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1. INTRODUCTION

Natural scenes contain many classes of objects that have a high degree
of geometrical complexity. Examples include clouds, mountains, trees,
and coastlines. In addition, many nonlinear dynamical systems give rise to
limit sets whose images exhibit a high degree of geometrical complexity.
Mandelbrot (1982) has demonstrated in his pioneering work that a large
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class of mathematical sets, called fractals, can model well many such image
classes. Fractal images have become aesthetically attractive through
synthesis via computer graphics (Mandelbrot, 1982; Voss, 1988; Barnsley,
1988). Although the fractal images are the most popularized class of
fractals, there are also numerous natural processes described by time-series
measurements (e.g., 1/f noises, econometric and demographic data, pitch
variations in music signals) that are fractals (Mandelbrot, 1982; Voss,
1988). The one-dimensional (abbreviated as 1D)" signals representing these
measurements are fractals in the sense that their graph is a fractal set. In
addition, the geometrical complexity of fractal surfaces of physical objects
is often inherited in the 2D image intensity signals emanating from such
objects (Pentland, 1984). Thus, analyzing and modeling fractal signals is of
great interest both from a scientific and an engineering viewpoint.
Perhaps the most important characteristic of fractals is that they have
similar structure at multiple scales. Thus, in this chapter we address two
problems related to this multiscale structure of fractal signals. The first is an
analysis problem and deals with the estimation of the fractal dimension. This
is an important parameter measuring the degree of fragmentation of fractal
signals and is useful for their description and classification. Intuitively, it
measures the degree of their fragmentation or irregularity over multiple
scales. It makes meaningful the measurement of metric aspects such as the
length of fractal curves and the area of surfaces. The second problem deals
with modeling fractal images by collages, i.e., nonlinear combinations
of down-scaled, rotated, and shifted versions of the original image. The
unifying theme in the approaches presented herein to both problems is the
extensive use of morphological filters for their efficiency as well as their
ability to rigously extract size information from a signal at multiple scales.
These morphological filters are based on elementary operators of morpho-
logical signal analysis (Serra, 1982; Maragos and Schafer, 1987, 1990).
This chapter begins by providing in Section II the definitions of some
basic morphological transformations for sets and signals, i.e., the erosion,
dilation, and opening operations, which are required for the analysis in this
chapter. This is followed by a brief survey of the theory of fractal dimen-
sions. There is a proliferation of fractal dimensions, all of which are more
or less capable of measuring the degree of fragmentation of a signal’s
graph. In Section III we review their definitions and interrelationships.
Emphasis is given on the Minkowski-Bouligand dimension, whose analysis
is done using morphological operations. There are numerous classes of

! In this chapter the notation #D will mean *“n-dimensional,” wheren = 1,2,3,.... AnnD
signal will imply a function with » independent variables, whereas an nD set will mean a set of
points in the Euclidean space R”.
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fractal signals. In Section IV we review three classes of parametric fractal
signals and related algorithms for their synthesis. The performance of the
presented morphological method for measuring fractal dimension is tested
by applying it to the above synthetic fractal signals.

Section V focuses on the covering methods, a class of general and
efficient approaches to compute the fractal dimension of arbitrary fractal
signals. It essentially reviews the work of Maragos and Sun (1991) where a
general framework was presented, based on multiscale morphological
erosions and dilations with varying structuring elements, that provides the
theoretical support for and underlies many of the digital implementations of
covering methods, e.g., in Dubuc ef al. (1989) and the 1D analogs of the
methods in Peleg et al. (1984), Stein (1987), and Peli ef al. (1989). We shall
refer to these unified algorithms as the morphological covering method.
This approach originally attempts to cover the graph of a 1D signal with
2D sets at multiple scales. Thus, for an N-sample N-level 1D digital signal,
the set-cover methods require a O(N?) computational complexity at each
scale. However, covering the signal’s graph with properly chosen 1D
functions via morphological filtering yields identical results and involves
1D processing of the signal. Hence, the morphological filtering approach
reduces the original set-cover complexity from quadratic to linear, since for
an N-sample 1D signal the function-cover method has complexity O(N) at
each scale. A morphological covering algorithm for estimating the fractal
dimension of discrete-time signals is also presented and applied to three
classes of fractal signals. The morphological covering method applies to
arbitrary signals. In Section V.D we briefly describe (from Maragos , 1991)
its application to measuring the short-time fractal dimension of speech
signals. Section VI extends the morphological covering approach to finding
the fractal dimension of 2D signals and provides a related discrete
algorithm. Section VII deals with modeling fractal binary images using
collages. The theory of collages is first reviewed from Barnsley (1988) and
then an approach is presented from Libeskind-Hadas and Maragos (1987)
to finding a good collage based on morphological skeletonization. Finally,
Section VIII concludes with some suggestions for future work.

1I. MORPHOLOGICAL SIGNAL TRANSFORMATIONS

In this section we review the definitions of the elementary morphological
transformations for sets and signals. More details, the properties, and many
applications of these operators can be found in Serra (1982), Sternberg
(1986), Maragos and Schafer (1987, 1990), Haralick et al. (1987), Heijmans
and Ronse (1988), and Serra and Vincent (1992).
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A. Set Operations

Consider sets X, B in the Euclidean space R? or the discrete space Z¢,
d=1,2,3, ..., where Ris the set of reals and Z is the set of all integers. Let

Xtz2x+z:xeX) n

denote the translate of X by the vector +z, and let B £ {—b:b e B} be
the reflection of B. The fundamental morphological operators for sets are
the dilation @ and erosion © of X by B, which are defined as follows:

X®B2 UX+b=:B+2NX# Q) )
beB

XOoBE NX-b=k:B+z< X} &)
beB

In applications where X is an input set to some system, the second set B is
usually compact and has a simple shape and small size; B is then called a
structuring element. Thus, the output of the dilation operator is the set of
translation points such that the translate of the reflection of B has a
nonempty intersection with the input set. Similarly, the output of the
erosion operator is the set of translation points such that the translated
structuring element is contained in the input set.
Another fundamental operator is the opening O of X by B:

XOB2(XOSB®B )
Note that X O B € X for all X and B, because
XOB= \J B+z )
b+zeX

To visualize the geometrical behavior of these operators, it is helpful to
consider a 2D set X representing a binary image and the structuring element
B being a disk centered at the origin. Then the erosion shrinks the set X,
whereas dilation expands X. The opening suppresses the sharp capes and
cuts the narrow isthmuses of X, inside which B cannot fit. Thus the opening
by a disk performs a nonlinear smoothing of the image contour. Clearly, if
we vary the structuring element B, then its shape and size will determine the
nature and the degree of shrinking, expansion, or smoothing during the
above morphological operations.

B. Function Operafions

Consider signals f and g whose domain is the set E, equal either to the
Euclidean space R? d = 1,2, 3, ..., or the discrete space Z%, and whose
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range is a subset of R U {—o0, oo}. The support of f is the following subset
of its domain:

Spt(f) £ {x € E: f(x) > — oo} (6)

The dilation @ and © of the signal f by the (structuring) signal g are
defined as the signal operations

(f@® ) & sup () + gl — )} @)
yelG+x
(f O 9 = , inf {f0) - 80y = ) ®
where
G = Spt(g) ©)
The structuring function g usually has a compact support G and simple
shape.

A special, but quite useful in applications, case results when g is a flat
Function, i.e., assumes only two values on E. Specficially if

0 ifxeG

’ 10
- 00, ifxe G (10)

gx) = {

then the general dilation and erosion of f by g reduce to the following
moving local maxima and minima:

(f® o) = sup fx =) an
ye

(f© o) = inf {fx + »)} 12)
yeG

III. FracTAL DIMENSIONS

In this section we review several fractal dimensions,> which are more or less
capable of quantifying the degree of fragmentation of curves and surfaces.
More general and detailed discussions on these topics can be found in the
books by Mandelbrot (1982), Barnsley (1988), and Falconer (1990).
Unless otherwise stated, we shall assume in this section that F is a
nonempty compact subset of the Euclidean space R?, d = 1,2,3, ...

2 All the fractal dimensions discussed in this chapter are related only to the geometry of a set
and its metric aspects. For fractals that are sets of attracting points of chaotic dynamical
aystems, Farmer et al. (1983) discuss other types of dimensions that depend on the probability
mass of parts of the set; such dimensions are not discussed in this chapter.
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A. Hausdorff Dimension

Let € = 0 be the scale parameter. An g-cover of F is any countable sel
collection X(¢&) = {X;:i=1,2,...}such that F = |J; X;and 0 < diam(X;) < ¢
for all i/, where diam(X;) is the largest distance between any two points of
X;. The d-dimensional Hausdorff measure of F' is defined as

3Cs(F) = lim <ca inf {2 [diam(Xi)]5}> 13)
&0 X&) i
where c; = y(8)/2% is a normalizing constant and
a2y
Y9 = Fi ¥ 0.55) (14)

where I'() is the gamma function.?® Note that, if d = 1, 2, 3, ..., then y(d)e?
is the volume of the d-dimensional ball of radius &. There is a critical real
number Dy = 0 such that

d < Dy

15
0, J>Dy {13)

This critical Dy, is the Hausdorff dimension of F and is equal to
Dy (F) = inf{d: 3C;(F) = 0} (16)

This dimension was introduced by Hausdorff (1918) and further analyzed
by Besicovitch (1934) and Besicovitch and Ursell (1937). Mandelbrot (1982)
defines formally the fractal dimension of F as equal to Dy . Further, he calls
a set fractal if Dy strictly exceeds its topological dimension Dy. Hence

set F' is fractal & Hausdorff dim Dg(F) > topological dim Dz(F)

