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Differential Morphology and Image Processing

Petros Maragos, Fellow, IEEE

Abstract—Image processing via mathematical morphology has
traditionally used geometry to intuitively understand morpholog-
ical signal operators and set or lattice algebra to analyze them
in the space domain. In this paper, we provide a unified view
and analytic tools for a recently growing part of morphological
image processing that is based on ideas from differential calculus
and dynamical systems. This part includes both recent and some
earlier ideas on uvsing partial differential or difference equations
(PDEs) to model distance propagation or nonlinear multiscale
processes in images. We briefly review some nonlinear difference
equations that implement discrete distance transforms and relate
them to numerical solutions of the eikonal equation of optics.
We also review some nonlinear PDEs that model the evolution
of multiscale morphological operators and use morphological
derivatives. Among the new ideas presented, we develop some
general 2-D max/min-sum difference equations that model the
space dynamics of 2-D morphological systems (including the
distance computations) and some nonlinear signal transforms,
called slope transforms, that can analyze these systems in a
transform domain in ways conceptually similar to the application
of Fourier transforms to linear systems. Thus, distance transforms
are shown to be bandpass slope filters. We view the analysis of
the multiscale morphological PDEs and of the eikonal PDE solved
via weighted distance tranforms as a unified area in nonlinear
image processing, which we call differential morphology, and
briefly discuss its potential applications to image processing and
computer vision.

1. INTRODUCTION

ORPHOLOGIAL image processing has been based

traditionally on modeling images as sets or as points
in a complete lattice of functions and viewing morphological
image transformations as set or lattice operators. Thus, so
far, the two classic approaches to analyzing or designing the
deterministic systems of mathematical morphology have been
(i) geometry, by viewing them as image set transformations in
Euclidean spaces; and (ii) algebra, to analyze their properties
using set or lattice theory. Geometry was used mainly for
intuitive understanding, and algebra was restricted to the
space domain. Despite their limitations, these approaches have
produced a powerful and self-contained broad collection of
nonlinear image analysis concepts, operators, and algorithms.
In parallel to these directions, there is a recently growing part
of morphological image processing that is based on ideas from
differential calculus and dynamical systems. It combines some
early ideas on using simple morphological operations to obtain
signal gradients and some recent ideas on using differential
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equations to model nonlinear multiscale processes or distance
propagation in images. In this paper, we present a unified view
of the various interrelated ideas in this area, and develop some
systems analysis tools in both the space and a (slope) transform
domain.

The main tools of morphological image processing are a
broad class of nonlinear signal operators, also called morpho-
logical systems. These are (simple or complex) parallel and/or
serial interconnections of the basic morphological dilation &
or morphological erosion © operations

(fog) (@) =\ f)+gz-vy) S
yeE

(fo9) @)= A f@) - oy - =) @
yeEE

where \/ and A denote supremum and infimum, and E = R¢
or Z4. Compositions of erosions and dilations yield two useful
smoothing filters: the opening f — (fSg) ® g and closing
J + (f®g)&yg. The above morphological signal operations and
their combinations have found a broad range of applications
in image processing and computer vision; examples include
problems in noise suppression, feature extraction, skeletoniza-
tion, multiscale analysis, size distributions, segmentation, and
shape recognition; see [15], [25], and [43] for surveys and
more references.

The abundant use of set and lattice theory as the main
analytic tools for morphological operations has been partly due
to the relative intractability of these operations using standard
ideas from calculus. Among the very few early connections
between morphology and calculus were the morphological
gradients. Specifically, given a function f: R? — R, we define
its isotropic morphological sup-derivative at a point x by

. B —

M(f)(a) = lim SErB)@) = /(@) 3)
710 T

where 7B = {rb: b € B} is a disk B scaled to radius r, and

f@B and foB are flat dilations and erosions of f by a planar

set B, i.e., special cases of (1) and (2) where g is zero over
its support set B as follows:

(feB)(x)=\/ fz—y)
yeB

(foB)()= A fz+y).

yEDB

The derivative M has been used in image analysis for edge
detection. For example, [M(f) + M(—f)]/2 is Beucher’s
morphological derivative [4], which becomes equal to ||V £||
when f is differentiable.

1057-7149/96%805.00 © 1996 IEEE
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A more recent applications area where calculus-based ideas
have been used in morphology is that of multiscale analysis.
Multiscale signal analysis is a useful and often required
framework for many tasks such as feature/object detection,
motion detection, and multiband frequency analysis. While
the majority of such approaches used so far have been linear,
a general understanding arises for the limitations or inabil-
ity of linear systems to successfully model several image
processing problems, and the need grows for developing
nonlinear approaches. Recently, some nonlinear partial dif-
ferential equations (PDEs) have been developed in [8] and
[9] to model multiscale morphological operators as dynamical
systems evolving in scale-space. To illustrate the basic idea
via a 1-D example, let us define the multiscale flat dilation
and erosion of a 1-D signal f(z) by the set B = [—1, 1] at
scales ¢ > 0 as the space-scale functions

o(z, t) = \/ flz—y);

ly|<t

ez, 1) = /\ fz+y).

ly|<t

An example of § and ¢ is shown in Fig. 1. Then the PDE
generating these multiscale flat dilations or erosions is [9],

)

) 86
ot

ox

where + is for dilation and — yields erosion. To deal with
possible discontinuities in these partial derivatives, we can
replace them with morphological derivatives (explained later).
Recent works related to the above PDE and its 2-D extensions
can be found in [1], [26], [46], and [47]. Further, the mor-
phological PDEs are related to broader classes of nonlinear
PDEs that have been developed recently to model nonlinear
dynamics in image processing. For references, see [2] and the
papers in [18]. This rapidly growing interest in using PDEs for
image processing is a natural continuation of earlier efforts in
computer vision to model several image analysis tasks related
to physical phenomena. Examples include shape from shading
and optical flow [17] and modeling multiscale analysis via the
heat diffusion equation [20].

Multiscale dilations and erosions of binary images can
be also obtained via distance transforms. Discrete distance

(b)
(a) Original 1-D signal f(x) at scale ¢ = 0. (b) Multiscale erosion. (c) Multiscale dilation of f(x) by a set B = [—1, 1] for scales £ € [0, 30].
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transforms can be implemented fast via 2-D min-sum differ-
ence equations [6], [35]. For example, the city-block distance
transform of a discrete binary image f[m, n| can be obtained
by running the following recursive equation:

ulm, n] = min (u[m — 1, n] + 1, u[m, n — 1] + 1, fm, n])

in a forward and backward image scan. Distance transforms
of continuous-domain binary images can be obtained by prop-
agating wavefronts [5], [22], [41] using ideas similar to optic
wave propagation according to Huygen’s principle. Finally,
resulting from Fermat’s principle of least time, the wavefront
propagation in geometrical optics is governed by the eikonal
equation, a nonlinear PDE. This eikonal PDE has found
applications in gridless halftoning [31], [42], [48] and shape
from shading [17], [48]. Among other methods, the eikonal
equation can also be solved using weighted distance transforms
[19], [48], which can be implemented via min-sum difference
equations with space-varying coefficients.

