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Threshold Superposition in Morphological Image
Analysis Systems

PETROS MARAGOS ANp ROBERT D. ZIFF

Abstract—In this correspondence it is shown that many composite
morphological systems, such as morphological edge detection, peak/
valley extraction, skeletonization, and shape-size distributions obey
a weak linear superposition, called threshold-linear superposition.
Namely, the output image signal or measurement from each system is
the sum of outputs due to input binary images that result from thresh-
olding the input gray-level image at all levels. Then these results are
generalized to a vector space formulatien, e.g., to any finite linear
combination of simple morphological systems. Thus many such sys-
tems processing gray-level images are reduced to correspending binary
image processing systems, which are easier to analyze and implement.

Index Terms—Image analysis, mathematical morphology, thresh-
olding.

I. INTRODUCTION

Morphological image analysis systems [16], [17], [26], [27],
[11], [30], [6], [14], [15] are useful for feature extraction, shape
analysis, and nonlinear filtering. A major limitation, however, in

. further advancing their practical design and theoretical understand-
ing has been the lack of analytic tools (analogous in functionality
with the tools of linear systems theory), due to the nonlinearity of
the signal operations involved. Specifically, the morphological im-
age operations do not obey the well-known additive superposition
principle, which is obeyed by all linear systems. However, it can
be shown that (see Sections II and III) a special class of simple
morphological operations, in particular the gray-level erosions, di-
lations, openings, closings that use a binary (flat) structuring ele-
ment, obey a weak additive superposition: namely, if the input
gray-level image is expressed as the sum of all its binary threshold
versions, then the output image from any of these filters is the sum
of the filtered input threshold binary images. We call this system
property threshold-linear superposition. Such ideas have been
proven very useful in analyzing and implementing median and other
rank-order filters [4], [32], [7], [24], {8]. A very similar threshold
superposition was used to analyze the basic morphological [26],
[14] and median-type filters [15].

In practice, the useful morphological image analysis systems do
not consist of individual erosions, dilations, openings, and clos-
ings, but they include parallel and/or series interconnections of
simple morphological operations. For example: 1) the morpho-
logical peak/valley extractor involves a difference between the im-
age and its opening {18], [19], [26]; 2) a morphological edge gra-
dient scheme involves the difference between the image and its ero-
sion [18], [1], [5]; 3) the gray-level skeleton is the sum of
components, each of which is the difference between erosions and
openings [25], {22], [26], [13]; 4) differential size distributions
involve areas of differences among openings or closings by struc-
turing elements of varying size [16], [17], [26], [12], [3].

In this correspondence (Section III), we show that all four above
composite morphological systems obey the threshold-linear super-
position. That is, given any input gray-level image, their outputs
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are the sum of the individual system outputs corresponding to input
binary images that resulted from exhaustive thresholding of the in-
put image. The processing of these threshold binary images is much
easier to analyze and implement. Thus our results offer new tools
for the theoretical analysis of these nonlinear systems and suggest
new parallel implementations since the processing of the threshold
binary images can take place in parallel at all threshold levels
simultaneously. Finally (in Section IV), we generalize the above
results by showing that the four above systems together with any
other system that obeys threshold-linear superposition form a vec-
tor space.

II. THRESHOLD SUPERPOSITION

In this correspondence, by a system ¥ processing an input image
/S we mean either an image transformation where the system output
¥ ( f) is an image signal, or an image measurement. In the latter
case ¥ ( f) is either a real number (e.g., the area of the image) or
a real function of several parameters measuring some characteris-
tics of the image.

Consider a digital gray-level image signal represented by a non-
negative 2-D sequence f(m, n), which assumes 4 + 1 possible
integer intensity values: a = 0, 1,2, + - - , A. For example, if we
deal with 8 bit/pixel imagery, 4 = 255. By thresholding f at all
possible amplitude levels 0 < a < A we obtain the threshold bi-

nary images
1,
Jalm, ny = 0

If there is a risk of notational confusion, we will also denote the
signal f, by 7,( f). It is simple to show that f can be reconstructed
exactly from all its binary thresholded versions; i.e., v(m,n)

f(m,n) = a

f(m, n) < a.

