. Likewise for the 
closing, iff = f ,, we  set h. = f 8 gs. Conversely, iff = 

h e g 5 ( h  8 g ) g  = [(h e g )  @ g’] e g 

h e g, 

=hgs e g I h e g. 
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Thus, f = (h  e g)" = h e g = f. Nothing  also  changes 
in the proof if we replace g with B (and hence gs with 

Invertibility of Erosion and Dilation: In  general, ero- 
sion and dilation are noninvertible operations. However, 
from the erosion off by g we  can recover the original f iff 
f = f,. Specifically, since ( f  e g s )  CB g = &, the Min- 
kowski  sum of the erosion f e gs and g recovers f iff f = 
&. Likewise, if we  have  the dilation f CB g s  and  we  Min- 
kowski subtract g from it,  we obtain (f CB gs) e g = f ,. 
Thus, iff = f ,, Minkowski subtraction of g from  the di- 
lationf CB gs recovers the  original$  However, in the  gen- 
eral case,  where fg # f # f ,, we  have Property 7 .  

B S ) .  Q.E.D. 

Property 7: If g (0) L 0, then 

fg s h s f  * h e g s  = f e g" hg =&, (34) 

f I h r f g = , h e g s = f e g S * h g = f g .  (35) 

Proof: For any f and g, ,because of Theorem 5 ,  

f g  e g" = [(f e gS) @ g ]  e g s  

= (f e gs))" = f e gs. 

Since g ( 0 )  L 0, the erosion by g is increasing filter. 
Hence,& I h s f  * &  e g s  I h e gs s f  e gs * h 
e g s  = f e g s  * h, = fg. Similarly, 

f" CB gs = [(f @ g 7  e gl @ gs 

= (f @ d l g s  = f @ gs. 

Since g(  0) 2 0, the dilation by g is increasing filter. 
Hence,f 5 h I f g  =) f CB gs s h CB g s  5 f g  CB gs * 
h e g S = f @ g S * h g = f g .  Q.E.D. 

Thus, in the general case  when f # f,, from  the erosion 
f e gs we  cannot  recover f because there is not a unique 
function whose erosion by g is equal to f e gs. Further- 
more,  the  Minkowski  sum off e gs and g will recover 
only the function&,  but none of the functions h  between 
f and f,. Likewise, if f # f g, the dilation of f by g 
cannot  be inverted. 

IV. RELATIONS  BETWEEN  LINEAR AND 
MORPHOLOGICAL  FILTERS 

A linear shift-invariant . (LSI)  filter is viewed in our 
analysis as an  FP filter that  commutes  only  with a shift 
with respect to  the argument of its input functions. A Zin- 
ear translation-invariant (157'') filter (see Table 11) is  an 
LSI filter that passes constant signals unchanged,  viz., 
whose dc-gain is equal to  one. Now suppose that an  LTI 
filter J .  is defined on a class 5 of real-valued U.S.C. func- 
tions that is closed under translation. This class 5 could 
be, for  instance,  the class of continuous  functions, or the 
class of bounded functions, or the class of functions with 
a compact region of support. Let h(x) ,  x E D, denote  the 
impulse response of J.. Then, J.  ( f) = h * f for any f E 

5 ,  where * denotes linear  convolution,  discrete  or 
continuous. The kernel of $ is defined a s  the following 
set of input functions: 

X($) = { g E S : h  * g ( 0 )  2 O}.  (36 )  

The  above kernel uniquely characterizes the  LTI filter $ 
and  can reconstruct it,  as explained in Maragos [20, ch. 
51, because Vz E D 

( 3 7 )  
In addition, if J.  is  also increasing, then it can  be repre- 
sented exactly as  the  supremum  of erosions by all its ker- 
nel functions. The following theorem provides a neces- 
sary and sufficient condition for  an  LSI filter to  be 
increasing. 

Theorem 6: A  linear shift-invariant filter is increasing 
iff its  impulse  response  is  nonnegative  everywhere. 

Proof: Let h(x) ,  x E D, be  the  impulse of the  LSI 
filter. Sufzciency: Let h(x)  1 0 Vx. Iff I g,  thenp(x)  
= g ( x )  - f ( x )  2 O V X  * h * p ( x )  1 O V X  h * g 2 
h*f .  