We have outlined above some close relationships between
the morphological derivatives, the PDEs for multiscale mor-
phology, the eikonal PDE of optics, and the difference equa-
tions used to implement distance transforms. The unifying
theme is a collection of nonlinear differential/difference equa-
tions modeling the scale or space dynamics of morphological
systems. We call this area differential morphology. Whereas
classical morphological image processing is based on set and
lattice theory, differential morphology offers calculus-based
tools and some exciting connections to the physics of wave
propagation.

The use of derivatives and differential equations in image
processing has been limited so far mostly to linear schemes;
e.g., the Laplacian used in edge detection and the isotropic
diffusion PDE used in multiscale vision. To analyze them
there are existing tools both in the space domain (using linear
systems theory) as well as in the frequency domain (using
Fourier transforms). In this paper, we develop analysis tools
for the nonlinear systems used in differential morphology,
which have many similarities to the tools used to analyze linear
differential schemes. Specifically, in Section II we present
analytic methods to determine the output and properties of
these nonlinear systems in the spatial domain based on their
impulse response or on 2-D max-sum or min-sum difference
equations that describe the discrete space dynamics of these
systems. Further, in Section III, to understand their behav-
ior in a transform domain—the slope domain—we develop
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Fig. 2. Convex signal f, its tangent with slope = «, and a line parallel to
the tangent.

signal transforms, called slope transforms, whose properties
and application to morphological systems has some striking
conceptual similarities with Fourier transforms and their ap-
plication to linear systems. Our discussion on morphological
systems and slope transforms focuses on 2-D signal and
systems; a similar work for 1-D signals and systems can
be found in [23] and [24]. Despite the wide applicability
of morphological systems to image processing and computer
vision, so far their analysis has lacked a transform domain.
Thus, our work on slope transforms offers a way to fill this
gap. Some other works connecting ideas between the slope
domain and morphology can be found in [12], [14], and [26].
Section IV outlines the interpretation of distance transforms
as bandpass slope filters. Min-sum difference equations, their
application to computing discrete distance transforms, and
the analysis of both in the slope domain is described in
Section V. The eikonal equation, its solution via continuous
weighted distance transforms, and an outline of its applications
to image processing and vision are discussed in Section VI.
In Section VII, we briefly review from [9] some PDEs for
multiscale dilations and erosions, and then refine them using
morphological derivatives, which also yields a slope domain
interpretation. Finally, we conclude with some comments and
ideas for further research.

II. 2-D MORPHOLOGICAL SYSTEMS

Assume signals f(z) defined on a 2-D continuous (E =
R?) or discrete domain (E = Z2) and taking values in
R = R U {~o0, co}. Their argument may occasionally be
written as a two-component vector. In convex analysis [34] and
optimization [3] the nonlinear operation & is called supremal
convolution and an operation closely related to © is the infimal
convolution

(fOg9) @) = N\ flw) +g(z - v). )

Note that [ is closely related to © because f(z)dg(z) =
f(z)©|—g(—x)]. Henceforth, we shall refer to @ and [ as the
max-sum and min-sum convolution to distinguish them from
the more abstract concept of a dilation and erosion system
defined below.
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A signal operator or system W: f — U(f) is called

- dilation [44], [15] if W[\, fi(=)] = V/, ¥[f:(x)),

« erosion [44], [15] if W[\, fi(z)] = A, U[fi(2)],

+ shift-invariant if U[f(z —y)] = U(f)(z - y).

« translation-invariant if U[c+ f(z—y)] = ¢+ T(f)(z -
y)

for any signals f;, f, horizontal shifts i and vertical shifts c.

A. Translation-Invariant Systems

Of particular interest in this paper are operators &: f —
E(f) that are erosion- and translation-invariant (ETI) systems.
Such systems are shift-invariant and obey an infimum-of-sums
superposition.

5{/\ ¢ +fi<x>] = Nei+Elfif)]. (5)

T

Similarly, dilation- and translation-invariant (DTI) systems
are shift-invariant and obey a supremum-of-sums superposi-
tion as in (5) but with A replaced by \/. Two elementary
signals useful for analyzing such systems are the zero impulse

|0, =0
p(z) = —c0, zH#0
and the zero step
0, x>0
Mz) = { -0, <0

where, if z = (z1, z2) € R?, then z > 0 means that both
z1, zo > 0. Occasionally, we shall refer to x as an “upper”
impulse, and to its negated version — as a “lower” impulse. A
signal can be represented as a sup or inf of weighted upper or
lower impulses; i.e., if f assumes all its values in R U {+o0},
then

f@) =\ fly)—p(z - y). (6)

If we consider the lower impulse response of the ETI system,
defined as the system’s output when the input is the zero lower
impulse, we find [23] that the system’s action is equivalent to
a min-sum convolution of the input with its lower impulse
IESPONSE,

Eis BTl <= &(f) = f0gn, gr=E&(—n).
Similarly, a system D is DTI iff D(f) = f & g, where
gv = D(p) is the system’s upper impulse response. Thus,
DTI and ETI systems are uniquely determined in the spatial
domain by their impulse responses, which also control their
causality and stability [23].

To create a transform domain for morphological systems, we
first note that the planes f(z) = « -z + b are eigenfunctions
of any DTI system D or ETI system £ because

Da-z+b=a-z+b+Gy(a)
Ela-z+bl=a-x+b+Grla)
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where a-x = 121 +a2x2 for a = (a1, o) and 2 = (21, z2)
in R2, and

Gy(a) = \/gv(m) -a-xz,
Gala) = /\g,\(x) -z

are the corresponding eigenvalues, called, respectively, the
upper and lower slope response of the DTI and ETI system.
They measure the amount of shift in the intercept of the input
hyperplanes with slope vector . They are also conceptually
similar to the frequency response of linear systems.

B. Shift-Varying Systems

For shift-varying dilation and erosion systems, it is still
possible to define some type of impulse response and slope
response, which are, however, shift-varying. Specifically, con-
sider an erosion system & that commutes with vertical signal
shifts but is horizontally shift-varying, and let g(z, y) =
E[—p(z — y)] be its response due to an input lower impulse
located at x = y. Then, by (6)

Ef@)] = N\ Ffw) + 9z, v).