The topological dimension is always an integer, and for a continuous curve
represented by a function, Dy is the number of independent variables of this
function. Whenever the set F is implied, we will drop it as argument of the
various dimensions. General categories of fractal sets in R? are:

Dr=0<Dyg=1=F = fractal dust

Dr=1< Dy <2 = F = fractal curve

Dy =2 < Dy < 3 = F = fractal surface

% The gamma function is defined as I'(p) = i3 xP ' exp(~x)dx, 0 < p < . Note that
T(1/2y=vr, and Ta+n)=@+n—-)a+n-2)...al'(@ for n=1,2,3,... and
O<a=xl.
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Example 1. Cantor set: Define a set sequence {C,};-, through the
following recursion:

Co=[0,11={reR:0=r=< I a7
Ci=10,31U L5 1] (18)

C=10,51UB 31V 3V, 1] (19)

Cn = (%_Cn—l) U [(%_Cn—l) + %]’ n = la 29 3: e (20)
where, given an arbitrary set X € R%, d = 1,2,3, ..., the set
rX £ {rx:x e X} (21)

In its scaling (i.e., positive homothetic) by the real number r > 0. Thus, each
member of the sequence C, is equal to the union of two scalings of C,_, by
1/3, one of which is also translated by the vector 2/3. The sequence {C,}is
& monotonically decreasing sequence of closed sets whose limit

C=lim C, = NG, (22)
Is the Cantor set. At each n, C, consists of 2" intervals of length
& = @) (23)
The Hausdorff measure can be found as
¥y = lim c;Hie,, 5) (24)
where
H(e,,d) = %?f) {E [diam(Xi)]a} (25)
&n i

In general, the tightest covers (s,) will be when, for each i,
dlam(X;) = (1/3)" for some integer n; = n. If 2 > 3%, then the tightest
cover occurs if n; = n for all i, because using diam(X;) = (1/3)" with
n' > n for some i yields

2\" 2\"
<§g> = 2 [diam(X))]° = <§>

H(e,,d) = 2/3°)

Therefore,

and hence
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Further, we have

2n
325<1=>H(8m5)s<~3—a> =3, =0

k
GC& =

(o]

Since
if § > log(2)/1og(3)

if 6 < log(2)/1og(3)

the Hausdorff dimension of the Cantor set is

log(2)

= 0.6309
log(3)

Dy(C) =

B. Similarity Dimension

If F can be decomposed into the union of » disjoint of just-touching .copies
of itself that are (possibly translated, rotated, and) scaled by ratl‘os T
i=1,...,n, then the similarity dimension (Mandelbrot, 1982) is the

solution Dy of the equation

Y P =1 26)
i=1
If all ratios 7, are equal to r = r;, then
o= log(N) @7
log(1/r)

In several cases we have Dg = Dy (Hutchinson, 1981; Mandelbrot, 1982).

Example 2. Consider the Cantor set C defined as the limit. of the set
sequence C, in (20). Since each C, is the union of N = .2 copies of C,_4
scaled by r = 1/3, the limit C will be the union of two copies of itself scaled

by 1/3. Hence

C. Minkowski-Bouligand Dimension

1. Sets in R®

This dimension is based conceptually on an idea by Mir}kOWSki (1901, 190.3)
of finding the area of irregular surfaces or length of 1rreg.ular curves F in
R3. Specifically, dilate F' with spheres of radius ¢ by forming the union of
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these spheres centered at all points of F and thus create the set

F,=Uf{eb+20eR:|b|<1}, £=20 (28)

zeF
where, for d = 1,2,3, ..., ||| is the Buclidean norm
o]l & Vot + - + B2,  b=(b,,...,b,) e R? 9

Fy is called a Minkowski cover.* Then find the volume vol(F,) of the

dilated set at all scales &, and set the volume, area, and length of the original
set F as equal to®

vol(F) = lim vol(F})
£—>0
area(F) = liII(l) vol(F,)/2¢ (30)
len(F) = lin(l) vol(F,)/ne?
E—

Ford =1,2,3, ..., it follows from (14) that the volume of a d-dimensional
ball of radius ¢ is
Wd)e? = ((eb) e R?: |b] = 1 €)Y
Now the Minkowski d-content of F is defined as
. vol(F,
J-content of F £ lim ;6_—(5)8)3—_5
Example 3. Square: If S is the square

(32)

S=1 1
then
vol(S,) = 2/% + 27nle? + 4ne3/3
and
8 1 2 3
Jd-content length = area = /* volume = 0

Thus, in general, for any set F there is a critical number D,z such that

d-content of F = {oo’ if 0 < Dy

0, ifd>D, (33)

4 Bouligand (1928) and Mandelbrot (1982) attribute this cover construction also to Cantor.

* Serra (1982) also has a related discussion where morphological dilations are used in
stereology.
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Bouligand (1928) extended these ideas to cases where D, is not only
integer but also fractional. Hence, the Minkowski-Bouligand dimension is

defined as
oo VOUE)
Dy(F) = 1nf{5. P_»Hé —————~—y(3 YR = 0} (34)
= 3 — A[vol(F})] (35)
where we define
AP £ sup {p: tim 7 0} (36)

as the infinitesimal order of a function f(x), around x = 0.

Lemma 4. The infinitesimal order of a function f(x) can be obtained by

Af) = l}c}rgo%%g%') 37)
Proof. 1If we denote
P = {p: lim Sox™ = }
then

A = supi{p:p € P}

Note that p € P if and only if for all ¢ > 0 there exists a > 0 such that
| f()| < &|x|” and hence
log(| fx)) < plog(lx]) + loge),  [x] <&

This implies

_ log(Lfx)) _ log(®)
= log(lx)  log(lx])’

Thus in the limit |x| — 0 we obtain

|x| < min(1, J)

log(| /)]
= 1% Tog(IxD

Since also p € P implies that p — £ € P for all ¢ > 0, the above analysis
implies that

1
A= sup{p:p < lim _____og(lf(x)l)}
lrl~o log(lx|)
which completes the proof of (37). (Q.E.D.)
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From the above lemma it follows that

. log[vol(F})]
Alvol(F)] = ol rer
[Vol(F)] }:lg(l) log(®) (38%)
which implies that
. log[vol(F,)/&%]
Dy (F) = lim —=———e2 2 2
() = i 17e) (39)

}t is also possible to replace the limit £ — 0 with the limit of a sequence;
M
log[vol(F, )/&;]

D.(F) = lim ————»_1-
w () nove log(1/¢,) (40)

where {¢,}n - o is a decreasing sequence of scales such that ¢, = pr” for all n,
for some 0 < r < 1 and p > 0.
The intuitive meaning of the dimension D = D,, is that
vol(F,) = ¢, &%,

area(F,) = c,e*™ P,

len(F,) = c;¢' 77,

aseg— 0 40

where ¢, , ¢,, ¢, are proportionality constants. Thus if F' is a curve in R® and
D > 1, then its length is infinite.

2. Sets in R?
To find the area and length of a compact set F < R* we can create a 2D
Minkowski cover ‘

F,=Uleb+2eR:|b| =1 42)

zeF

by dilating F with disks of radius &, find the area of the dilated set at all
scales ¢, and set the area and length of the original set F as equal to

area(F) = lim area(F,)
-0

) 43)
len(F) = III% area(F,)/2e
&
Then the Minkowski-Bouligand dimension of F is equal to
Dy (F) & 2 — Alarea(F,)] (44)
2
~ lm loglarea(F,)/&”] (45)

e—0 log(1/¢)
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Example 5. Linear Segment: Consider the 1D set

S = [

Then the Minkowski cover area is

area(S,) = 2le + ne*
Hence
Dy (S) =2 — Alarea(S))] =2 -1 =1

3. Setsin R

To find the length of a compact set F € R we can create a 1D Minkowski
cover
F,=J(eb+20eR: -1 =b =<1}

zeF

(46)

by dilating F with intervals [—e¢, €], and set the length of the original set F
as equal to

len(F) = lim len(F,) 47)
£~0
Then the Minkowski-Bouligand dimension of F is equal to
Dy (F) £ 1 — Allen(F,)]
log[len(F,)/ €]
—a S 49
>0 log(1/¢) 49

Example 6. Consider the Cantor set C, which is the limit of the set
sequence {C,} defined in (20). Since C,,.,; € C, for all n and C =N, C,,

C.r: = m(cn)e (50)

Dilating each C; with an interval [—g,, ¢,], where 2¢,, = (1/3)", creates the
dilated sets

(Ci)s, = (Crzy)s, Vkzn-1 (51
Hence the 1D Minkowski cover of C at scale ¢, has length
len(C; ) = 2"‘1<% + 2a,,> = 2@) (52)
which implies that
Du(©) = lim P i S O
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D. Box-Counting Dimension

Por compact planar set F < R? let us partition the plane with a grid of
sqQuare boxes of side & and count the number N(¢) of boxes that intersect
that set F. Then, if we replace the Minkowski cover area in (45) with the box
gover area

Aboxc(F, 8) ‘A’ gzN(g) (54)
we obtain the box dimension (Bouligand, 1928)
o T IOg[Abaxc(Fs 8)/82]
DB(F) =2 - A’[Aboxc(Fs 8)] - l% 103(1/8) (55)
_ Jim 08NEN (56)

e~0 log(l/¢)

Lemma 7. For any compact set F < R?, the Minkowski cover area and
the box cover area have the same infinitesimal order.