Necessity: Let  h * f 5 h * g for any f I g. Then, h * 
p ( x )  L 0 Vx, i fp (x )  is any function withp(x) 2 0 V x .  
1) Discrete  Filters: Let  the  nonnegative function p ( n ) ,  n 
E Z", of the previous discussion be equal to  the discrete 
unit impulse 6 ( n ) .  Then h ( n )  = h ( n )  * 6 ( n )  2 OVn. 
2) Analog Filters: Express  the  Dirac unit impulse function 
as the limit 6 ( x )  = lim [ p k ( x ) ]  fork 3 03, wherep,(x), 
x E D = R", is a nonnegative triangular pulse whose width 
goes  to zero and height goes  to + 03 as-k + 03 in a way 
such that j D p k ( x )  dx = 1 for  all k. Then, if k 3 03, Vx, 
h(x)  = $Dh(z) 6 ( x  - z )  dz = $Dh(z)[limp,(x - z ) l  
dz = lim [jDh(z)pk(x - z )  d z ]  1 0, because  h *pk(x )  
L 0 sincepk(x) 2 0 vk, Vx. Q.E.D. 

For the analysis in this section we  also  need  the follow- 
ing. 

Theorem 7 (Maragos [20, p .  1261): Any translation- 
invariant and increasing FP filter defined on a class of 
U.S.C. functions closed under translation can  be repre- 
sented exactly as  the  supremum of erosions by all its ker- 
nel functions. 

Theorems 6 and 7 prepared the groundwork for the first 
representation of linear convolutions using morphological 
correlations. Formally,  we  have  Theorem 8. 

Theorem 8: Let J.  be a linear shift-invariant filter de- 
fined on a class 5 of u.s  .c. functions closed under trans- 
lation. Let  also its impulse  h ( x )  satisfy the following two 
conditions : 

a) h (x )  2 0 for all x E D = Rm (or Z"), 
b) jRm h(x )  dx = 1 (or CnaZm h ( n )  = 1). 
Then J.  is exactly represented as the  supremum of ero- 

sions by all its kernel functions g E X (4); thus,  for any 
f e S a n d x E D ,  

Proof: J.  is increasing because of Theorem 6 and 
condition a). Condition  b)  makes $ translation-invariant. 
Thus,  Theorem 7 completes  the  proof of ( 3 8 ) .  Q.E.D. 
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For linear convolutions with h (x) we assume that h (x) 
= 0 iff x $ Ros ( h ) ,  whereas for morphological convolu- 
tions with the  structuring function g ( x )  we assume that 
g ( x )  = -a iff x $ Ros( g ) .  Thus, when the input func- 
tionfis linearly convolved with h in (38), we assume that 
f ( x )  = 0 outside R o s ( f ) .  However, when f is morpho- 
logically convolved with g ,  we assume thatf(x) = - 00 

outside Ros ( f ). 
Theorem 8 may have some theoretical interest, but its 

practicality is rather small because, in general, it is not a 
simple task to analytically find and describe  all  the (infi- 
nite in number) kernel functions that (38) requires. Our 
goal then is to find a subset of the kernel which is math- 
ematically more tractable and can still represent the filter. 
We summarize below our  approach.  (The  complete the- 
oretical analysis is contained in [20].) The kernel of the 
LTI filter $, equipped with the function ordering 5, be- 
comes a partially  ordered set (a poset). A minimal ele- 
ment of the poset (X(  $), I ) is a function g E X (  $) 
that is not preceded (with respect to I ) by any other 
function of X ($). We define the set 63 ($) of all  the min- 
imal elements of X ($) as  the basis of $. We  have shown 
that  the basis of any translation-invariant, increasing, and 
U.S.C. filter is nonempty and can exactly represent it. The 
basis of such a filter may bejni te  (as is the case for mor- 
phological, median, and order-statistic filters [20], [ 131, 
[32]), in which case the filter is realized exactly as the 
maximum of a finite number of erosions. For discrete LTI 
filters, a su@cient condition to find a nonempty basis in 
their kernel is to have an impulse response of jn i t e  extent. 