If the input is a plane f(z) = « -z, the output is
Ela-z] = -z + Gala, T). (7)
where the function

Ghla, z) = N\glz, z—y) —a-y ®)
Yy

can play the role of a slope response for the shift-varying ero-
sion system. Note that, if & is shift-invariant, then g(z, y) =
g(z — y, 0), which we write simply as g(z — y); further, we
call g(x) = £[—p(z)] the system’s impulse response, and this
brings us back to our previous discussion on ETI systems.

III. 2-D SLOPE TRANSFORMS

Viewing the slope response as a signal transform with
variable the slope vector o, we define for any 2-D signal f(z)
its upper slope transform as the 2-D function F\,;: R> — R
defined by

Poa)=\ fz)—a -z ©
zeE
and as its lower slope transform' the function

Fpla) = /\ flz)—a-z.

z€E

(10)

As shown in Fig. 2 for a 1-D signal, f(z)— ax is the intercept
of a line with slope « passing from the point (z, f(z)) on the
signal’s graph. Hence, for each «, the lower slope transform
of f is the minimum value of this intercept, which occurs

"Tn convex analysis [34], given a convex function % there uniquely
corresponds another convex function h*(a) = \/, o - & — h(x) called the

Fenchel conjugate of h. The lower slope transform of h and its conjugate
function are closely related since h*(a) = —Ha ().
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Fig. 3. (a) Convex parabola signal f(z) = x2?/2 (in dashed line) and its
morphological closing (in solid line) by a flat structuring element [—5, 5].
(b) Lower slope transform F (a) = —a? /2 of the parabola (in dashed line)
and of its closing (in solid line).

when the above line becomes a tangent. For 2-D signals, the
tangent line becomes a tangent plane. Examples of lower slope
transforms are shown in Fig. 3.

In general, a 2-D signal f(z) is covered from above by all
the planes F\(«) + « - x whose infimum creates an upper
envelope

flz) = /\ Fo)ta-z

aER2

11)

and f(z) is covered from below by planes Fa(a)+a-x whose
supremum creates the lower envelope

fly=\/ Frla)+a =

acR?

(12)

We view the signal envelopes f(z) and f (z) as the “inverse”
upper and lower slope transform of f(z), respectively. Ex-
amples are shown in Fig. 4. The next theorem (whose proof
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Fig. 4. Signals f (in solid lines) and their lower envelopes f (in
dashed lines) obtained via the composition of the lower slope transform
and its inverse. The signals are (a) a cosine whose amplitude has
been modulated by a slower cosine pulse and (b) the output f of a
recursive discrete ETI system generated by the min-sum difference equation
fln] = min (—pfn], A\jcpeao FIn — k] + ai), where ay = sin (x7k/21)
for k = 1,---,20. — —

is similar to the proof of the corresponding theorem for 1-
D signals given in [24]) shows that slope transforms create
convex or concave functions.

Theorem 1: For any signal f: R?, — R:

1) F, and f are convex, whereas F and f are concave;

2) forall z, f(z) < f(z) < fla):

3) f = f if f is concave and upper semi-continuous. Like-

wise, f = f if f is convex and lower semicontinuous;

4) f is the smallest concave upper envelope of f, and f is

the greatest convex lower envelope of f.

Tables I and II list several properties and examples of the
2-D upper slope transform. The most striking is that (dilation)
max-sum convolution in the time/space domain corresponds
to addition in the slope domain. Note the analogy with
linear systems where linearly convolving two signals in space
corresponds to multiplying their Fourier transforms. Very

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. §, NO. 6, JUNE 1996

TABLE 1
PROPERTIES OF 2-D SLOPE TRANSFORM

[ Signal: f(z) * | Transform: Fy(a) * |

Vi + fi(z) V¢ + Fi(a)
flz — zo) Fla)—a-xo
f@)+ap = F(a — ap)
f(rz), reR Fla/r)
rf(z) ,7>0 rF(a/r)
f(z)®g(z) Fla) + G
V, f(@) +g(z +y) F(—a) + G(e)
flz) < g(z) V= F(a) < G(a) Va
fesd Tll, <71
oe) = { 1D I ST (@) = FlaOral
1/p+1/g=1

{ '(EZ(EI,J,‘Z)ERZ l a:(al,az)eRz ]

TABLE II
EXAMPLES OF 2-D SLOPE TRANSFORMS

Signal: f(z) | Transform: Fy(a) |

[

Qg - X “M(a*ag)
ag - T+ A(z) “Xa = ag)
M(I—zo) “a -7
Az — zg) T o= Na)
0,  zllpsr —
> - - =
{ —00, ||z|lp > 7 21| rlleflg, sT3=1
- 0, llally € a0
apllzllp, o >0 { Yoo, Hqu So

Vil o, srag<l
—(z] + 23)/2
—([z1lP +[zoP)/p , p>1
GXp(Il + 172)

V1+od+ad
(of +03)/2
(a1l + |a2]?) /g
Gy — Z?zl (e ] log Q;

similar properties also hold for the 2-D lower slope transform,
the only differences being the interchange of suprema with
infima, concave with convex, and the supremal & with the
infimal convolution .

For differentiable signals, the maximization or minimization
of the intercept f(z) — « - involved in both slope transforms
can also be done, for a fixed a, by finding its value at the
stationary point z* such that V f(z*) = «. At the point
(z*, f(z*)) the plane becomes tangent to the graph. See Fig. 2
for a 1-D example. This extreme value of the intercept (as
a function of the slope «) is the Legendre transform of the
signal f,

Fr(e) = VAT ()]~ a- (V) a).

It is extensively used in mathematical physics [11]. If the
signal f(z) is concave or convex and has an invertible
gradient, its Legendre transform is single-valued and equal
(over the slope regions it is defined) to the upper or lower
transform; e.g., see the last four examples in Table II. If a
differentiable signal is neither convex nor concave, or if it
does not have an invertible gradient, the Legendre transform
is multivalued; i.e., £ () is a set of real numbers for each «.
This multivalued Legendre transform is defined in [12] as a
“slope transform” and is expressed via stationary points; i.e.,
Frla)={f(z*)—a-z*: Vf(z*) = a}. Its properties in [12]
are similar to the properties of the upper/lower slope transform,
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but there are also some important differences as explained in
[23] and [24].

Given a discrete-domain 2-D signal f[m, n], we define its
lower slope transform by

Fr(er,a5)= N\ A\ flm, n] = (mas + nas) (13)

m=—o0 N=—00

and likewise for its upper slope transform using \/. The
properties of these slope transforms for signals defined on
the discrete plane are almost identical to the ones for signals
defined on R2. See [23] and [24] for details.

IV. DISTANCE TRANSFORMS AND SLOPE FILTERS

The distance between two planar points depends on the
choice of the norm ||z|| for a 2-D vector z = (1, z3). Typical
norms are

_ (=P + Iwzlp)l/P» p=123 -
I|(z1, z2)|]p = {max(liﬁﬂa |z2|), |

Their associated 2-D unit balls are
B, = {z € R? |la]l, < 1}.