Proof. Every disk of radius 2¢ in the Minkowski cover of F will contain
a8 subset the grid box that contains the coresponding disk center. Hence

Apoxc(F, £) < area(Fe) (57)

Also, Bouligand (1928) has shown that area(F,,) = r* area(F,) for
0 =< r < 1, which implies that

(58)
In addition, every disk of radius ¢ in the Minkowski cover of F is a subset

of the union of the box that contains the disk center and its eight neighbors;
hence

area(F,) = 4 area(F,,)

area(l;'e) = 9Aboxc(F, 8) (59)
The three above inequalities imply that
arcalfl) _ 4, (F,e) < 4- arca(F)) (60)

Taking logarithms on all sides of this inequality, dividing by log(e), and taking
the limit as ¢ = 0 yields

log[area(Fe)] _ i log[Apoxc(F; €)] 1)
e-0  log(e) £=0 log(e)
which implies that
AMApoxc(F, €)] = Alarea(Fy)] (62)

This completes the proof of the lemma. (Q.E.D.)
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As a direct corollary of the above lemma, we see that Dy = D,, for all
planar sets F. The definitions and results in this section can also be extended
to compact sets F < R? of any dimensionality d = 1,2,3,.... Ford =1
the boxes will become intervals of length &, whereas for d = 3, the boxes
will become cubes of side ¢. Thus, in general,

Dy = Dy 63)

E. Entropy Dimension

The entropy dimension (Kolmogorov and Tihomirov, 1959) of a compact

set F < R? is defined as

IOg[Nmin(g)]
log(1/¢€)

where N,,;,(¢) is the smallest number of d-dimensional balls with radii €
required to cover F. (It is also called the ‘‘capacity’’ dimension in Farmer
et al. (1983).) In Barnsley (1988) and in Falconer (1990) it is shown that

Dy = Dy (65)

Example 8. Consider the Cantor set C, which is the limit of the set
sequence {C,} defined in (20). Each set C, consists of 2" intervals of length
2e, = (1/3)". For each scale ¢,, the smallest cover of C will be the set C,,
which consists of N,,;,(€) = 2" intervals of length 2¢,. Hence

108 [Nmin (€] _ 1 log(2") _ log(2)
T e log2- 3" log(3)

Dy = lim (64)

e—0

Dz(C) = lim (66)

n-o log(1/¢g,)

F. Relations among Dimensions

For each compact subset of R, the dimensions discussed in the previous
sections satisfy the general relationships

OSDTSDHSDM:DB—_—DESd
Dy < Dy

In general, Dy # D,, (Mandelbrot, 1985; McMullen, 1984; Falconer,
1990). However, in this chapter we focus on the Minkowski-Bouligand
dimension D,;, which we shall henceforth call fractal dimension D,
because; (1) it is clearly related to Dy, and hence able to quantify the fractal
aspects of a signal, (2) it concides (in the continuous case) with Dy in many
cases of practical interest; (3) it is much easier to compute than Dg; (4) it
is more robust to compute than Dy for discrete-variable signals.

(67)
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Although Dy = D), in the continuous case, they correspond to two
different algorithms (with different performances) in the discrete case. In
general, Dy, can be more robustly estimated than Dy, which suffers from
uncertainties due to the grid translation or its spacing. This is further
¢xplained in Section V.C.

" In conclusion, a practical algorithm to estimate the dimension D,, is from
the slope of the following approximately linear relation in log(1/¢); i.e., for
pets F c R*:

vol(F.) 1
log =3 =~ Dy log A + constant, ase—0 (68)
and for planar sets F < R?:

area(F,) 1
log -2 = Dy log z + constant, ase— 0 (69)

IV. FRACTAL SIGNALS

A d-dimensional signal represented by a function f: R? — Ris called fractal
if its graph

Gr(f) = {(x,») e R* X R:y = f(x)) (70)

is a'fractal set in R?"'. Further, if f is continuous, then its graph is a
continuous curve with topological dimension equal to d. Hence

J is continuous = d < Dy[Gr(f)] <= Dy[Gr()] =d + 1 (71)

In this section we briefly describe three classes of parametric fractal test
signals. These are the deterministic Weierstrass functions (WCFs) (Hardy,
1916; Mandelbrot, 1982; Berry and Lewis, 1980), the deterministic fractal
Interpolation functions (FIFs) (Barnsley, 1986: Barnsley, 1988; Hutchinson,
1981), and the random functions of fractional Brownian motion (FBM)
(Mandelbrot and van Ness, 1968; Mandelbrot, 1982). These factals have been
used in a variety of applications. For example, there are many natural
phenomena that can be modeled using such parametric fractals (Mandelbrot,
1982). In addition, the FBM and FIFs have proven to be valuable in computer
synthesis of images of natural scenes (Voss, 1988; Barnsley, 1988).

A. Weierstrass Function
The Weierstrass cosine function (WCF) is defined as

Wu) = ¥y cosQay*s) (72)
k=0
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with real positive parameters H and y which, for convergence of the above
infinite series, should be in the ranges

0<H<1,

If y is integer, then the WCF is periodic with period one. This function is
continuous, but nowhere differentiable because its derivative is given by the
infinite series

W) _ oy 5 p*sin@my*o),
dt k=0

which generally diverges since 8 > 1. The fractal dimension of the WCF is

D=2-H.

In our computer experiments, we synthesized discrete-time signals from
WCFs by sampling ¢ € [0, 1] at N + 1 equidistant points, using a fixed
y = 5, and truncating the infinite series so that the summation is done only
for 0 < k < Ky, Where Ky, was determined by requiring 27y* < 10%2,
so that the cosine’s argument does not exceed the computer’s double-
precision. Figure la shows three sampled WCFs whose fragmentation
increases with their dimension D.

y>1

B=y" (73)

B. Fractal Interpolation Functions

The basic ideas in the theory of fractal interpolation functions were
developed by Hutchinson (1981) and Barnsley (1986). Given is a set of data
points {(xx, ¥x) e R®; k = 0, 1,2, ..., K > 1} on the plane, where x;_; < xi
for all k. In the complete metric space Q of all continuous functions
q: %o, xx] = R such that g(x,) = y, and g(xx) = yx define the function
mapping ¥ by

W(g)(x) = ck<x ;kb"> + qu(x; b k) +dp,  xelgonxd (4

k

where k = 1,2, ..., K, the V, € (—1, 1) are free parameters, and the 4K
parameters ay, by, ¢, dy are uniquely determined by

apXg + bk = X (75)
(76)

Under the action of ¥ the graph of the input function g is mapped to the
graph of the output ¥(g) via affine mappings

apxo + b = Xp_ys

Vivo + CiXo + di = Yi—1» Viyk + CXg + de = Yk

G, )~ (ax + b, Vy + cx + d),

which include contractions and shifts of the domain and range of g.
¥ is a contraction mapping in Q and has a unique fixed point that is a
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D=12 1
0 100 200 300 400 500
SAMPLE
(=)
D=1.8
D=15
D=12 T
0 100 200 300 400 500
SAMPLE (b)
D=15 T
D=12 T
0 100 200 300 400 500
SAMPLE

(c)

FiGure 1. (a) Signals from sampling WCFs over {0,1] with y =5 and various D.
(b) Signals from sampling FIFs that interpolate the sequence 0, 1, 4, 2, 5, 3 with various D.
(¢) FBM signals obtained via a 512-point inverse FFT on random spectra with average
magnitude oc|w!P~23, All three signals in each class have N = 500 and are scaled to have the
same amplitude range. (From Maragos and Sun, 1991); ©1993 IEEE.)
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continuous function F: [x,, xx] — R that interpolates the given data; i.e.,
F(x;) = y; for k = 0,1, ..., K. F is called a fractal interpolation Sunction
(FIF)® because quite often the fractal dimension D of its graph exceeds 1.
Specifically (Barnsley, 1988; Hardin and Massopust, 1986), if Y _ IVl >1
and (x;, y,) are not all collinear, then D is the unique real solution of

K
) le|a£_1 =1
k=1
Otherwise, D = 1. Thus by choosing the vertical scaling ratios V’s we can
synthesize a fractal interpolation function of any desired fractal dimension.
F can be synthesized by iterating ¥ on any initial function ¢ in Q; i.e.,
F = lim,_,.. ¥*"(g) where ¥°"(g) = ¥[¥°" (g)].