Theorem 9: Let h ( n ) ,  n E Z", be  the finite-extent im- 
pulse response of an increasing LTI  discrete filter $ which 
is defined on a  class 5 of real-valued sampled functions 
closed under  translation.  Then the basis of $ is equal to 

g E 5:  c h ( k )  g ( - k )  = 0,  
ksRos(h)  

and g ( n )  = --OO 8 h( -n)  = 0 . (39) 

Further, $ can be represented exactly as  the supremum of 
erosions by all its basis functions g E a3 ($1. That is,  for 
any f E 5 and n E Z", 

1 

= sup min { f ( k )  - g ( k  - 4 } }  - 
R E @ ( + )  ( k t [ R o s ( g ) l n  

(40) 

Proof: 
a) Basis: Call 03 the class of functions given by (39), 

and let  be  the  true basis of $. We must show that 9K 
= U3. U3 is nonempty, because g* E ($3, where g* ( n  ) = 
0 iff h (  - n )  # 0 and g * ( n )  = --OO otherwise. Let now 
g E 03. Then, g E X($)  because h * g ( 0 )  = 0. Is g 
minimal? Suppose it is not. Then there is f E X ($) such 
thatf I g andf # g .  Since h ( n )  2 0 Vn, 0 I h *f(O) 

I h * g ( 0 )  = 0 * h * f ( 0 )  = 0. Sincef I g and g ( n )  
= - 03 Vn $ Ros ( g ) ,  there exists k E Ros ( g )  such that 
f(k) < g ( k ) ;  this implies h (  - k )  f ( k )  < h (  - k )  g ( k )  
and thus h *f( 0)  < h * g(  0)  = 0: Contradiction! Hence, 
g E 312, and thus, 63 c 312. 

Let now g E 312. All the basis functions g must have  a 
minimal region of support G = [ Ros ( h )  ] ', because only 
the indexes n E G are required for g ( n )  in computing h * 
g (0). Thus, g satisfies the second of the  two requirements 
of (39). Suppose that g $ 03. Then h * g(  0)  = p > 0,  
and consider  the  functionf E 5 withf(n) = g ( n )  - p ,  
n E G. Then,f I g andf # g .  However, h *f(O) = h 
* g (0)  - p = 0 ,  and hence f is a kernel function of rC, 
that precedes g .  Hence, g is not a minimal element: Con- 
tradiction! Therefore, g E 63, and thus 312 C U3 E 3n * 
m = a. 

b) Representation: Since $ is translation-invariant, in- 
creasing,  and u. s . ~ .  (due  to the finite extent of h ) ,  it can 
be represented exactly as  the supremum of erosions by its 
basis functions [20, p. 1351; this proves (40). An alter- 
native proof proceeds as  follows. Let Ros ( h )  = { k, ,   k2 ,  

- * , kN } be the N-point finite region of support of h ( n ) .  
Let also hi = h ( k i ) ,  f ( n  - ki) = J;, and g (  -ki) = g i ,  
with i = 1 ,  2, * - - , N and ki E Ros(h) .  Then we must 
prove that, Vn, 

subject to 

C higi = 0, hi = 1,  hi 2 0. 

For any n,  all A and Ci hiA are arbitrary but fixed real 
numbers. Hence, among all functions in 63 ($) we can 
always find a basis function g* defined by gf = g* ( -ki) 
= A  - &hi&, i = 1,  - - - , N .  For each g E U3 ($) there 
is a j I N such that4 - gj  I A - g i  Vi * h i ( 4  - g j )  
I hi( A - g i ) V i .  Summing the  latter inequality for  all i ,  
we obtain4 - gj = mini { A - s i }  I Ci hifi, V g  E 63 ($). 
However, g* achieves this upper bound since mini { A - 
gT } = Ci hiA, and thus the proof of (41) is complete. 

Q.E.D. 
Thus, if an increasing LTI discrete filter $ has a finite 

impulse response h,  then its basis exists, but it contains 
an infinite number of functions g. These basis functions 
can be found by solving the linear equation h * g ( 0 )  = 
0 subject to three constraints: 1) h ( n )  2 0, all n; 2) 
C,h(n)  = 1; and 3) Ros( g )  = [Ros(h)IS. If Ros(h)  
has exactly N points, then both h and  all  the g's are vec- 
tors inside the  N-D Euclidean space R N .  Since, in solving 
h * g (  0)  = 0,  we can choose freely the N - 1 values of 
g ,  the basis 6.3 is isomorphic to the ( N  - 1)-D vector 
space R N - '  [20]. Moreover, 03 is the hyperplane of R N  
that is perpendicular to the vector h,  because h * g ( 0 )  = 
0 corresponds to a  zero  inner product of the vectors h and 
g . '  This is depicted in Fig. 1 1 for  the  spaces R N  and R2.  
In R2, the 2-point impulse response vector has only two 
components. Because the filter is LTI and increasing, all 
components of h are nonnegative and sum up to one. 

I i 
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Fig. 11. Geometric interpretation of the relation between the finite impulse 
response h and the basis functions g of an increasing LTI discrete filter. 