(1)

fonm)y = 3 fi(m,m) 2)
= max {a:f“(m,n) = 1}. (3)

We shall say that an image transformation ¥ commutes with
thresholding provided that

¥[e, ()] =t[¥(f)] (4)

for any input image f and any amplitude level a. Note that a nec-
essary condition for ¥ to obey (4) is, whenever ¥ processes a bi-
nary image, to leave this signal characteristic unchanged. Thus if
a system ¥ commutes with thresholding, processing by ¥ the
threshold binary image f, gives the same result with processing first
by ¥ the gray-level image f and then thresholding ¥ ( f) at level
a.

The four basic morphological transformations of erosion f © B
of an image f'by a 2-D structuring set (finite window) B, dilation f
® B, opening f © B, and closing f * B, which are defined below,
commute with thresholding [26], [23].

(f e B)(m, n) = min {f(m +i,n+j) (i,j)eB} (5)

(f e B)(m, n) =max {f(m—in—j): (i,j)eB} (6)

feB=(fe B)eB (7)
feB=(feB)eB (8)

Thus, it is simple to show that
t(feB)=f o8B (9)
t,(feB)=f, B (10)

where the notation x = y for two signals means x (m, n) = y(m,
n) Vv (m, n). Since any finite cascade (series interconnection) of
systems commuting with thresholding commutes with thresholding
too [23], the opening and closing commute with thresholding.

0162-8828/90/0500-0498%01.00 © 1990 IEEE
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We shall say that a system ¥ obeys the threshold-linear super-

position provided that
A
Y(f) = 2 () (1

for any input image f. (Although f, is binary, note that ¥ ( f,), if
it is an image signal, could be binary or multilevel. ) Such a system
¥ can be realized by decomposing f into all its threshold binary
images f,, processing them by ¥, and create the output Y (f)by
adding the processed f,. A fundamental motivation for such a re-
alization of ¥ is that, due to their binary range, the processing of
the f,’s by ¥ is easier to analyze and implement than the processing
of f.

The erosion, dilation, opening, and closing (5)-(8) obey a
threshold-max superposition [26]:

(¥ ()] (m, n) = max {a: [¥(£)](m, n) =1} (12)

This max-superposition is also obeyed by median and rank-order
filters [4], [15]. Thus, these simple morphological and median-type
systems obey both the threshold-sum superposition (11) and the
threshold-max superposition (12). This happens because they com-
mute with thresholding, which is a sufficient (but not necessary)
condition for both types of threshold superposition.

From one viewpoint, the threshold-max superposition is more
general than the threshold-sum superposition since the latter ap-
plies only to nonnegative input signals, while the former applies to
any real-valued input signals. From a different viewpoint, the max-
superposition restricts the class of systems since it requires that
¥ ( f,) are signals and binary, an assumption not needed by the
sum-superposition. In addition, the threshold-sum superposition ties
well with linear systems, because it is just a weak form of linear
superposition. This last viewpoint will be instrumental for our
analysis throughout the rest of this paper. Therefore, we focus
henceforth on systems obeying (11).

III. SpeciaL CASES

A. Morphological Edge Gradients

Given a gray-level image f(m, n) and a small 2-D symmetric
structuring set K containing the origin, the simple system [5]

EG(f)=f—(fe K) (13)

which we may call an erosion gradient, produces a gray-level im-
age EG( f ) with enhanced edges, where — denotes pointwise sub-
traction. Its value at (m, n) is equal to the maximum amplitude
difference of f within the neighborhood K centered at (m, n). A
binary edge map can be obtained by thresholding EG( f), which
is nonnegative everywhere.' Now, from (9) and (2) it follows that
the erosion obeys threshold-linear superposition:

fe K=2f oK. (14)

Hence, using the threshold representation (2) of fyields
A
EG< Zl f,,>
> =) K]

A A A

fLE‘faeK=uZ [fi = (fi® K)]

a=1 =1

EG(f)

I
T
M~
=
e
|
—
<
[RNgES
=

I
!
™

2 EG(f,).

a=1

(15)

'"The same binary edge map can obtained by the system max, {thea ()
— t,.,(f © K)} proposed in [18] using set-theoretic terminology, where
a is the variable edge height. In [26, pp. 435-437] this binary edge map
was shown to be equal to 7,{ f — (f & K)].
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Thus the erosion gradient system (13) obeys the threshold-linear
superposition. Examples are given in Figs. 1 and 2. Note that, since
f, © Kand f, — ( f, © K) are binary images for all a, the binary
edge gradients EG( f,) can be implemented very simply by using
only pixel counting or Boolean logic. Namely, if | - | denotes num-
ber of pixels, then

[EG(£)](m. n)
L iff(m n) =1and ;Kfa(m +in+j)<|K|

0, otherwise.