Given a finite-length discrete-time signal f,[k], k=0,1,...,K, an
algorithm was described in Maragos (1991) to fractally interpolate f£,
by an integer factor M by sampling a FIF whose fractal dimension can be
controlled via a single parameter. Specifically, we start from the K + 1 data
pairs (¢, = kM, y, = f,[k]) with xx, = MK = N, set a; = 1/K, by = X1,
and select a constant ¥V, = V e (-1, 1), where

V] = KP2, 1<D<2 (78)

Then there is a unique fractal interpolation function Fp:[0,N] = R
with fractal dimension D, which interpolates the given data, i.e.,
Fp (kM) = f£,[k]. In our computer experiments we synthesize Fp, by iterating
¥ starting from some initial ¢ € Q until the maximum absolute error
between successive iterations becomes very small, i.e., smaller than 10710,
If V = 0, Fp is the piece-linear interpolant of the data. The graph of Fp, has
fractal dimension

D= 2 + log(|V)/log(K) if1> V]| >1/K

{1 if V| = 1/K
Based on Fp we can up-sample f, to a 1:M interpolated signal Fp(n),
n=0,1,...,N. The larger |V| is, the larger D, and the more fragmented

Fp,. Figure 1b shows examples of FIFs that interpolate a fixed data sequence
of K + 1 = 6 points by a factor M = 100 using positive ratios ¥ = 5772,

a7

(79)

C. Fractional Brownian Motion

The fractional Brownian motion (FBM) (Mandelbrot and van Ness, 1968)
By (¢) with parameter 0 < H < 1 is a time-varying random function with
stationary, Gaussian-distributed, and statistically self-affine increments;

6 In Barnsley (1988) and in Mazel and Hayes (1991) more general FIFs are also discussed
using hidden variables.
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the latter means that [Bg(f + T) — By (¢)] is statistically indistinguishable
from r~H[By(t + rT) — By(?)] for any T and any r > 0. The variance of
FBM obeys the power law

Var[By(t + T) — Bg(t)] = Vg T™H (80)

where Vi is a constant depending on H. The fractal dimension of Bg(¥) is
D = 2 — H. Its power spectrum’ is
1

Su(w) = T A (81)
Hence, an efficient algorithm (Voss, 1988) to synthesize an FBM is to create
a random sampled spectrum whose average magnitude is 1/|c|#** and its
random phase is uniformly distributed over [0, 27]. In our experiments we
synthesized and then transformed this spectrum via an inverse FFT to
obtain an FBM sequence from which we retained the first N + 1 samples.
Figure 1c shows synthesized FBM sequences of varying D. The larger D
(the smaller H), the more fragmented these fractal signals look.

In addition to the FFT method, there are several other methods to
synthesize FBM signals (Mandelbrot and Wallis, 1969; Voss, 1988). One
rigorous approach discussed by Lundahl et al. (1986) involves Cholesky
decomposition of the correlation matrix of discrete fractional Gaussian
noise (i.e., sequence of increments of FBM) and synthesizing the FBM
as a running average of the fractional noise. This approach, however, is
computationally more complex than the FFT approach.

Some special methods to measure D for FBM signals include:

1. Fitting a straight line to the data (log Sy(w), log|w|) and measuring
the slope yields D. This is perhaps the most popular method because
of the simplicity of computing spectra using FFT. The power spectrum
estimation part of this approach has been improved in various ways
which include using Gabor filters (for 2D FBM) by Super and Bovik
(1991) and wavelet decomposition of 1/|w|® processes in noise
(Wornell and Oppenheim, 1990).

2. The statistical self-affinity of FBM yields a power scaling law for
many of its moments; linear regression on these data can measure D
(Pentland, 1984).

3. Maximum likelihood methods for estimating the H of discrete
fractional Gaussian noise have been developed by Lundahl ef al.
(1986) and by Tewfik and Deriche (1991).:

7 Strictly speaking, the power spectrum of the nonstationary FBM is not well-defined.
However, for w # 0, we can approximately interpret Sg(w) as proportional to the average
power of By (f) within a narrow frequency band around w (Mandelbrot, 1982).



218 PETROS MARAGOS

4. Mallat (1989) showed that the ratio of the energies of the dngil signals
at any two consecutive scales in a dyadic wavelet de'composmon of an
FBM signal is equal to 22H; this can be used to estimate H.

V. MEASURING THE FRACTAL DIMENSION OF 1D SIGNALS
A. 2D Covers via 2D Set Operations

In this section we focus on a generalized version of the Minkowslfi cover
method. Specifically, given a nonempty compact set B & R?, cons@er the
positive homothetics eéB = {eb: b € B} at all scales ¢ = 0, anc! defl_ne jche
generalized cover Cp(€) of aplanar set F & R? as its morphological dilation

by the structuring element &B:
Cgle) = F @ €B.

Henceforth we call Cp a morphological cover. The Minkowski cover
corresponds to using a disk for B. . . '
Bouligand’s work implies that the Minkowski—Bouhgand dlmefnsmp of a
compact planar set F' can also be obtained by replacing the disks in the
Minkowski cover with arbitrarily shaped planar compact sets B that have a
nonzero area, contain the origin, and possess a nonzero minimurq (ﬁ ) and
maximum (Ap) distance from the origin to their boundary. Specifically,

(82)

<g£>2 - arealCp(e)] _ <é£>2 ®3)
A B area(Fa) 53
Hence

Alarea(Cg(e))] = Alarea(F,)] (84)

Thus if we replace the Minkowski cover area in (45) with the area of the
generalized cover Cg, the fractal dimension will remain the same.

B. 2D Covers via 1D Function Operations

In this section we deal only with continuous-time finite—leng?h signgls f®,
0 <t< T, in which case the curve F of the discussion in Section IiI

becomes the graph

Gr(f) = (. f)):0=1=T} (85)

of f. If (x, y) are the Cartesian coordinates of the plane R?, the time .t-axis will
henceforth coincide with the x-axis, whereas kthe signal amplitude f(?)
assumes values on the y-axis. \
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" The discussion in Section V.A implies that the fractal dimension of Gr(f)
§en be found by using general morphological covers

Cg(e) £ Gr(f) @ eB
= {(t + x, f(1) + »): @, f(©)) € G1(f), (x, ) € eB}
af the signal’s graph with compact planar sets B < R*: The digital

(86)

‘;*lmplementations of such morphological coverings by disk-like or other

¢.8., horizontal line segment) structuring elements were done in Tricot

@t al. (1988) and in Dubuc et al. (1989) by viewing Gr(f) as a binary image

‘#lgnal and dilating this binary image. However, this 2D processing of a 1D
“#lgnal, on the one hand is unnecessary and on the other hand increases the
requirements in storage space and the time complexity for implementing the
govering method. Thus, for purposes of computational efficiency, it is
desirable to obtain the area of Cy by using 1D operations on f, i.e., dilations
end erosions of f by a function g with a compact support G. Specifically,
for a properly chosen g, we could obtain the cover area by integrating the
difference signal f @ g — f © g. However, since f is defined only® over
[0, T'] and the morphological cover Cy involves points ¢ from outside this
interval, we modify the cover and the signal operations f @ g, f © g to
handle the boundaries of f properly. Thus, we replace the covers Cg(€)
with their restriction on the vertical strip [0, T'] X (—o0, ), i.e., with the
truncated morphological cover

Ci(e) & [Or(f) @ eBI N ([0, T] X (—o0, ) @87

We also modify the definitions of 1D dilations and erosions, so that they do
hot require any values of f outside [0, T']. Thus, we define the support-
limited dilation and erosion of f by g with respect to a support set S € R:

(f@s)) & sup (f()+gt-x), teS (88)
xe(G+Hns

(fOs@W) & inf (fl)—gx-1), teS (89
xe(G+HNS

In what follows we shall find a proper g such that the integral of the
difference signal between the support-limited dilation and the erosion of f
by g is equal to the area of the set cover Cg(e) at all scales ¢, if B satisfies

- ¢ertain constraints. The main theoretical result requires a series of individual

steps explained next.

8 Assuming that f(¢) is defined over all ¢ € R by setting f(¥) = —oo for ¢ ¢ [0, T], the erosion
J © g computed as in (8) gives a signal that is not the (desirable) lower envelope of the
morphological cover Gr(f) @ B.
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First, for each scale ¢ = 0, the upper and lower_envelope of the
morphological set cover are defined respectively as the signals

U,(x) & sup{y: (x, ) € Cp(&)} (90)
L,(x) £ inf{y: (x,y) € Cp(e)} (2))

Further, let us define a function
g(x) £ sup{y: (x,y) € B} 92)

and its e-scaled version by
g, (x) £ sup{y: (x,y)€eB}, &=0 (93)
Then we have the following result.

Lemma 9. (Maragos and Sun, 1991). Let f:S— R be a continuou.s
function, where S = [0, T]. Let B < R? be a compact set that is symmetric
with respect to both the x- and the y-axis of the plane. Then

UE(x) = f @S ga(x)
Le(x) = f @S gs(x)

Further, if we define the function-cover area

0=x=T 4)

T
Agle) = S [(f ®s &) — (f Os 81X dx 95)
0

we have the following.

Theorem 10. (Maragos and Sun, 1991). Let fiS—>Rbea contt:nuous
function, where S = [0, T]. Let B < R? be a compact se? thqt is also
single-connected (i.e., connected with no holes) and symmetric with respect
to both the x- and the y-axis of the plane. Then

T
arealC5(8)] = S [Ug(x) — Lo(x)] dx (96)
0

and thus the set-cover and function-cover areas are identical:
area[CE(e)] = Ay(e) 97)

Thus, instead of creating the cover of a 1D signal by dilating its.graph in
the plane by a 2D set B (which means 2D processing), the original signal can
be filtered with an erosion and a dilation by a 1D function g. For example,
if B is a unit-radius disk or rhombus, then

B={(x,y):x2+y2sl}=>g(x)=\/1—x2, x| =1 (98)
B={,y:lx +lyl=ti=g@=1-1Ixl Ilx=1 99
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In a related work, Tricot et al. (1988) and Dubuc et al. (1989) showed
that we can find D,, by using set covers Cp where B is the unit horizontal
segment [—1, 1] X {0} and that

T
u(e) = S [ sup {f(x + ¥)} — inf {f(x + y)}} dx, (100)
o Llyl=e yl=e

which is called the variation of f, is equal to area[Cj ()] if B = [—1, 1] X {0}.
Their result becomes a special case of Theorem 10. Specifically the assump-
tions of Theorem 10 allow for B to be equal to horizontal segments
[-w, w] X {0}, in which case g(f) = 0 for fe[-w, w] and g(t) = —
for |¢| > w. Thus the horizontal structuring element case corresponds to
selecting a flat function g equal to zero on its support.