Hence, h is confined to move only along the  line con- 
necting the  points ( 0 ,  1 ) and ( 1 ,  0 )  in R2. The basis of 
these filters is the 1-D space (line) of vectors g that is 
perpendicular to h and passes through the  origin,  as shown 
in  Fig. 1 1 .  The next two  simple examples clarify these 
concepts. 

Examples: Consider  the increasing LTI filter (a 
moving average) whose impulse response is h ( n  ) = 
0.5 [ 6 ( n )  + 6 ( n  - l)] ,  n E 2. Its kernel is equal  to 
X($l)  = { f : f ( n )  + f ( n  - 1)  2 O}. Its basis func- 
tions g can be found from h ( 0 )  g ( 0 )  + h(  1) g (  - 1 )  = 
0; hence, g(0) = r E R, g(-1) = - r ,  and g ( n )  = --a3 

if n $ { - 1, 0 } . Thus,  from (40), we can exactly express 
$q by a  supremum of minima: 

0 . 5 [ f ( n )  + f ( n  - I ) ]  
= sup (min (f(n) - r , f ( n  - 1) + r ] )  (42) 

for any input signal f ( n ) .  Another 'way (independent of 
Theorem 9) to prove (42) can be found in [20, p. 1551. 

Consider now a 3-point increasing LTI filter G2 with 
impulse response h ( n )  = a6(n - 1 )  + b6(n )  + c6(n 
+ l ) ,  n E 2, where a + b + c = 1 and a ,   b ,  c > 0. Its 
basis functions g satisfy ag ( - 1) + bg (0) + cg ( 1)  = 
0;  hence, g(   -1)  = r E R,  g ( 0 )  = s E R ,  g(  1 )  = ( - a r  
- b s ) / ( l  - a - b ) ,  and g ( n )  = -m if n 6 { -1, 0,  
1 }. Thus, IJJ2 can be realized by both linear  or morpho- 
logical convolutions: 

reR  

a f ( n  - 1 )  + b f ( n )  + c f (n  + 1) 

+ 
I - a - b  

for any input f ( n ) . 

(43) 

'Theorems 8 and 9 require some constraints on the im- 
pulse response of the  LSI filter, i.e., nonnegativity and 
area equal to  one.  These  constraints  are relaxed by the 
following. 

Theorem 10: Any LSI  discrete  (respectively, continu- 
ous) filter whose impulse response is absolutely summa- 
ble (respectively, integrable) can be represented exactly 
as the sum of two suprema of erosions,  each followed by 
a gain factor. 

Proof: Assume that  the filter $ is discrete,  because 
for continuous filters we need only to  replace summation 
with integration in  this  proof. If h ( n ) ,  n E Z", is the im- 
pulse response of $, then  we can represent $ as the  sum 
of two other filters $ p  and IJJN with impulse responses hp 
and hN,  respectively, such  that h ( n ) = hp ( n  ) + hN ( n ) , 
h p ( n )  2 0, and h N ( n )  5 0 for  all n. Since h ( n )  is 
absolutely summable, the  two sums Gp = E, hp(  n )  1 0 
and GN = C, hN ( n )  I 0 are finite real numbers. If Gp = 
0,  h p ( n )  = 0 for  all n, and $ = IJJN. Likewise, if GN = 
0,  then $ = $p. Avoiding the trivial case where h ( n )  = 
0 for  all n,  at least  one of Gp and GN must be nonzero. If 
Gp > 0, then we can realize $ p  as  a filter $: with impulse 
response h: ( n  ) = hp(  n ) / G p  >- 0 Vn,  followed by the 
gain factor Gp. Likewise, if GN < 0, we  can  realize $N 

as  a filter $$ with impulse response h i  ( n )  / G N  L 0 Vn, 
followed by the gain factor GN. The filters and $$ sat- 
isfy the requirements of Theorem 8 or 9 and,  hence, can 
be represented exactly as suprema of erosions.  Thus the 
proof is complete. Q.E.D. 

The requirement for  absolute summability of the im- 
pulse response in Theorem 10 is equivalent to requiring 
that the LSI filter be stable in the bounded-input bounded- 
output sense.  In  addition,  the gains Gp and GN mentioned 
in the  above proof may be  equal to one, in which case we 
can rephrase Theorem 10 as follows. Any stable LSZfilter 
can be represented exactly by the sum of (at  most) two 
suprema  of erosions. 