Other edge gradients similar to (13) are the dilation gradient
DG(f) = (f ® K) — fand Beucher’s morphological gradient
[11, 26, p. 441]

MG(f)=(fe K) - (fe K).

These two systems also obey threshold-linear superposition: ¢.g.,
MG(f) = L, MG(f,). This can be proven by proceeding as in
(15) and observing that the dilationf @ K = L, f, ® Kobeys (11).

By combining the erosion and dilation gradients, various edge
operators have been developed for robust edge detection schemes.
Examples include: 1) the morphological edge-strength operators
min [EG( f), DG(f)] and max [EG( f), DG( f)] in [10]; 2)
the nonlinear Laplace operator DG( f) — EG(f) in [31]. It is
simple to show that these nonlinear edge operators obey the thresh-
old-linear superposition.

(16)

B. Peak/Valley Extraction

A very useful morphological peak extractor, also called top-hat
transformation [18], [19], [26, pp. 435-437], is the system

PE(f) =f— (f°B),

where B is any 2-D structuring set (the ‘‘base of the hat’’). During
this peak extraction, the peaks that cannot contain B remain, while
the rest get eliminated. For any B, f = f© B everywhere; hence,
PE( f) is a nonnegative image signal. Since the opening f © B
obeys (11),

- (£2)-[(£1)-4

A

-3

a=1

(17)

A

fo= ZfioB= X [fi=(fioB)]

= 2 PE(f,)- (18)

As an example, consider the 1-D image f(m)
f=+:--021234044123210"--"

where - - - denotes an infinite sequence of trailing zero values. If
we want to extract from f all peaks with a width less than 3 pixels,
we select B = {0, 1, 2}. Then the gray-level opening is

feB=---011222011122210"-""
and the gray-level peak extraction gives the peak image

PE(f)=---010012033001000"-"-.

Now the threshold binary images of fare f,, 1 < a < 4:

fi=---000001011000000 - -
f,=---000011011001000"""
f,=---010111011011100---
fi=---011111011111110---
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Fig. 1. Threshold superposition of erosion edge gradient. (Original image
f has maximum intensity level 4 = 4. The structuring element K is
the 5-pixel discrete disk of radius 1.)

and fo(m) = 1 for all m. The binary openings f, © B are

fooB=---000000000000000""-
foB=---000000000000000""--
HL°B=---000111000011100"-""
ficB=---011111011111110~---.
The binary peak extractions PE( f,) = f, — ( f, © B) are
PE(fy)=---000001011000000---
PE(f;) =---000011011001000---
PE(f;) =---010000011000000 - -
PE(fy) =---000000000000000 - -

Thus summing the signals PE( f,) for all a gives us the original
signal PE( f). Clearly, the binary peak extractors are trivial to
implement. PE( f,) simply consists of eliminating from the binary

image f, all connected components that contain any shifted version
of B.

If we also consider the valley extractor system VE( f fe
B) — f, by working as above, it can be shown that VE( L,
VE( fo).

) =(
fr=

C. Skeletonization

Next, a morphological skeleton for a gray-level image f is de-
fined by generalizing the algorithm in [25]. If B is a 2-D structuring
set, let

nB=BeB® - - @B (ntimes) (19)
denote the n-fold dilation of B with itself, which creates a set of
sizen = 0,1, 2, - - - times larger than B. (If n = 0, nB = {(0,
0)}.) The nth skeleton component of f is
SK.(f)=(fenB)—[(fenB)eB], 0=<n=<N (20)

where N = max {n: f e nB # 0}. (We assume here images f
with a finite support. ) These components SK, ( f ), indexed by the
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Fig. 2. The top row (from left to right) shows an original gray-level image
fof 110 x 128 pixels with 8 bits/pixel. the gray-level erosion edge
gradient f — ( f © K ). and the gray-level skeleton SK( f) with respect
to K. where K is a 3 x 3-pixel square structuring element. The other
images show (from middle to bottom row): left—threshold binary images
£, for a = 180 and 210; middle—their binary edge images f, — ( f, ©
K ): right—their binary skeletons SK( f,). (In the top row the edge and
skeleton image amplitude has been magnified: in the middle and bottom
rows, the black (white) areas correspond to image foreground (back-
ground).)