Thus, given a set S C R?, its distance transform (also known
as its distance function) with respect to the || - ||, norm is
defined as

Dy(S)(x) = A llz =yl (14)

yeS*®

where S¢ = R2\ S is the complement of S. It has many appli-
cations in image analysis and computer vision. For example,
its thresholds at levels r > 0 yield the multiscale erosions of
S by the balls 7B, of radius r. Further (for p = 2), its local
maxima provide the points of the skeleton (medial) axis of S
[5]. Then, if we consider the (0, +o00) indicator function of S

_ /o, €S
IS(‘T) = {+OO, &S (15)
and the convex conical structuring function
g(z) = [lzll (16)
it follows that
Dy (8)(z) = /\ llz — yllp + Ise (y)
yER?
= (Is- O g)(=). a7

Hence, the distance transform can be obtained from the min-
sum convolution of the indicator function of the set with the
conical norm function. This min-sum convolution is equivalent
to passing the input signal, i.e., the set’s indicator function,
through an ETI system with slope response

Gale)= N llzll, — - = (18)
z€R?
By using Hoélder’s inequality
1 1
a-z| < |lz|lpl|ally,, —+-=1 (19)
loc- al < lellplledly, -+ 7
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where ¢ is the conjugate exponent of p, we find that
Ga(@) = N 2l (1 = llally)-
zeR?

Therefore, G is equal to

Gato) = {

That is, the distance transform is the output of an ideal-cutoff
slope-selective filter that rejects all input planes whose slope
vector falls outside the unit ball with respect to the ||-||, norm,
and passes all the rest unchanged.

0, ||C¥Hq <1

. 20
—co, |lally > 1 @0

V. 2-D MIN-PLUS DIFFERENCE EQUATIONS
AND DISCRETE DISTANCE TRANSFORMS

A. Min-Sum Difference Equations and Discrete Slope Filters

The space dynamics of a large class of 2-D discrete ETI
systems can be described by the following general 2-D min-
sum difference equation

u[m, n] = /\

a;; +ufm —i, n - j]

(3, 5)EM,
AN bkt flm—kn—f] @D
(k, £)eM;

which we view as a 2-D discrete nonlinear system, mapping
the input signal f to the output w. The masks M,, M, are pixel
coordinate sets that determine which output and input samples
will be added with constant weights to form the current
output sample. Similarly, the dynamics of DTI systems can
be described by max-sum difference equations as in (21) but
with A replaced by \/. For erosion (resp. dilation) systems the
useful information in a signal f exists only at points z where
f(z) < 400 [resp. f(z) > —ool. The vast majority of discrete
max/min-sum convolutions & /] used in applications employs
a finite-support structuring element, and they can be modeled
by the above max/min-sum difference equations by ignoring
the recursive part (i.e., if all a;; = +00). The only exception
has been recursive erosions with simple masks that have
been used for fast generation of discrete distances or related
operations on binary images [6], [21], [35]. We shall show
that the min-sum equations with a recursive part correspond
to min-sum convolution of the input with an infinite-support
structuring element.

As explained in [13] for 2-D linear difference equations,
the recursive computability of (21) depends on i) the shape
of the output mask M, = {(¢, j): a;; < +oo} determining
which past output samples are involved in the recursion; ii) the
boundary conditions, i.e., the locations and values of the output
samples u[n, m] that are prespecified as initial conditions;
and iii) the scanning order in which the output samples
should be computed. We assume boundary conditions of value
+o0 and of a shape (dependent on M, and the scanning
order) appropriate so that the difference equation is an ETI
system recursively computable. Obviously, (0, 0) &€ M,. The
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Regions of support of binary slope responses of discrete ETI systems representing (a) the forward pass of the cityblock distance transform; (b) the
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forward pass of the chamfer (3, 4) distance transform; (c) the chamfer (3, 4) distance transform.

nonrecursive part of (21) represents a min-sum convolution of
the input array f[m, n] with the 2-D finite-support structuring
function b[m, n] = b, This is well understood from the
existing theory and geometric intuition about erosions by
finite-support structuring functions. Thus, we henceforth focus
only on the recursive version of (21) by setting bxe = +o0
except from by = 0. This yields the autoregressive 2-D
min-sum difference equation

u[m, n] = /\ ai; +ulm —14, n—jl | A flm, n].
(i, 5)eMo
(22)
If g[m, n] = &(—p[m, n]) is the impulse response of the

corresponding ETI system &: f — u, then
u= flg.

Finding a closed-formula expression for g is generally not
possible. However, we can first find the slope response G
and then, via inverse lower slope transform, find the impulse
response ¢ or its envelope §. (For notational simplicity, we
dropped here the subscript A from g and G.) By considering
the 2-D finite-support signal of the mask coefficients

— ) Cmn, (my n) e M,
alm, n] = {—i—oo, olse (23)
we can rewrite (22) as
u[m, n] = (u[m, n}Oa[m, n]) A f[m, n]. (24)

Applying lower-slope transforms to both sides of (24) yields

where, for o = (o1, ag)
A/\(Oél, 062) = /\ Qi5 — 1o — Jog. (26)

(i,7)eM,

Then, since Ux(a) = G(a)+ Fa(a) and assuming that F (o)
i1s finite, we have

G(a) = [G(a) + An(a)] A (0). 27

Thus G(a) < 0. To find a nontrivial (i.e., different than —o0)
solution G, first note that (27) implies

Qor—oco, if Ap(a)>0
Gla) =< <0, if  Ax(a)=0.
—CQ, if A/\(Oé) <0

Hence, the largest nontrivial solution of (27) is

_ |0, aeC
G(Q) - [C(O{) - { —0, @ g C (28)
where C' is the convex planar region
C={(o1, @g): ta1 +jagz < ai; V (4, 5) € Mo}  (29)

Thus, the system acts as an ideal-cutoff spatial slope filter
passing all input lower-slope vectors « in the planar region C'
unchanged and rejecting the rest. The inverse slope transform
on ( yields the lower envelope ¢ of the impulse response
g. Over short-scale periods ¢ has the shape induced by the
sequence {a;;}. But over scales much longer than the size
of the output coefficient mask M,, g behaves like its lower
envelope ¢. See the 1-D example of Fig. 4(b). Together G
and g can describe the long-scale dynamics of the system.
In addition, if g is a plane over its support, then the above
analysis is also exact for the short-scale behavior.
Example 1: Let M, = {(0, 1), (0, 1)}, and

u[m, n] = min (u[m — 1, n] + a0, ulm, n — 1]

+ ao1, f[m, n]). (30)

Assuming boundary conditions u[m, n] = +oo if n < 0 or
m < 0 and a bottom-left to top-right scanning order, the
impulse response (found by induction) and slope response
(shown in Fig. 5(a) for a;g = ap; = 1) are

glm, n] = a1on + aprm — Alm, n]