The following theorem shows that we can find the fractal dimension Dy,
of the signal’s graph by using covers with functions g.

Theorem 11. Let the function f and set B satisfy all the assumptions of
Theorem 10, and also assume that B # {(0, 0)}. Then the Minkowski-
Bouligand dimension of the graph of f is equal to

2
Dy[Gr(f)] =2 — MA,) = 1im1£g_[4g_(6_)ﬁ?_]

o0 log(1/¢) (101)

Proof. Both in the case where B has nonzero area and possesses a nonzero
minimum distance from the origin to its boundary (Bouligand, 1928), and
in the case where B is the horizontal segment [—1, 1] X {0} (Dubuc ef al.,
1989), Dy, remains unchanged if we replace the area of the Minkowski cover
by disks in (45) with the area of covers Cg by the above generalized compact
sets B. Then the area of Cy(e) is equal to the sum of area[C5(¢)] plus some
residual term that is due to dilations of the graph’s boundary points. The
infinitesimal order of this residual term is 2, because it scales proportionally
to 2. Hence, since A[area(Cy)] = 2 — Dy, < 1, we can ignore the above
residual term and use as cover area in (45) the area of the truncated cover.
Then, Theorem 10 completes the proof, since it allows to replace the area of
covers by sets with the area of covers by functions. (Q.E.D.)

In practice, assuming that 4,(¢) = (constant) e for ¢ very close to 0
yields that

A (e 1
log zg ) =~ Dy log<g> + constant, ase—0 (102)

This leads to the following practical algorithm to compute D,, in the
discrete case.
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C. Algorithm for Discrete-Time Signals

To estimate the fractal dimension of a discrete-time ﬁgite-length §1gnal flnl,
n=0,1,..., N, we must adapt our discussion in Section V.B. Fl;St, covers
at discrete scales € = 1,2, 3, ..., émax aI¢ used. The set B, & lée used for
covers is also restricted to be convex, because then eB, = B.”° for & =
where B®* 2 B@® B... ® B (¢ times). Hence, for B, convex

0,1,2,... (e enc
and integer &, g, is equal to the e-fold dilation of g with itself, denoted as
L g@g...Dg  (etimes) (103)

Then it can be shown that
f@se® =((fDsg) Dsg..) Ds8 (104)
(105)

f@s8®e =(fOs8 ©s8...) Os &
¢ times

All the above ideas lead to the following algo.rithm foF digitally
implementing the morphological covering method using function covers
(Maragos and Sun, 1991).

Step 1. Select a unit-radius discrete set B S Zz .that is a convex
symmetric subset of the 3 X 3 square set of pich:]s with integer coordmgtesl
(n, m), which correspond to points (n, mv) in R* where v > 0 is the vertica
grid spacing. There are only three choices for such a B, and the corre-
sponding g[n] is a three-sample function:

‘1. If B is the 3 X 3-pixel square, the corresponding g is shaped like a

rectangle:
gl-1] =gl0] = glll =h> 0 (106)
2. If B is the five-pixel rhombus, then g is shaped like a triangle:
gl-11 = g1 = 0, gI[0] = h>0 (107)

3. If B is the three-pixel horizontal segment, then the corresponding g
can be viewed as resulting either from g, or from. g, by setting & = 0.
In this case g is a flat function equal to zero on its support.

Step 2. Perform recursively the support-limited dilations and erosions
of f by g®° at scales &€ =1,2, ..., Emar- That.is, set G={-1,0,1},
S$=1{0,1,...,N}, and use (88) and (104), which yield

f®sgin) = max (fln+i]+ glily,

f@sg®¢ = (f Ds %) ®s g, e=2

Likewise for the erosions f Ogs g®¢. The dashed lines in Fig. 2 show these
multiscale erosions/dilations by the three different functions g.

e=1
(108)
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Step 3. Compute the cover areas

N
Alel = T (f®s8®) - (fOs8®Nn],  e=1,...,6mu <

n=0

|z

(109

Step 4. Fit a straight line using least squares to the graph of
log(Ag[e]/(e)z) versus log(1/¢), fore = 1, 2, ..., &yq. The slope of this line
gives us an approximate estimate of the fractal dimension of f, as implied
by (102).

Although the shape of the structuring function g is not very crucial, its
height /2, however, plays an important role. Although 4 does not affect the
morphological covering method in the continuous case, in the discrete case
large A will sample the plot of (102) very coarsely and produce poor results.
Thus small 4 are preferred for finer multiscale covering area distributions.
However, the smaller 4 is, the more computations are needed to span a
given signal’s range. In addition, as noted by Mandelbrot (1985), the
covering method with 2D discrete disks (as well as the box-counting dimen-
sion) greatly depends on the relationship between the grid spacing v and the
dynamic range of f. Henceforth, we assume that v is approximately equal to
the signal’s dynamic range divided by the number of its samples. This is a
good practical rule, because it attempts to consider the quantization grid in
the domain and range of the function as square as possible. Further, when-
ever h > 0, we select 2 = v. Therefore, assuming that for an N-sample signal,
its range has been divided into N amplitude levels, the above algorithm that
uses function-cover areas 4, has a linear complexity O(Ne,,,,) With respect
to the signal’s length, whereas using set-cover areas with 2D sets yields
quadratic complexity O(N?e,,,,); further, both approaches give the same
dimension, as Theorem 10 implies.

Among previous approaches, the 1D version of the work in Peleg ef al.
(1984), Stein (1987), and Peli et al. (1989) corresponds to the morphological
covering method using g, with # = 1. The “‘horizontal structuring element
method’’ in Tricot et al. (1988) and in Dubuc ef al. (1989) corresponds to
using 4 = 0.

The fractal dimension of the graph of f resulting from the morphological
covering method using function-covers (in both the continuous and discrete
case) has the following attractive properties. (See Maragos and Sun, 1991,
for proofs.) If f is shifted with respect to its argument and/or amplitude,
then its fractal dimension remains unchanged; i.e.,

') = fx — Xo) + b = Dy[Gr(f)] = Dpr[Gr(f)]

for arbitrary b, x,. Further, if 2 = 0, then the fractal dimension estimated
via srosions/dilations by a flat g also remains invariant with respect to any

(110)
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AMPLITUDE

AMPLITUDE

AMPLITUDE

0 100 200 300 400 500

SAMPLE ()

FIGURE 2. An FBM signal (solid line) with D = 1.5, N = 500, and its erosions/dilations
(dashed lines) by 2% at scales ¢ =20,40. (a) Rectangular g = g, with A = 0.01.
(b) Triangular g = g, with £ = 0.01. (c) Rectangular g with 2 = 0. (From Maragos and Sun,
1991; ©1993 IEEE.)
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affine scaling of the amplitude of f: i.e.,

f'®) =af) +b and  h=0= Dy[Gr(f)] = Dy[Cr(f)] (111)

for arbitrary » and a # 0. The property (111) was also noted in Dubuc
et al. (1989).

The morphological covering and the box counting method give identical
fractal dimension for continuous-time signals f. However, in the discrete
case they have different performances, and it is because of properties (110)
and (111) that the morphological covering is more robust than the box
counting method. The latter is affected by arbitrary shifts of the argument
of f, by adding constant offsets to f, and (more seriously) by scaling its
amplitude range, because all these affect the number of grid boxes
intersected by the graph of f. However, the morphological covering method
using covers with 1D functions g become completely independent from
affine scalings of the signal’s range if we choose # = 0. In addition, since
for the case & = 0, the erosions/dilations by g can be performed faster,
we henceforth set # =0 in all our computer experiments with the
morphological covering method.

Table 1 shows the estimated dimension D* and the percent estimation
error 100 - |D — D*|/D using a two-pass® morphological covering method on
signals with N + 1 = 501 samples synthesized from sampling WCFs and FIFs
of various D. The WCFs were defined for ¢ € [0, 1] with y = 5. The FIFs
interpolated the six-point data sequence 0, 1, 4, 2, 5, 3 using positive scaling
ratios ¥ = 5P72. These experimental results and many others reported in
Maragos and Sun (1991) indicate that, for these two classes of deterministic
fractal signals, the morphological covering method performs very well for
various combinations of dimensions D e [1.2,1.8] and signal lengths
N e [100, 2000] since the average percent error for estimating D was 210 3%
for both WCFs and FIFs.