discrete size parameter n, are nonnegative everywhere. Thus they
are gray-level images, usually very sparse, and their ensemble can
exactly reconstruct f. A skeleton, i.e., a thinned caricature, of f
can be defined” as the gray-level image

N

SK(f) = 2 SK.(f). (21)

Since erosions and openings of the binary images f, by sets B of
dimensionality <2 yield binary outputs and since f, © nB = (f,
o nB) © B, the skeleton component SK, ( f,) of £, is also a binary
image. The skeleton SK( f,) of £, is defined [22], [21], [26], [13]
as the union of all the binary skeleton components SK,( f,), rep-
resented by 2-D sets. But, for each a. this union-definition of
SK( f,) is cquivalent to a sum-definition as in (21) because the
binary images SK,( f,) are disjoint [13]. Putting all these ideas

together yields
M .
< % f“> e nB
a=1

(E5)ems]-
:<ilﬂ,9ﬂ3>—1:‘z (ﬁ,enB)OBJ

;l[(faenB)—(ﬁ,enB)OB]

SK,(f) cB

NS

u=1

= X SK.(f)- (22)

In [21, pp. 94-95) the idea appears to create a gray-level image gra-
dient or skeleton by adding the binary contours or skeletons, respectively,
of threshold binary images; but this was not related to any system produc-
ing gradients or skeletons by operating directly on gray-level images.
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Thus, the nth skeleton component system obeys the threshold-lin-
ear superposition. Now,

SK(f) = SK”< 5 ﬁ,>

I

N N

DS SK,(f,) = = 2 SK,.(f)

n=0a=1 a=1n=90

2 SK(f).

a=1

(23)

Hence, the morphological skeleton system also obeys threshold-
linear superposition. An example is given in Fig. 2.

D. Shape-Size Distributions

Matheron [16], [17] introduced the granulometries as openings
X © rB of sets X in RY by one-parameter (r) families of compact
convex structuring elements rB = {rb: b € B}. He also used Le-
besgue measures of these openings to define probabilistic size dis-
tributions of random sets. As described in [26, ch. 10], Serra and
his co-workers have used extensively these set size distributions in
image analysis applications to petrography and biology. In [20]
closings by hexagons of increasing size were used to analyze dig-
ital gray-level biomedical images. In [12] some generalizations and
extensions of these size distributions were developed and applied
to multiscale shape representation and description.

For a gray-level image f(i, j), consider the (differential size
distribution) function [12]

[SH(f)](+n.B) = Z /Z [fonB —fo(n+ 1)B](ij),
=0
[SH(f)](—n, B) = Z ,Z [fenB—fe(n— 1)B]( )

=

n>0 (24)

where nB is given by (19); i.e., the integer n is a discrete size
parameter and B is any 2-D structuring set whose shape can vary.
The function SH( f) can be viewed as a shape-size histogram. In
[12] it was called ‘‘pattern spectrum’” as a symbolic term to illus-
trate some of its conceptual similarities with classical Fourier spec-
trum as well as its close relationships with morphological skeleton
transforms for shape representation. It measures the size (n) and
shape ( B) distribution of f, providing useful information about crit-
ical scales and the general shape-size content of f. In [3] the nor-
malized pattern spectrum for positive n (called ‘‘pecstrum’’) was
used for shape recognition.

We emphasize here that the function (24) is nonnegative for any
fand any set B. To check this conjecture (proven in [12]), observe
that foralln = 0

fo(n+1)B=(((fenB)eB)e B)enB
=((fe nB)°B) & nB
< (fe nB) ® nB = fonB.

Similarly we can show that f® (n + 1)B = fenB foralln = 0.
Regarding threshold superposition, forn = 0,

[SH(£)](n. B)
= XX (fonB)(i.j) — L X [fe(n+ 1B]G.J)

=22 (2 f;> OnBJu,j)
j a=1

- K Zf) > (n+ I)B](u)
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=222 (fonBl(ij) = ZX XL (n + 1)B](i.))