G(ai, az) =Aay — a1, ap1 — az). 31)

Thus, this system acts as a 2-D lowpass spatial slope filter
passing all input lower slopes a1 < ajg and ap < agr, and
rejecting the rest. In this case, g = ¢ is convex. This example
demonstrates that the impulse response of ETI systems de-
scribed by min-sum difference equations with a recursive part
has an infinite support.
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Fig. 6. Coefficient masks and impulse responses of ETI systems associated with computing the (a, b) chamfer distance transform. (a) Local distances
within the 3 x 3-pixel unit “disk”. (b) Distances from origin by propagating three times the local distances in (a) (also equal to a 7x7-pixel central
portion of the infinite impulse response of the overall system associated with the distance transform). (c) Coefficient mask for the min-sum difference
equation computing the forward pass for the chamfer distance. (d) 7%7-pixel portion of the infinite impulse response of the system corresponding to

the min-sum difference equation computing the forward pass (+ = +o0).

B. Discrete Distance Transforms

Discrete distance transforms, especially of binary images,
have been useful for a variety of image analysis tasks including
multiscale erosions/dilations, skeletonization, segmentation,
smoothing, and path finding [6], [21], [35], [36], [49], [50].
Their early theory was developed in [35] and [36] based on
either sequential or parallel operations. Later generalizations
including improved approximations to the Euclidean distance
were developed by Borgefors [6] based on ‘“chamfer” met-
rics. The general chamfer distance transform is obtained by
propagating local distances within a small, e.g., a 3 x 3-pixel
neighborhood. The fixed local distances shown in Fig. 6(a)
have the constraints 0 < a < b < 2a. Given a subset X of
the discrete plane Z2, the local distance propagation will yield
upon completion its (a, b) chamfer distance transform

Dos(X)m,nl= N\ Nm=i,n=illap (32
(5, 5)exe
where || - ||q,5 is the (a, b) chamfer norm

[[(m, m)lla,» = max (jm], [n])a + min (|m], [n]) (b - a).

This function is very similar to the distance transform of sets
in the real plane, but with the difference that the ||-||, norms
are replaced by the chamfer norms.

The local distance propagation was implemented in [6]
and [35] sequentially via simple recursive min-sum difference
equations. We shall show that these equations correspond to
ETI systems with infinite impulse responses and binary slope
responses. The distance propagation can also be implemented
in parallel via nonrecursive min-sum equations, which cor-
respond to ETI systems with finite impulse responses, as
explained next.

Example 2: Consider a 2-D min-sum autoregressive dif-
ference equation with output mask M, = {(0, 1),(0, 1),
(1, 1), (-1, 1)} and coefficients as in Fig. 6(c) as follows:

u[m, n] = min (u[m — 1, n] + a, u[m, n — 1] + a,
um—1,n—1]+b, ufm+1,n — 1]+ b, fm, n]). (33)

Let X be a set representing a discrete binary image and
consider the (0, +o00) binary image array

f=Ixe

with 0 marking background/source pixels of X and +oo
marking foreground/object pixels. Then consider the following
distance transformation of f obtained in two passes: During
the forward pass (33) is recursively run over f[m, n] in a
bottom-to-top left-to-right scanning order. The forward pass
mapping f — w is an ETI system with an infinite impulse
response (found via induction)

g1[m, n] = {

A truncated version of ¢ is shown in Fig. 6(d). The slope
response Gp(a) of this ETI system is equal to the indicator
function of the region shown (for ¢ = 3, b = 4) in Fig. 5(b).
During the backward pass a similar recursion as in (33) but
in the opposite scanning order and using as output mask the
reflected version of Fig. 6(c) is run over the previous result
ulm, n] to yield a signal d[m, n] which is the final distance
transform of f{m, n]. The backward pass mapping u — d is
an ETI system with an infinite impulse response ga[m, n| =
g1[—m, —n] and with a slope response Gz(«a) = G1(—«).

Since min-sum convolution is an associative operation,
the distance transform mapping f +— d is an ETI system
equivalent to a min-sum convolution with an infinite impulse
response g = g1 [1go as follows:

d=(f0Og1)0g

m+n>0,n>0
else

[1(m, )0, e,
+00,

(34

= f0(g1Ug2)
= fllg. (35)
The overall slope response
G(a) =G1(a) + Ga(@)
= Gl(a) + G’l(——a). (36)

of this distance transform ETI system is the indicator function
of a bounded convex region shown in Fig. 5(c) fora = 3, b =
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4. Further, by using induction on (m, n) and symmetry, we
find that g = g; T gs is equal to

glm, n] = [|(m, n)|la, b 37
A truncated version of g is shown in Fig. 6(b). Note that
glm — i, n — j] is the (a, b) chamfer distance between two
pixels (m, n) and (z, j). Further

(fOgIm, n = N Ixc (i, j)+glm —i,n—j]
(i,4)€Z?
= /\ glm—1,n—j].
(i,7)exe

Thus, our analysis above has provided an alternative proof
(using ETI systems theory) that the two-pass computation via
recursive min-sum difference equations whose coefficients are
the local chamfer distances yields the (a, b) chamfer distance
transform of [6] as follows:
d=Ix0g= Dy p(X). (38)
Two special cases are the two well-known cityblock and
chessboard discrete distances [35]. The cityblock distance
transform is obtained using ¢ = 1 and b = +o0, or equiv-
alently b = 2, i.e., using the five-pixel diamond as the unit
“disk.” It is an ETI system with impulse response g[m, n] =
lm|+ |n| and slope response the indicator function of the unit
square {c: ||@||so = 1}. The difference equation and impulse
response for the forward pass are given by (30) and (31) for
a0 = ao1 = 1. Similarly, the chessboard distance transform
is obtained using @ = b = 1. It is an ETI system with impulse
response g[m, n] = max(|m|, |n|) and slope response the
indicator function of the unit diamond {a: [|a||; = 1}.
Example 3: The (a, b) distance transform can be imple-
mented alternatively using parallel operations. Namely, let

golm, n) = {i[gno n),

Im], |n] <1

else (39)

be the 3 x 3-pixel central portion of ¢ in (37). It can be shown
(via induction) that, the kth-fold min-sum convolution of gq
with itself yields g in the limit

g = lim (900 go) ---Ogo. (40)
A Y ——

k times

Figure 6(b) shows the intermediate result for £ = 3 iterations.
Similar finite decompositions of discrete conical functions into
min-sum convolutions of smaller kernels have been studied in
[45]. Consider now the nonautoregressive min-sum difference
equation

1 1
d®m, n)= N\ N ooli, 5]+ d* D [m —i, n—j] @1
im—lj=—1
run iteratively for k£ = 1,2, --- starting from d® = f.