® The maximum scale &,,, and in general the scale interval [1, &,,,] over which we attempt
to [it a line to the log-log plot of (102) is an important parameter. The ¢,,,, required for a good
estimation of D may exhibit considerable variations and depends on the dimension D, on the
slgnal’s length N, and on the specific class of fractal signals. Maragos and Sun (1991) used
the following heuristic rule for determining ¢,,,,,:

(D - 1.2N ) N}
—_— 10 ), = (112)

Epax = MaxScale(D, N) = min[max( 3 5

Iy, to apply the morphological covering method to a signal, a two-pass procedure consists
ol flest applying the covering method with a small scale interval ¢,,,, = 10, to obtain some
extimate D, ol the fracial dimension. Then the covering method is reapplied to the same signal by
WNING B,y = MaxScale(D, N) to obtain a second estimate, which is considered as the final
exflmate Dol D,
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TABLE 1
MORPHOLOGICAL COVERING METHOD ON WCFs, FIFs, aND FBM
Signal True D Estimated Error
WCF 1.4 1.424 1.71%
WCF 1.5 1.515 1.03%
WCF 1.6 1.606 0.39%
FIF 1.4 1.384 1.12%
FIF 1.5 1.478 1.45%
FIF 1.6 1.576 1.53%
FBM 1.4 1.393 0.5%
FBM 1.5 1.474 1.7%
FBM 1.6 1.553 2.9%

Table 1 also shows the results from applying the (two-p'flss) morpho-
logical covering method on FBM signals. For each true D, }t reports the
sample mean D* of the estimates and the percent mean estlmatlfm error
100 - |D — D*|/D by averaging results over 100 random FBM .reahzat_lons.
All FBM signals had N + 1 = 512 samples and were synthesized using a
512-point FFT. Maragos and Sun (1991) compared the performance of the
morphological covering method with that of the power spectrum method to
estimate the fractal dimension of FBM signals ina n01s?-free case as well as
in the presence of additive white Gaussian noise. Their exper}ments, over
7 % 5 combinations (D, N) of dimensions D € [1.2,1.8] and. sxg}xal lengths
N+1e(2,25,2°,2%2") with 100 random FBM realizations each,
indicate that in the absence of noise both methods yl.eld a similar average
error of about 3 to 4%, whereas in the presence of noise the morphological
covering yields much smaller error than the power spectrum method_.

Concluding, we emphasize that, since all three clas§es of fractal signals
are sampled versions of nonbandlimited fracta}l functions, some degree of
fragmentation is irreversibly lost during sampling. Hence, since the true_ D
refers to the continuous-time signal, the discrete morphological covering
algorithm (as well as any other discrete' :illgorithm) can offer only an
approximation of D. In addition, the specific approach used to syqthesnge
the discrete fractal signals (e.g., the FFT for FBM) affects the relatu?nshlp
between the degree of their fragmentation and the true.D, and hence it may
also affect the performance of the D estimation algorithms.

D. Application to Speech Signals

The nonlinear dynamics of air flow during speech pro.ductio'n may often
result in some small or large degree of turbulence. In Fhls section we quan-
tify the geometry of speech turbulence, as reflected in the fragmentation
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of time signal, by using the short-time fractal dimension of speech signals.
Some possible applications are also outlined for speech segmentation and
sound classification.

During speech production a vorfex is a flow region of similar (or constant)
vorticity vector. Vortices in the speech air flow have been experimentally
found above the glottis by Thomas (1986) and theoretically predicted in
Teager and Teager (1989) and McGowan (1989) using simple geometries.
There are several mechanisms for the creation of vortices: (1) velocity
gradients in boundary layers; (2) separation of flow, which can easily
happen at cavity inlets due to adverse pressure gradients; (3) curved
geometry of tract boundaries, where due to the dominant inertia forces the
flow follows the curvature and develops rotational components. After a
vortex has been created, it can propagate downstream (Tritton, 1988)
through vortex twisting and stretching as well as through diffusion of
vorticity. The Reynolds number Re = pUL/u characterizes the type of
flow, where U is a velocity scale; L is a typical length scale, e.g., the tract
diameter; p is the air density; and u is the air viscosity. As Re increases
(e.g., in fricative sounds or during loud speech), all these phenomena may
lead to instabilities and eventually result in furbulent flow, which is a ‘‘state
of continuous instability’’ (Tritton, 1988) characterized by broad-spectrum
rapidly varying (in space and time) velocity and vorticity. Modern theories
that attempt to explain turbulence predict the existence of eddies (vortices
with a characteristic size A) at multiple scales. According to the energy
cascade theory, energy produced by eddies with large size is transferred
hierarchically to the small-size eddies that dissipate it due to viscosity.
A related result is the famous Kolmogorov law,

E(k,r) o< r**k™>? (k in a finite range) (113)

where k = 2n/A is the wavenumber, r is the energy dissipation rate, and
E(k, r) is the velocity wavenumber spectrum, i.e., Fourier transform of
spatial correlations. In some cases this multiscale structure of turbulence
can be quantified by fractals. Mandelbrot (1982) and others have con-
jectured that several geometrical aspects of turbulence (e.g., shapes of
turbulent spots, boundaries of some vortex types found in turbulent flows,
shape of particle paths) are fractal. In addition, processes similar to the
ones that in high-Re speech flows cause vortices to twist, stretch, and fold
(due to the bounded tract geometry) have also been found in low-order
nonlinear dynamical systems to give rise to fractal attractors.

All the above theoretical considerations and experimental evidence
motlvated our use of fractals as a mathematical and computational vehicle
to analyze and synthesize various degrees of turbulence in speech signals.
The maln quantitative idea that we focus on is the fractal dimension of
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speech signals, because it can quantify their graph’s fragmentation. Since
the relationship between turbulence and its fractal geometry or the fractal
dimension of the resulting signals is currently very little understood, herein
we conceptually equate the amount of turbulence in a speech sound with its
fractal dimension. Although this may be a somewhat simplistic analogy, we
have found the short-time fractal dimension of speech to be a feature useful
for speech sound classification and segmentation. To measure it, we use the
morphological covering algorithm described in Section V.III with a flat
function g, i.e., with height & = 0.

The speech signals used in our computer experiments were sampled at
30 kHz. Hence the smallest (¢ = 1) time scale at which their fractal dimen-
sion D was computed was 1/ 15 msec. The dimension D was computed over
moving speech segments of 30 msec (N =900 samples) as a short-time
feature. Figure 3 shows the waveform of a word and its short-time fractal
dimension as function of time. While D behaves similarly with the average
zero-crossings rate, it has several advantages: For example, it can distinguish
between a vowel and a voiced fricative, whereas the zero-crossings can fail
because the rapid fluctuations of the voiced fricative may not appear as
zero-mean oscillations, which would increase the zero-crossing rate, but

ZERO-CROSSINGS

MEAN SQUARED AMPLITUDE

L anibad e, e e dnalas
o L T S
T N
18 N N,w*\_(\{\/\ TN e
1.6 7
1.4 ‘l:
121
10T

SPEECH SIGNAL

N

4 6
TIME (in SEC)

ving/ sampled at 30 kHz and its short-time

FIGURE 3. Speech waveform of the word /sie
d mean squared amplitude estimated over a

fractal dimension, average zero-crossings rate, an
moving 10 msec window, computed every 2 msec.

FRACTAL SIGNAL ANALYSIS USING MATHEMATICAL MORPHOLOGY 229

3,Vshzr grgph f{ggénentation that increases D. We have also observed cases
‘ e D could detect voiced stops but the zer i
; ‘ Stop o-crossings could not. Thus
zl;; I;};(r)é;-ttilcr)l;e f;actal (illmensmn is a promising feature that can be used for’
of speech waveforms. However, as Fi i
: . 1 , g. 3 shows, the silence
ﬁ?r}t:(fms of1 th.e s1gn.a1 (d.ue‘to their noise-like geometrical structure) incur a
; g ralctg dlmen51on similar to that of the unvoiced fricatives. Therefore
or a;pp ying it to speech segmentation, the fractal dimension should be’
supp ementec‘l by some additional features that can distinguish betw
speech and silence. o

Several experiments i
Several @ reported in Maragos (1991) lead to the following

1. Unvoiced fricatives (/F/, /8/, /S/), affricates, stops (during their tur-
b}llent phase), and some voiced fricatives like /Z/ have a high fractal
dimension € [1.6, 1.9], consistent with the turbulence ph
present during their production. prenomens

2. Vowels (at time scales < 0.1 msec) have a small fractal dimensi

€ [1, 1.3]. This is consistent with the absence or small degree C:;

; tsurbulenge (e. g foF louq or breathy speech) during their production.

. Some voiced fricatives like /V/ and /TH/, if they don’t contai
fully dev?loped turbulence state, at scales < 0.1 msec have a medlirlinall
fractal dimension D € [1.3, 1.6]. Otherwise, their dimension is high

, (8] | (54 O W at 1

;l;hus, for normal conversational speech, we have found that its short-time
Sc.agk;, :\;)erl I;810—30 msec frame‘s).frac‘tal dimension D (evaluated at a time
scale < b.y uec) c;m roughly distinguish these three broad classes of speech
o fg alntldylng the amount of their waveform’s fragmentation.
Howe the, onr touf speech (w.here .the air velocity and Re increase, and
hence set o turbLflenceils easier) or for breathy voice (especially for
emale sp§akers) the dimension of several speech sounds, e vowel
may significantly increase. In general, the D estimates may i)e ;tgf.f’ectoc‘;v ft:)s
severa_l facftors including (a) the time scale, (b) the speaking state, and (e thy
speleflc discrete algorithm for estimating D. Therefore, we <’)ften Si) ’i
ass1.gn any particular importance to the absolute D estin’lates but 1On
their average ranges and relative differences. ot
vell({,eclii;egi;?ethe Kol;nogorov 5/3-1ayv (113) is the fact that the variance of
yelocity dif rences etws:en t\'zvo points at distance AX varies o (AX 3.
ese istributions have identical form to the case of fractional Brownia
motions whose variances scale with time differences AT as (AT)”;l
Q <H <1, tk.le frequency spectra vary o 1/|w]*#*!, and time signals ar,
fractal with dimension D =2 — H. Thus, putting H =’ 1/3 leadsto D=5/ ;
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for speech turbulence. Of course, Kolmogorov’s law rz:feis t;)l ;?t\;t;n;mg::lg
d we dealt with pressure (not v .