J

=Z[Z J[fionB = fo(n+ 1)B](i, j)

(25)

I
M =

[SH(f)](n, B).

a

An identical result to (25) is easily obtained for n < 0 by replacing
openings f© nB with closings f® nB. Thus the shape-size histogram
obeys the threshold-linear superposition. To illustrate this, con-
sider the example of the 1-D image fin Section I1I-B. Fixing B =
{0, 1} yields

n -2 -1 0 1 2 3 4 5 6

[SH(f)1(n) 2 6 3 8 6 0 5 0 7

[SH(f)1(n) 0 I 1 2 0 0 0 0 0O

[SH( f3)1(n) 2 1 1 4 0 0 0 0 0O

[SH( £:)1(n) 0 31 2 6 0 0 0 0

[SH( fi)1(n) 0 1 0 0 0 0 5 0 7

Computing the size histograms of the binary images £, is mucn
easier than for f. For example, for 1-D images fand B = {0, 1},

the value of SH( f,) at (n — 1) is equal to n times the number of
runs of n consecutive 1's if n = 1; likewise for runs of 0’s and
negative n.

Note that the shape-size histogram system performs an image
measurement, while the three previous morphological systems ex-
amined in Sections I1I-A, B, and C perform an image transforma-
tion.

IV. GENERAL RESULT

The four morphological systems of Section III, which we showed
that obeyed the threshold linear superposition, consisted of point-
wise additions/subtractions of simple morphological operations.
Next we show that these four examples are special cases of a more
general result. Let F be the class of all d-dimensional (d = 1, 2,
* * +) nonnegative real-valued signals f: E — V (not necessarily
images), where E = R or E = Z?. (R and Z denote, respectively,
the set of reals and integers.) The input signals’ range V could be
either discrete (V = {n € Z: n = 0}) or continuous (V = {re
R:r = 0}). If Vis discrete, f is reconstructed from its thresholds
f. by summation

flx) = éf,,(x), vx € E,

and a system ¥ with input f obeys the threshold-linear superposi-
tion if (11) is satisfied. In the case of continuous range V = [0,
+o0), fcan be reconstructed from the f,’s via integration

o

fo(x) da,

0

vxeE,

reo = |

and we say that a system ¥ with input f obeys the threshold-linear
superposition if

v ={ v

Let § be the class of all systems ¥: F — G that obey the threshold-
linear superposition, with the restriction that either all ¥ € § are

signal transformations or all are signal measurements but not both.
G is the class of system outputs, which are either real-valued sig-
nals like the signals in F (but not necessarily nonnegative) or real-
valued measurements (constants or functions of several parame-
ters). Let us view each system ¥ in S as a vector point. Then let
us define a binary operation ¥, + ¥, called system (vector) addi-
tion between any ¥, ¥, € S and a unary operation r - ¥ called
scalar multiplication of a system ¥ by any real number r € R as
follows:

(4 + B S W (f) + ¥lf). feF  (26)

def

[r - ¥I(F) = r - ¥(f), (27)
There is a different interpretation of the symbols + and - between
the left and right parts of these definitions. In the right part of (26)
*+"" denotes pointwise addition of signals if § is a class of signal
transformations or addition of real numbers if S is a class of signal
measurements. In the right part of (27) *“+*” denotes multiplication
of the signal or measurement ¥ ( f) by the scalar r. Thus ¥, + V¥,
is a parallel interconnection of the systems ¥, and ¥,, whereas
r - ¥ just scales ¥ by r.

Theorem A: The class S of systems ¥ that obey the threshold-
linear superposition forms a vector space over the field of real num-
bers under the vector addition (26) and scalar multiplication (27).

Proof: From [9], we must prove that, forall ¥, & € S and r,
q€R,

feF.

Al: (S, +) is an Abelian group.
A2: r- V¥ es.
A3:r- (¥ + &) =r-
Ad: r+q)- V¥ =r-
AS:r-(q-¥)=1(rq)- V.
A6: 1 - ¥ =V,
Assume first a discrete range V for input signals. (A1): S is closed
under system + because

[V +2](f) = ¥(f) + @(f) = 2¥(f) + L &(S)

= X[+ ¥](f). (28)
Further, the system + is associative, commutative, and has a zero
element (the system ¥,, where ¥o( f ) is the all-zero signal for all
for just zero in case of signal measurements). Finally each ¥ has
its inverse — V¥, defined as [~ ¥ 1( f) = —¥ ( f). Hence, (S, +)
is an Abelian group. (A2) is true because

[r- ¥ICf) = r-¥(f) = r- Z¥(f)

=2ro¥(f) =Y. (29)
The proof of the rest of the axioms (A3)-(A6) is easy and hence
omitted.