Each iteration is equivalent to a min-sum convolution of the
previous result with a finite impulse response equal to gg. By
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iterating these local distances to the limit, the final distance
transform is obtained as follows:
d= lim d®. 42)
k—oo
In practice, when the input image f has finite support, the
number of required iterations is finite and bounded by the
image diameter.

Thus, in general, the 2-D discrete distance transforms are
ETI systems whose slope responses are indicator functions of
symmetric polygonal approximations to the disk in the slope
plane and whose impulse responses are approximations to
space cones. In the space domain they are min-sum convo-
lutions with infinite conical functions, whereas in the slope
domain they are 2-D ideal-cutoff bandpass slope filters.

C. Gray-Weighted Distance Transforms

Given a gray-level image f[m, n] and a set of reference
points (the “sources™) S, the gray-weighted distance transform
[38] finds at each pixel p = [m, n] the smallest sum of values
of f over all possible paths connecting p to the sources S.
It can also be viewed as a procedure of finding paths of
minimal “cost” among nodes of a weighted graph. It can be
computed by running a min-sum difference equation like the
one implementing the (a, b) chamfer distance transform but
with spatially-varying coefficients proportional to the local
input image values, as follows:

Uit1[m, n] = min (u;[m — 1, n] + afm, nl,
wilm, n— 1] + affm, 7,
wilm — 1, n— 1] + bf[m, n],
wm+ 1, n — 1]+ bf[m, n], u;[m, nl).
(43)

Starting from ug = Ig, a sequence of functions w; is iteratively
computed by running (43) over the image domain in a forward
scan for even ¢, whereas for odd ¢ an equation as in (43) but
with a reflected output mask is run in a backward scan. In
the limit ¢+ — oc the final gray-weighted distance transform
Uso 18 obtained. In practice, this limit is reached after a
finite number of passes. The final transform depends on both
the sources and the gray values. Fig. 7 shows examples of
weighted distance transforms computed by iterating (43) until
convergence, which was reached at 45 and 17 iterations when
f was the negated image of Fig. 7(a) and (d), respectively,
and sources were at the four-line image boundary.

If the image f is binary and the sources are placed over
all points of its closed boundary, then the gray-weighted
distance transform reduces to the previous unweighted distance
transform.

VI. EIKONAL PDE AND DISTANCE PROPAGATION

A. Eikonal Equation and Geometrical Optics

The main postulate of geometrical optics [7], [39] is Fer-
mat’s principle of least time. For notational simplicity, let
us assume a 2-D, i.e., planar medium with (possibly space-
varying) refractive index n(z, y) = co/c(z, y) defined as the
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(a)

(@
Fig. 7.

)

®

(e)

(a) Original gray image I (Lena) with intensity values in [1, 256]. (b) Gray-weighted distance transform of 257 — I w.r.t. the (5, 7) chamfer metric

using as sources the four-image boundary lines and displayed modulo 1440. (c) 50 isolevel contour lines of the distance transform of 257 — I. (d) Original
gray image (Cameraman). (e) and (f) show same experiments as in (b) and (c) but when [ is the image of (d).

ratio of the speed cq of light in free space divided by its speed
¢(z, y) in the medium. Given two points A and B in such a
medium, the optical path length along a ray trajectory I'4p
(parameterized by £) between points A and B is

optical path length = / n(Cap(l))dé
Tasn

= C()T(FAB) (44)
where d/ is the differential length element along this trajectory,
and T(T'4p) is the time required for the light to travel this
path. Then, Fermat’s principle states that light will choose a
path between A and B that minimizes the optical path length.
While in homogeneous media, where 7 is constant, Fermat’s
principle reduces to simply choosing the shortest distance and,
hence, the straight line connecting A and B, in heterogeneous
media the path of least time is generally not straight. For
example, Fig. 8(a) shows a medium with piecewise-constant
index and two points A and B in two regions each with a
different but constant index; there, the path of least time is
piecewise linear.

An alternative viewpoint of geometrical optics is to consider
the scalar function ®(z, y), called the eikonal, whose isolevel
contours are normal to the rays. Thus, the eikonal’s gradient
[IV®]| is parallel to the rays. It can be shown [7] using
calculus of variations that Fermat’s principle is equivalent to

the following PDE:

V()] = \/ (2 + (2 <m0

called the eikonal equation. Thus, the minimal optical path
length between two points located at A and B is

2(B) ~ B(4) = jnf /F ATanD)de.  (46)

B. Wavefront and Distance Propagation

Assume an optical wave propagating in a 2-D medium of
index n(z, y) at wavelengths much smaller than the image
objects, so that ray optics can approximate wave optics. Then,
the eikonal @ of ray optics is proportional to the phase of
the wavefunction. Hence, the isolevel contour lines of @, i.e.,
®(x, y) = constant, are the wavefronts. Assuming that at
time ¢ = O there is an initial wavefront at a set of source
points S;, we can trace the wavefront propagation using
Huygen’s envelope construction: Namely, if we dilate the
points P = (z, y) of the wavefront curve at a certain time
t with circles of infinitesimal radius ¢(x, y) dt, the envelope
of these circles yields the wavefront at time ¢ + dt. If T'(P)
is the time required for the wavefront to arrive at P from the
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Fig. 8. (a) Two point light sources in two media with different refractive
indexes, and the path of least propagation time (the lighter region corresponds
to 7 = 1, and the darker to = 1.7). (b) Wavefronts originating from the
point sources and propagating with velocities ¢ = cq /7. (Adapted from Fig. 5
of [19].)

sources, then by (44) and (46)
O(P) =coT(P)

= inf {rmf / 7}(I‘Szp(£)) dl + @(Sb)} (C))
3 S P FSlP

Thus we can equate the eikonal ®(x, y) to the weighted
distance function between a point (z, y) and the sources along
a path of minimal optical length and also see  as proportional
to the wavefront arrival time 7'(z, y). See Fig. 8(b) for an
example of wavefront propagation through a heterogeneous
medium. This weighted distance transform uses the Euclidean
norm for horizontal path distances and the index values n{z, )
as vertical weights. Viewing the solution to the eikonal PDE
as a weighted distance function dates back as early as [22],
was discussed in [48], and was proven in [37].

In a homogeneous medium of index 7 = 1 having a planar
support X and sources located all over its boundary, the wave-
fronts propagate at constant velocity ¢g and can be obtained
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from the multiscale dilations of the initial front by disks whose
radii are proportional to the time of propagation [5]. The
eikonal function @ is then simply equal to the unweighted
distance transform of X, since the paths of minimal optical
length will be straight lines. However, in a heterogeneous
medium of planar support X, the wavefronts result from
successive dilations by small disks of spacially varying radii,
and the eikonal ® becomes a weighted distance function whose
values depend on the geometry of X, the geometry of the
sources, and the index field 7.