(not frequency) spectra, an ! v ) et this

1d be cautious on how we
from the speech flow. Thus we shou . \ terpret th%
it is interesting to note that in our eXperin
result for speech. However, 1t 1S In : e i the
ith fricati d D (for time scales < 0.1 m
with fricative sounds we often observe ( e
i d Khorasani (1986) reported a glo

range [1.65, 1.7]. Pickover an ' Hme
i tion of the 5/3 law was ,

sion D = 1.66 for speech signals bu.t no men : .

their D estimation algorithm was different, and th.e time scales welr)e n:i; "

longer, i.e., 10 msecto 2 sec; thus in their work the time scales werea 0\; o

phoner’ne l;vel, whereas our work is clearly below the phoneme time scale.

VI . MEASURING THE FRACTAL DIMENSION OF 2D SIGNALS
A. 3D Covers via 3D Set Operations

3
i ion D», of compact sets F € R

igand (1928) showed that the dimension D ( . _
?:r? lz:.lg;)nbe(obtained by replacing the spheres in the Minkowski cover with

3
more generally shaped sets. Specifically, let B be a compact subset of R

with Cartesian coordinates (X, J, 2). Replacing the spheres of radius & with

the e-scaled version of B, i.e., the positive homothetic éB = {eb: b € B}
leads to the 3D morphological cover

Cple) =F ® eB
The Minkowsk cover 7 s & speial e e & 828 0 L P
delffnf tlli:s (soag:rie)r?n;/:j;ﬁl; and maxifnum distance t:rom th;: or;giirtlh::
the boundary of B by dp and Ag, respectively. The Bouligand show

2 G0 (2
Ag vol(F,) Op

Hence, the infinitesimal orders of vol[Cg(&)] and vol(F,) a;fait:::ds?:;;
Therefore, the fractal dimension of a set F can also be 0

general morphological covers:

Dy (F) = 3 = Alvol(Cp)] = lim

(114)

(115)

log(vol[C5 (&)1/€%)
log(1/¢€)

For the case of a continuous nonconstant function f(x, y) Du‘lzu(; neta {asl(;
(1988) showed that B does not have to have nonzero volu'me, bu't ; c L 2s0
be a square parallel to the x,y plane; they called this special cas
“horizontal structuring element method.”’ '

hBouligand’s result (116) also applies to the spef:lal case where t}?'e sce;Sf
becomes equal to the graph of some real function f(x,¥). In this ,

(116)
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however, the digital implementation would require covering the image
surface by 3D sets, which can be done by viewing Gr(f) as a set in the 3D
discrete space and dilating this set of voxels. However, this 3D processing of
a 2D signal on the one hand is unnecessary and on the other hand increases
the requirements in storage space and the time complexity for implementing
the covering method. Thus, for purposes of computational efficiency, it is
desirable to obtain the volume of Cg () by using 2D operations on f(x, y),

" i.e., dilations @ and erosions © of f by a structuring function g(x, y). This
. is explained in the next section.

B. 3D Covers via 2D Function Operations

Let f(x, y) be a continuous real-valued function defined on the rectangular
support

S={x»)eR:0=x<X,0<y<Y} 117)

and assuming its values on the z-axis. Dilating its graph Gr(f) by &B yields
the cover

Cp(e) = Gr(f) @ ¢B

={p+a,q9+b,f(p,q +0):(p,q) €S, (a,b,c) e B}

The goal here is to obtain the volume of this cover not by performing the
above set dilation, but by first computing the cover’s upper and lower
envelopes via morphologically dilating and eroding f by a function g
related to B and then obtaining the original cover volume by integrating
the difference signal between these envelopes over S. Of course, certain
restrictions have to be set on B. Specifically, let the cover’s upper and lower
envelope be defined respectively as the 2D signals

(118)

U,(x, y) = supfz: (x,y,2) € Cp(e)} (119)
L,(x,y) = inf{z: (x, ¥, 2) € Cp(e)} (120)

Since f(x, y) is defined only over S, and computing vol[Cg(¢)] involves
points from outside this interval, we modify the signal operations f @ g,
J © g so that they do not require any values of f outside S. Thus, we define

the support-limited dilation and erosion of f by g with respect to a support
S S R%:

(f Ds &, ) = sup

fp,9 +egx—p,y—-¢q), @»eSs
@,9) € [G+E,MINS (121)
(f©s8)x,y) = (p,q)e[lGI:-t;x,y)]nS (fp,9) —glp—x, 9 -y}, & yz ; 25;
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Further, if we define the function g by y
g(x, y) = suplz: (x,y,2) € B} (123)
and its e-scaled version by "
2,(x, ) = sup(z: (x, ,2) € eB) (124)
then the following is true.

Lemma 12. IfB &S R? is compact and symmetric with respect to the x, ¥,
z-axes, then for each & = 0,

Uz(xv y) =f@s 8e(x,}’)
Lg(xyy) =f@s gz(xvy)

() €S (125)

Frook T o (i D) € BY = SO (1200

Since B is symmetric with respect to the x, y-axes, g.(x, y).= gsé-x3 ; y())
and G = G. Since B is symmetric with respect to the z-axis, g:(x,») =

for all (x, y) in its domain &G. If
Ka, b) = (c: (a, b, c) € eB}
for any (a, b) € €G, then note that
supfc: ¢ € I(a, b)) = g:(a, D)
inf{c: ¢ € I(a, b)) = —g.(a, b)
To prove (94) we have

) o —ag+bz= D, +CDDES,
Ue(xﬁy) - Sllp{Z-x p+a,y q (a9 b,C)GEB}

supl(f(x — @,y — b) +c:@b) € eGNIS + (), ¢ € la, b))
sup{ f(p, q) + &(X — P>V — q):(x,y) € SN[eG + (b, Dl
= (f ®s £)(x,Y)

Likewise,

 inflzex = —g+bz=fD,D+c@DES,
Lx,y) =inflzix=p+ay=4 b0 € cB)

!

Il

I

(Sl — @,y — b) + ¢:(a, b) € €GN IS + () ¢ € 1@, D))

inf{(f(p, q) — &X — DY~ g):(x,y) e SNG + (P, Nl
(f Os 2)x, ) (Q.E.D.)
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By using the support-limited dilations and erosions we cannot account for
the volume of the part of the original cover Cy(€) outside the support of f
but only for the volume of the truncated morphological cover

Cg(e) = [Gr(f) @ eB] N [S X (—, )] (127)
In what follows we shall show that the volume
X Py
V,(e) = 50 §0 [f Dsg — f Os&lx,»)dxdy (128)

resulting from integrating the difference signal between the support-limited

dilation and the erosion of f by g is equal to the volume of the truncated
cover at all scales, if B satisfies certain constraints.

Lemma 13. If B < R® is compact, symmetric with respect to the x, P,
z-axes, and single-connected, then for each ¢ = 0,

vol[C5(e)]

X (Y
E jo [Up(x, ) — Ly(x, y)] dx dy (129)

0

= V(e) (130)
Proof. Since g,(0,0) = 0, it can be easily shown that

Ux, ») = f,») = L(x,), (x,»)€eS

Define the set

Q@) = {(x,»,2):(x, ) € S, L,(x, y) < z < U,(x, y)}

We shall prove that Q(e) = Ci(e). First, let (x,y,z) € Ci(e). Then,
(x,y) €S and (x,y,2) € Gr(f) ® ¢B. Hence, x=p + a,y = q + b, and
z = fx,y) + ¢ for some (p, q) € S and (a, b, ¢) € ¢B. But then, from the
definition of U,, it follows that z < U,(x,y); likewise, z = L,(x, ).
Therefore, (x, y, z) € Q(¢), and thus Ca(e) S Q(e).

Now let (x, y, z) € QO(¢). Define the set

K =¢eBN[ES + (x, ) X (—o, +)]
= {(a,b,0):(a, b) € eGN (S + (x,)), ¢ € K(a, b)}
Then, K is a connected set. Define the function
o(a,b,c) =fx—-a,y—Db)+c

on K. The function ¢ is continuous and has a connected domain XK. The
value z lies between the maximum U,(x, y) = sup{¢(a, b, ¢):(a, b, ¢) € K}
and the minimum L,(x, y) = inf{¢(a, b, ) : (a, b, ¢) € K} value of ¢ on K.
Hence, from Bolzano’s intermediate value theorem (Bartle, 1976, p. 153),



234 PETROS MARAGOS

there is a point (a’, b',¢') in K at which ¢ takes the value z. By sg:zr}g)
p=x—-da,q=y-b',and f(p,q) =z —c' we have (p, q,f(p,q))fc*( |
and (a',b',c') € eB. Hence (x,¥,2) € C;‘(a) and thus Oe) € (fzg)'
Therefore, we proved that Q(¢) = C(e). This set equality prl:wesroof i;
The result (130) follows from (129) and Lemma 12. Thus the p
complete. (Q.E.D.) o

Thus, instead of creating the cover of a2D sig‘n?.l by fhlatmg 1tsi) grgﬁlelrlgg
a 3D set B (which means 3D processing), the ongmal signal can be rered
with an erosion and a dilation by a 2D.funct.10n g. As a}? example,
B = {(x,y,2):x> + y* + 2> < 1} is the unit-radius sphere, then

g, y) = N1 - x* =%,
Theorem 14. Letf: S~ Rbea continuous function, where
S=[0,X]x[0,Y]<c R
“ . inale-connected, symmetric with
¢ B < R® be a compact set that is also sing . h
fefspect to the x, y, z-axes, and assume B # {(0, 0, 0)}. Then the Minkowski
Bouligand dimension of the graph of f is equal to
. loglV,(e)/¢’) 131)
Dy[Gr(N = 3 = Ay = lim = =0

=0

x> +yt=1.