If Vis continuous, replacing everywhere in the above proof sum-
mation I, (+) with integration | () da yields again that S is a
Vector space. Q.E.D.

The above result establishes that the principle of threshold-linear
superposition is obeyed by any composite system formed as a linear
combination of systems that obey it. As a special case consider any
systems ¥, among the following classes used often in image anal-
ysis: 1) erosion, dilation, opening, and closing by binary (flat)
structuring elements; 2) median, rank-order, and stack filters; and
3) any finite cascade or parallel (i.e., using pointwise max/min)
combination of systems in 1) and/or 2). All such ¥, commute with
thresholding and hence obey threshold superposition. Hence,
Theorem A implies that any linear finite combination system ¥ ( )
= L, r ¥ ( f) will also obey (11). Such a useful linear combina-
tion is, for instance, the general order statistic filter [2] where the
systems ¥, are all the distinct kth rank-order filters.
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Next a few remarks follow about our general result:

1) The class of systems obeying threshold-linear superposition
contains the class of all linear systems, because threshold-linear
superposition is a weak form of linear superposition.

2) Theorem A is independent of:

e whether or not the systems are translation-invariant;

o the signals’ dimensionality;

¢ whether the signals have continuous or discrete argument(s);

e whether the input or output signals have a discrete or contin-
uous range.

3) Theorem A requires that the input signals are nonnegative;
hence, it especially applies to image analysis systems.

4y The results for the four discrete morphological systems (edge
gradients, peak detection, skeletonization, size distributions) of
Section III follow now as simple corollaries of Theorem A. How-
ever, some continuous versions of these four systems may or may
not fall in the category of systems to which Theorem A applies, as
explained next.

We shall briefly address some issues on whether our result about
the morphological edge gradient can be extended to the Euclidean
case. (The initial question and the following (30)-(34) have been
suggested by Serra [28].) Consider signals f: RY = [0, + o), their
threshold binary signals £, and the corresponding threshold sets F,
= {x € R": f,(x) = 1}. The boundary of F,is given by

oF, = FAF, = F, N (E,)". (30)
where X, X, X¢ denote topological closure, topological interior,
and the complement of a set X. Now, if B is the ball of radius r,
then [16, p. 150]

¥=UXoerB (31)
r>0
X=N X e rB. (32)
r>0
Hence, it follows that
oF, = N (F, ® rB)\(F, e rB). (33)

r>0
Then we could define a morphological edge gradient for the binary
signal f, by

[MG(f)](x) = inf ((f. @ rB) = (fu @ rB)](x), (34)

which is equal to the indicator function of dF,. Now, since f, @
rB<f, ©sBandf, ®© rB=f, © sBforr <,

[MG(f)](x) = lim [(f, @ rB) = (f; @ rB)](x). (35)

Integrating (35) over a yields

So [MG(f)](x) da = lrif{)) [(fe rB) — (fe rB)](x) (36)

which does not behave like a gradient; it actually gives zero re-
sponse when f is continuous at x. However, Beucher’s morpho-
logical gradient in RY is defined [1], [26, p. 441] as

(G ))(x) = tim (L2 )

which is not equal to the right side of (36). In addition, the defi-
nition (37) applied to the binary signals f, may not give an edge
function equal to (35).

Similarly, there may arise several problems if one attempts to
extend our result on threshold superposition of the skeleton and the
size distributions to their corresponding systems in the Euclidean
space. (For properties of the skeleton in Euclidean spaces see
Matheron [27, ch. 11}.)

(37)

V. CONCLUDING REMARKS

An important factor on which our results in Section III depend
is that the erosions, dilations, openings. and closings used by the
four analyzed morphological systems involve flat (binary) structur-
ing elements. That is, for a 2-D image signal, only 2-D or 1-D sets
can be used as structuring elements; likewise, fora 1-D signal, the
structuring element must be a 1-D set. For the more general ero-
sions (min of differences), dilations (max of additions), and their
combinations, which use a nonbinary structuring element [30],
[26], [14], [6], our results in this correspondence do not apply.
Some forms of threshold superposition for such general erosions/
dilations have been investigated in [26, pp. 443-444] and in [29].