The representations in (38) and (40) might be useful in 
analysis of LSI filters. They are not useful,  however,  for 
exact practical realization because  the LSI filters have an 
infinite number of kernel or basis functions.  In the case 
where an LSI filter admits a representation upon basis 
functions, if we  quantize their amplitude  and bound their 
range between certain  limits,  the  supremum operation in 
(40) will be replaced by the maximum over  a finite ensem- 
ble of basis functions. Of course, this realization will only 
approximate the  true response of the  LSI filter. The ad- 
vantages of  such  a realization of  the  linear filter would be 
to realize it only by using max-min and additions  and, 
thus, avoiding multiplications.  Naturally, there are many 
questions that  arise: how to  quantize  and/or bound the 
amplitude range of the basis  functions, and how to quan- 
tify the approximation error?  The answers to  these ques- 
tions are  still  the  object of continuing research. 

V .  CONCLUSIONS 
Signals can be classified into sets (binary signals) and 

functions (multilevel signals). Filters can be classified into 
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set-processing (SP) and function-processing (FP).  Cer- 
tain FP filters are function- and set-processing (FSP). We 
provided necessary and sufficient conditions for  FSP fil- 
ters to commute with thresholding, because then they can 
be interpreted as SP filters. In this analysis we considered 
the set as  the primary concept.  Thus,  a function can be 
represented by an  ensemble of sets (its cross sections) or 
by a single set (its umbra). Set operations on umbrae or 
cross sections induce some isomorphic operations on the 
respective functions. 

The  four basic morphological filters are  the erosion,  di- 
lation,  opening, and closing, and they all stem from Min- 
kowski set addition.  We introduced two new morpho- 
logical filters, the open-closing and clos-opening, which 
behave similarly to median filters (see also Part 11). These 
six filters are translation-invariant (with respect to shifts 
of both the argument and the  amplitude of signals), in- 
creasing,  nonlinear, and generally noninvertible. Several 
properties of FP morphological filters have been studied 
concerning the conditions for commuting with threshold- 
ing, the fixed points of opening and closing, the inverti- 
bility of erosions and dilations, and the difference be- 
tween binary and multilevel structuring  functions. Some 
attractive features of morphological filters are: 1) simplic- 
ity and parallel implementation of FSP filters (pointwise 
min/max or Boolean AND/OR of shifted versions of the 
signal); 2) separability; i.e., if a 2-D function g is the 
Minkowski sum of two 1-D functions, then the 2-D mor- 
phological filtering by g reduces to a cascade of two 1-D 
morphological filters; 3) numerous applications in image 
processing and analysis; 4) systematic detection and 
quantification of the shape and size of geometrical fea- 
tures in signals; 5 )  operate on signals of both discrete and 
continuous argument; 6) duality; for each morphological 
filter operating on a signal there is a dual filter operating 
on the background of the  signal; 7) increasing morpho- 
logical FSP filters commute with thresholding; this re- 
duces a multilevel to a binary signal filtering, which is 
easier to analyze and implement; 8) erosions or dilations 
are the prototypes of a large class of linear and nonlinear 
filters; and 9) morphological filters look at signals under 
study as sets and are defined through logical relations 
rather than arithmetic ones;  consequently, if a signal pro- 
cessing problem is stated in terms of logical relations, then 
it  can  be expressed directly in terms of mathematical 
equations containing morphological operations. 

The main difficulties in  the.ir analysis or design arise 
from their nonlinearity and the lack of analytic criteria to 
choose a structuring set or  function. 

We have related morphological to linear filters as fol- 
lows.  Linear translation-invariant (LTI) filters are  linear 
shift-invariant (LSI) filters with dc-gain equal to one. LSI 
filters are increasing iff they have nonnegative impulse 
response. An LTI filter can be uniquely characterized by 
the set of its kernelfunctions. An increasing LTI filter can 
be exactly represented as  a supremum of erosions by all 
its kernel functions; if, in addition, the filter is discrete 
and its impulse response is offinite extent, then it can be 

SPEECH,  AND  SIGNAL PROCESSING,  VOL.  ASSP-35, NO. 8, AUGUST 1987 

represented as the supremum of erosions only by its min- 
imal kernel functions, which can be found by solving a 
linear equation. Finally, any stable LSI filter is exactly 
represented as the sum of two weighted suprema of ero- 
sions.  The practical disadvantage of the  above represen- 
tation is that it uses an infinite number of kernel functions. 
The advantages are  that  linear convolutions can be real- 
ized by using only min/max and additions (without any 
multiplications), and that  linear filters have been related 
to a  large class of nonlinear filters. 
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