C. Applications

Three important problems in image processing and com-
puter vision are shape from shading [17], gridless image
halftoning [31], and watershed image segmentation [4]. Re-
cently, all these problems have been approached from the
viewpoint of solving the eikonal equation driven by different
fields of refractive indices.

The goal of shape from shading is to find a 3-D surface
z(x, y) which, when illuminated, yields a 2-D image matching
a given intensity image I(z, y). Assuming a Lambertian image
surface, the unknown function z satisfies an eikonal equation
[17], [48] as follows:

1

-

IVz(z, y)|| = I(z, y)

(48)
Numerical solutions to the eikonal, or equivalently to finding
weighted distance transforms, solving shape from shading
problems have been given in [48] using discrete distance
algorithms implemented via queues and in [19] using curve
evolution implemented via the numerical algorithms of [30].

An efficient morphological approach to image segmentation
is the watershed [4], which transforms an image f to the
crest lines separating adjacent catchment basins that surround
regional minima or other “marker” sets of feature points. From
the work in [27]-[29] and [33], it has been established that
computing the watershed is equivalent to finding a skeleton by
influence zones with respect to a weighted distance function
that uses the regional minima as sources and ||V f|| as the field
of indices. (If other markers different than the minima are to
be used as sources, then the homotopy of the function must be
modified to impose these markers as minima.) Hence, it has
been proposed in [27]-[29] to use existing efficient watershed
algorithms for finding the solution to the eikonal.

Another interesting application is gridless image halfioning.
Inspired by the use of the eikonal function’s contour lines [42]
for visually perceiving an intensity image I(z, y), the work
in [48] and especially in [31], [32] attempts to solve the PDE

IV®(z, )] = const — I(, y) (49)

and create a binary gridless halftone version of I(z, y) as
the union of the isolevel curves of the eikonal function
®(z, y). The larger the intensity value I(z, ), the smaller
the local density of these contour lines in the vicinity of
(z, y). To illustrate the power of this approach, shown in
Figs. 7 and 9, we have computed numerical solutions of
the eikonal PDE in (49) using discrete weighted distance
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Fig. 9. Gridless halftoning of gray-level images I with intensities values in [1, 256] via plotting 50 isolevel contour lines of the gray-weighted distance
transform of 257 — I for various locations of the light sources. (a), (b), and (c) show results when I is the Lena image of Fig. 7(a), and the source
is: (a) the center point of the image; (b) the top left image corner point; and (c) the left image boundary. (d), (e), and (f) show same experiments as

in (a), (b), and (c) but when I is the Cameraman image of Fig. 7(d).

transforms, implemented? by iterating the min-sum difference
(43) with @ = 5, b = 7. Extending the discussion in [48], the
rationale for such a solution is that, away from the sources,
this difference equation mapping f — u corresponds to

\/ ulm,n] — ulm —i,n — j]
iy

=/

(50)

m, nj
(i,7)€B

where a;; are the chamfer weights inside B equal to the union
of the output mask and its reflection. The left side of (50) is the
(weighted) discrete morphological derivative M(—u) equal to
u — u © B, where horizontal distances are weighted by agj.
Thus, since in the continuous case M(—u) = ||Vul|, (50)
is an approximation of the eikonal. In fact, as established in
[27], it is possible to recover a digital image u from its half
morphological gradient w — v & B using weighted distance
transforms if one places the source points in each regional
minimum of u. The experimental results shown in Fig. 9 for
various light source locations verify the conclusion of [32] that
this eikonal-based approach to gridless halftoning is indeed
very promising and can simulate various artistic effects.

2 Alternative implementations of weighted distance transforms include
queue-based algorithms using special data structures such as “buckets” with
priorities [49, ch. 1] or hierarchical queues [27].

VII. MULTISCALE MORPHOLOGICAL PDE’S

Most of the work in multiscale image analysis involves
obtaining the multiscale linear convolutions

ami= [ [ Lene=w

2 2
- exp (_v th )dvdw

of the original image f(z, y) with a 2-D Gaussian function
whose variance (2t) is proportional to scale ¢. The popularity
of this approach is due to its linearity and the fact that the
multiscale function v can be generated from the isotropic heat
diffusion equation

Iy _ Py
ot Oz

2
& (51
oy?
with initial condition v(z, y, 0) = f(z, y). The big disad-
vantage of the Gaussian multiscale approach is the fact that
linear smoothers blur and shift important image features, e.g.,
edges. In contrast, morphological smoothing filters, such as
openings and closings, can smooth while preserving important
image features and correspond to simple filtering operations.
Examples are shown in Fig. 10. So far the vast majority of im-
plementations of multiscale morphological filtering had been
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(d)

Fig. 10.

(b)

(e) )

Multiscale smoothings of the original Cameraman Fig. 7(d) at scales ¢+ = 4 for (a), (b), and (¢) and t = 8 for (d), (e),and (f). The smoothers

are: (a), (d) Linear convolutions with Gaussians of standard deviation v/2¢; (b), (¢) morphological clos-opening by a square of (¢ + 1) x (¢ + 1) pixels;
(¢), (f) clos-opening by reconstruction [40] by a square of (f 4+ 1) x (f 4 1) pixels.

discrete. In [8] and [9] nonlinear PDEs were developed for
generating continuous-scale morphological erosions/dilations
and openings/closings. Herein we shall limit our discussion to
PDEs for erosions and dilations by flat structuring functions
whose support sets 3, are the unit balls corresponding to the
norms {|-}|,.

The muitiscale dilation and erosion of f: R® — R by a
compact convex set B), at scale ¢ are defined as the space-scale
functions

O(w, y, t) = ([ ®LBy)(x. y)
e(z, y, t) =(fotBy)(z, y)

where §(z, y, 0) = &(z,y,0) = f(z,y). The multiscale
morphological PDEs describe the evolution of the multiscale
dilation and erosion functions in scale-space by relating the
infinitesimal rate of change along the scale direction ¢ to the
infinitesimal rates of change along the spatial directions x. y.
Thus for the multiscale dilation the goal is to find a PDE for
the following evolution equation:

il

, Syt ) = Oy f)

(52)

Given the semigroup property of multiscale dilations we can
write the above as

ot

§(z, y, 1) ® 7B, — 6(z, y. 1)
2 .