The key idea of our results is that a large class of morphological
and other systems for gray-level image analysis reduces to corre-
sponding systems for binary signals. But the latter are much easier
to analyze. Hence our results provide a theoretical tool that facil-
itates the analysis of many morphological and related nonlinear
systems. In addition, they suggest new implementations based on
threshold superposition. Of course, software implementations of
these ideas on current serial computer architectures are discourag-
ing because of the large number of threshold binary images re-
quired. However, VLSI hardware implementations exploiting the
threshold superposition of composite gray-level morphological
systems (as already has been done for simple rank-order and mor-
phological operations [7], [24], [8]) is very promising because bi-
nary morphological operations can be done using only pixel count-
ing or Boolean logic. Further, the binary operations on each
threshold binary image can be done in parallel for all threshold
levels.
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any correspondences between the left and right image frames (static)
or between the successive dynamic frames (dynamic). We study
uniqueness and robustness issues with respect to this problem and we
provide experimental results from the application of our theory to real
images.

Index Terms—Correspondence problem, stereo, visual motion.

[. INTRODUCTION

An important problem in computer vision is to recover the depth
and 3-D motion of a moving object from its successive images.
Dynamic visual information can be produced by a sensor moving
through the environment and/or by independently moving objects
in the observer’s visual field. The interpretation of such dynamic
imagery information consists of dynamic segmentation, recovery
of the 3-D motion (of the sensor and the objects in the environ-
ment), as well as determination of the structure of the environment.
The results of such an interpetation can be used to control behavior,
as for example in robotics, tracking, and autonomous navigation.
Up to now there have been, basically, three approaches towards
the solution of this problem: 1) the differential or continuous; 2)
the discrete; and 3) the direct.

In the differential approach, the dynamic image is supposed to
be a 3-D function of two ‘‘spatial’’ arguments and a ‘‘temporal’’
argument. Then, if this function is locally well-behaved and its
spatio-temporal gradients are computable, the local image velocity
or ‘‘optical flow’’ may be computed [7], [9], [10].

The second approach considers the case where the motion is large
and the first technique is not applicable. In these instances, the
measurement of the image motion relies upon isolating and track-
ing highlights and feature points (corners, edges, etc.) in the image
through time. This entails solving the correspondence problem
which has proved to be difficult in many situations [3], [6], [21],
[23].

In both of the above approaches, after the image motion (optical
flow or discrete displacements) is computed, constraints are devel-
oped between the retinal motion and the 3-D motion parameters;
these constraints become the basis of a whole variety of algorithms
for the recovery of the 3-D motion [1], [4], [S], [8], [18], [19],
[24], [25], [27]-138].

The third approach which is worth mentioning [2], [15], [22],
[32], [33] attempts to directly compute 3-D motion from the spa-
tiotemporal derivatives of the image intensity function. There is
good research in this direction but a stability analysis of the meth-
ods is still needed [31].

As the problem has been formulated over the years, usually one
camera is used and so the 3-D motion parameters that can be com-
puted are five: two for the direction of translation and three for the
rotation. In our approach, we assume a binocular observer and so
we can recover six motion parameters: three for the translation and
three for the rotation. In this correspondence we restrict our work
to the motion of a rigid planar patch. In the traditional one-camera
approach for the estimation of the 3-D motion parameters of a rigid
planar patch, it was recently pointed out [26] that one should use
image point correspondences for object points not on a single planar
patch when estimating 3-D motions of rigid objects. But it was not
known how many solutions there are, what the minimum number
of points and views needed to assure uniqueness is, and how those
solutions can be computed without using any iterative search (i.e.,
without having to solve nonlinear systems). It was proved [27],
[28], [30] that there are exactly two solutions for the 3-D motion
parameters and plane orientations, given at least four image point
correspondences in two perspective views, with the exception of a
few degenerate cases. However, the solutions are unique if three
views of a planar patch are given or two views of at least two planar
patches. In our approach, the duality problem does not exist in
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