(z,y,t)= liﬁ)x (53)

Consider now the general morphological sup-derivative®
M(f) of f defined as in (3) by replacing the disk B with the
general ball B,,. Then, it follows that the infinitesimal rate of
change of § along the scale direction ¢ is equal to its partial
morphological sup-derivative in the spatial domain, as follows:

Zf = My (6) (54)
where the partial sup-derivative is defined as
My (8) (z. y, t) =
\  b@ta,y+bt) =6z, yt)
l,lflol jt(a.b){lp<r - (55)

The general PDE of (54) can deal with possible discontinuities
in the signal derivatives.
If § is differentiable at (x, y, t), then
Sz +a, y+bt)—6(z, y t)=
a6 aé
+ o([|(a, b)I)I(a, b

05 b

6
oz Oy (56)

3The limit in the definition of the morphological derivative may not exist.
For example, if f(x) = |z|P and B = [—1, 1], then M(f)(0) is equal to 1
ifp=1,0if p = 2, and +oc if p = 1/2. If the limit does not exist, the
“lim” could be replaced by “limsup.”
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(a) Original digital gray-level image f and its contour at ievel=0. (b) Binary image X from thresholding f at level= 0. (¢) Flat dilation f & B

of f by a discrete disk, i.e., a square of (2t 4 1) x (2¢ 4 1) pixels with ¢ = 5. (d) Binary image X 4 B from thresholding f $& B at level = 0.
(e) Dilation of f by running the PDE 88/8t = {|Vé{]z via curve evolution for scales t € [0, 5] with initial condition §(x, 0) = f(z). (f) binary

image from thresholding the image in (e) at level = 0.

and in the limit + | 0, using Holder’s inequality (19), (53)
becomes Mg, (§) = ||V6]|,, which simplifies (54) to

22

ot
with ¢ = p/(p — 1). This PDE states that the velocity of the
multiscale dilation by a ball B, along the scale direction ¢ is
equal to the g-norm of its spatial gradient over the z, y plane.
The multiscale erosions & satisfy equations identical to the
above dilation PDEs except that one must multiply the gradient
norms by —1; t.e., 9e/8t = —||Vel|. These simple but nonlin-
ear PDEs are satisfied at points where the data are smooth, i.c..
the partial derivatives exist. Starting from a continuous f, the
multiscale functions 6 and & remain continuous at all z, y, ¢.
However, even if f is differentiable, as the scale ¢ increases

= [[Vélly (57)

the multiscale erosions/dilations can create discontinuities in
their desivatives; then these derivatives and the generator PDEs
have to be interpreted correctly at such points according (o the
specific case. This problem is solved if we assume that left
and right derivatives exist in cach direction and replace the
conventional derivatives with morphological derivatives.

In [41] the dilation PDE 86/1 = [|Vé{l, was numerically
solved using robust algorithms from {30] for curve evolution.
Thus multiscale dilations by disks can be modeled in a
continuous framework, i.e., via PDEs, and then implemented
via algorithms that can approximate arbitrarily well the shape
of the Euclidean disks on the discrete plane. Fig. 11 shows
the results of a simulation to compare the traditional dilation
of digital images via discrete max-sum convolution of the
image by digital approximations to disks, e.g., squares, versus
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a dilation, which is the solution §(z, y, t) of the dilation PDE
implemented as in [41] using the curve evolution algorithm of
[30]. Comparing both the gray-level images and their binary
versions (from thresholding at level = 0) it is evident that the
PDE approach to multiscale dilations can give much better
approximations to Euclidean disks and, hence, avoid the abrupt
shape discretization inherent in modeling digital multiscale
dilations using discrete disks.

The eikonal PDE ||Vu(z, y)|| = n(z, y) relates the mag-
nitude of the eikonal’s gradient to the index field. Hence, it
is related to the multiscale morphological PDEs where the
velocity along the scale direction is equal to the norm of the
spatial gradient. Actually, in [41] continuous-scale dilations
of binary images have been implemented by embedding the
binary image as the zero-level threshold set of a function ¢
and solving the PDE 9¢/8t = ||V¢|| using the numerical
algorithms of [30] that are suitable for PDEs of the eikonal
type. Also, in [19] the curve evolution approach to distance
transforms is related to solutions of eikonal-based PDEs of the
type vy = ||Vu(z, y)|| — n(z, y) at steady state (u; = 0).

Finally note that, given that ||al|, is the upper slope
transform of the indicator function of the ball B, (see Table
IT), it follows that

a6

ot
where SY(f) denotes the upper slope transform of a signal f.
Namely, the velocity of é along the scale direction ¢ (and
its spatial morphological derivative) is equal to the slope
transform of the indicator function of the ball B, evaluated
at a slope equal to the spatial gradient of §. Details of this
slope transform interpretation of morphological derivatives
and dilation PDEs can be found in [16]. Also, in [26] the PDEs
describing the scale-space evolution of multiscale dilations
of umbras (i.e., hypographs and epigraphs) of signals were
expressed in terms of Fenchel conjugates (closely related
to the slope transforms) using ideas from convex analysis;
however, note that set dilation of signal umbras does not
always correspond to max-sum convolution @ of signals.

= sz(5) = SV(—IBP)(V‘” (58)

VIII. CONCLUSIONS

‘We have developed 2-D max/min-sum difference equations
that model the space dynamics of 2-D morphological systems
and slope transforms that can analyze these systems in a
transform domain. We have also introduced the concepts
of impulse response and slope response that are useful in
understanding the behavior of distance transforms as infinite-
extent min-sum convolutions in the space domain and as
bandpass spatial slope filters in the slope domain. Some of
these ideas were also used to analyze the eikonal PDE solved
via distance transforms and the evolution PDEs modeling
multiscale dilations and erosions. We view the analysis of these
nonlinear PDEs and the max/min-sum difference equations as
a unified area in nonlinear image processing, which we call
differential morphology.

The eikonal PDE has many potential applications, includ-
ing solving problems in distance-path finding, segmentation,
gridless halftoning, and shape from shading. However, its
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computation via weighted distance transforms has considerable
complexity. Since we have shown that distance transforms are
slope filters, it remains to be seen whether a faster distance
computation can be found based on slope transforms; the
appealing fact here is the correspondence of min-sum signal
convolutions in space to transform additions in the slope
domain. However, since weighted distance transforms require
difference equations with spatially varying coefficients, a study
is also needed of the shift-varying slope response of adaptive
min-sum difference equations.

The dilation PDEs suggest new ways to view and imple-
ment morphological multiscale filtering that avoid the shape
discretization effects inherent in all discrete implementations
as demonstrated in [41] by implementing continuous-scale
morphological dilations of binary images via curve evolu-
tion. Given that good approximations to Euclidean distance
transforms and, hence, to multiscale dilations of binary images
by disks, can be efficiently computed using chamfer distance
transforms, a comparison remains to be done to study the
relative advantages of the curve evolution versus the chamfer
distance approach in terms of goodness of approximation
and computational complexity. A preliminary work in [10]
indicates that the PDE approach, implemented via curve
evolution, can achieve a better approximation to Euclidean
distances and multiscale analysis than the chamfer distance
transforms, but at a higher computational complexity.
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