Proof. Both in the case where (a) B ha§ nonzero volume and gossle_:s.:fda
nonzero minimum distance from the origin tq its bounflary (Bou ll)gubu(,:
1928), and in the case where (b) B is tl.le horizontal unit sqllxare ( uoue
et al., 1988), D,, remains unchanged if we replace the vo. unée (; the
Minkowski cover by spheres in (39) wigh the voh.lme of covers ,; Gi(f)
above generalized compact sets B. Now, if 3Gr(f) is the boundary o R

then the volume of Cg(e) is equal to
vol[Cp(e)] = Vvol[C5(®)] + vol[dGr(f) @ ¢B]

The infinitesimal order of the volume of the dilated .graph boundary is ;w:,
because it scales proportionally to £%. For example, in case (a) let dp an o B
be the minimum and maximum distance from the origin to the boundary
f B. Then
° nl(Age)
2

where [ is the (assumed finite) Jength of the boundary of g}é( f). I-(I;I;(Zi
since A[vol(Cp)] = 3 — Dy, = 1, we can ignore the term vol{dGr(f) b B
and use as cover volume in (116) the volume of the truncated cover1 . 0}
Lemma 13 completes the proof, since it allows tg replace theDvo ume
covers by sets with the volume of covers by functions. (Q.E. .)

F’_V‘zﬂi’f < vol[3G(f) @ Bl =
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C. Discrete Algorithm

In practice we deal with 2D functions that are both quantized and spatially
sampled, e.g., digital images. Thus, the theory in section VI.B must be
adapted as follows. Assume that we have a 2D discrete-space finite-support
signal f[n,m], n=0,1,...,N, m= 0,1, ..., M. We shall use covers at
discrete scales &€ = 1,2, 3, ..., &,4,- The 3D set B, < R? used for covers, in
addition to the restrictions of Theorem 14, is also restricted to be convex so
that its corresponding function g at integer scales ¢ is given by the e-fold

. dilation g% = ¢ @ g... @ g. The 3D space is then assumed to be sampled

by the cubic grid (n, m, k) of integer coordinates corresponding to the real
coordinates (n, m, kv) where v > 0 is the grid spacing. We assume that v is
approximately equal to the dynamic range of f divided by the average
number of samples in one dimension. Finally, the discrete set B € Z°
corresponding to B, is assumed to have a unit-radius, because larger radii
would create coarser volume distributions. Hence, B must be a convex,

symmetric subset of the 3 X 3 X 3 set of voxels around the origin. This
yields only six choices for B:

1. B is the 27-voxel cube with horizontal cross-section the 3 X 3-pixel

square G; S Z?, and the corresponding function g has square support
and cubic shape:
h>0, [n, m] € G,
ymj =
&sc[n, m] {_w’ [n, m] ¢ G,
2. B is the 11-voxel octahedron with horizontal cross-section the square

G;, and the corresponding function g has a square support and
pyramid shape:

(132)

0, [n, m] € G\{(0, 0)}
gpln,ml = { h >0, [n, m] = [0, 0] (133)
—oo, [n, m] & G;

3. B isthe 15-voxel rhomboid with horizontal cross-section the five-pixel
rhombus G, € Z?, and the corresponding function g has a rhombus
support and cubic shape:

h >0, [n,m] € G,
ymj =
8rc[n, m] {_w’ (n,m] &G,

4. B is the seven-pixel rhombo-octahedron with horizontal cross-section
the rhombus G,, and the corresponding function g has rhombus
support and pyramid shape:

(134)

0, [n, m] € G\{(0, 0)}
grp[n’ m]=4h>0, [n, m] = [0, 0] (135)
—o0, [n, m] & G,
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ponding function g I8

. e G, x {0}. The corres
5. B is the nine-voxel square G 0 by setting thelr

flat and can be obtained from the functions gy OF &sp
heights h = 0.

6. B is the five-voxel rhomb s
flat and can be obtained from the functions g, Or &

heights h = 0.

us G, X {0}. The corresponding function g I8
by setting thelr

The morphological covering algorithm for 2D signals consists of the

following steps:

Step 1. Select a 3D set structuring element B from the above sIX
choices, and let g be its corresponding function.
2. Perform recursively the support-limited dilations and erosions

That is, set G equal to G, or G,.,
and (104). If G = G, this

Step
of f by g®¢ at scales & = 1,2,.
s=10,1,.. N}x{0]1, oMy,
yields for & = 1

f@s g[na m] =

ves Emax+

and use (121)

max max (fln+im+Jjl+ gli,j1}

—-1sisl -1sj=1

Then, for any G,
@582 = (f Ds &%) Bs 8

e=2.

Likewise for the erosions f Os g®e.

Step 3. Compute the volumes

M
V,[el = E Y (f ®s2®) — (f @5 gNIn, m]

n=0m=0
Step 4. Fit a straight line using least-squares to the plot of

(log V,[e)/&*, log 1/¢).

The slope of this line gives an estimate of the fractal dimension of the

81’?:1:5{ previous approaches, the work in. Peleg et al. (1984); Stexil (1 1 92’7&,

and Peli et al. (1989) corresponds to using g OF &p vn:qth hh— L. ne

variation method in Dubuc et al. (1988) cor(r)esponds to using a horizon
are B, i.e., a flat function gy, with = 0. .

sq‘;\ssuming that M = N and v = (max,,,{f[n, ml} - ming, m { f [g, 1313];)/1\;,

the computational complexity of using covers with 3D sets is (N2 m,),

whereas using covers with 2D functions yields a complexity O(N“&max)-

(In both cases, if & > 0, it is assumed that h=v)
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VII. MODELING FRACTAL IMAGES USING ITERATED
FuNCcTION SYSTEMS

TFThere is a rich class of nonlinear dynamical systems that consists of
‘¢ombinations of contraction maps on the Euclidean space and converge to
gttractor sets that are fractals. These fractal attractors include many of the
well-known mathematical fractal sets and can model well images of natural
scenes. These systems are known as iferated function systems and their
theory was developed mainly by Hutchinson (1981) and Barnsley (1988) and
his coworkers.

Currently, there are many computer algorithms to generate fractals.
Examples include the FFT-based synthesis of images modeled as 2D frac-
tional Brownian motion (Voss, 1988) and the synthesis via iterated function
systems (Barnsley and Demko, 1985; Diaconis and Shahshahani, 1986).
However, the inverse problem, i.e., given a fractal image find a signal
model and an algorithm to generate it, is much more important and very
difficult. An approach that is promising for solving this inverse problem is
modeling fractal images with collages; the basic theory is summarized in
Section VII.A. Then an algorithm is described in Section VII.B to find the
collage model parameters via morphological skeletonization.

A. Modeling Fractals with Collages

The key idea in the collage modeling (Barnsley ef al., 1986) of a fractal set
F is that if we can closely cover it with a collage of m small patches that are
reduced distorted copies of F, then we can approximately reconstruct F
(within a controllable error) as the attractor of a set of m contraction maps
(each map is responsible for one patch). To simplify the analysis let us
assume that we deal with compact planar sets F < R%. Let w;: R*> - R? be
contraction maps; i.e.,

[w;() = w;OM < s;lx =y,  vx,yeR (136)

where 0 < s; < 1 are constant contractivity factors. Let X be the collection
of all nonempty compact subsets of R> and define the collage map
W:X — X by
m
wx) & U wix) =

i=1

LmJ {wi(x):x € X},

i=1

XeX (137)

Then Hutchinson (1981) showed that the map W is a contraction map on X
with respect to the Hausdorff metric /4, defined by

KX, Y)&infrz=0:XSY®rB,YSX®rB), X,YeX (138)



238 PETROS MARAGOS

where B is the unit-radius disk. Namely

hW(X), W(Y)) <s°* hX,Y) (139)
where the contractivity factor s is equal to
s = max (s (140)

1sism
Thus, the contraction mapping theorem implies that, if we iterate the map
W starting from any initial set X e X, a unique fixed point

@ = lim W'(X) = W(Q)

n-—>o

(141)
will be reached. The limit set @, called the attractor, is independent of the

initial set X and is often a fractal set. .
The following theorem goes one step further and states that if we can

approximate well (with respect to the Hausdorff metric) an griginal set F
with the collage W(F) of an iterated function sys'tem fwiei =1, cees m],1
then the attractor of this system will also approximate well the origina
set F. ‘

Theorem 15. (Barnsley et al., 1986). Given a set F € X, if

h(F, W(F)) <& (142)

then, for any X € X,

h(F, lim W°"(X)> < (143)

1 -+

Thus. if we can find maps w; that have small contractivities (%.e., s < 1)and
make a good collage (i.e., with small distance &), then by 1tf:rat1n%. on an
arbitrary compact set X the collage map W we can synthesize in the limit an

i iginal set F.
attractor set that approximates well the original set
In practical applications, analytically simple choices for the maps w; are

the affine maps

x cosf; —sin Bi][ x] N \: t,,-]
W; = ri . . t )
'( y) sinf; cosb;|l Y i
a version of F that is
and translated by the

(144)

Each w;, operating on all points (x, y) of F, gives
rotated by an angle 6;, shrunk by a scale factor 7,
ve?IEgZ (ctgli;gg theorem and a related synthesi§ algorithm have been \}/lery
successful for fractal image modeling and coding .(Bamsley, 1988).1:1" elsfe
ideas work very well for images that have _c0{151derable d.egree of self-
similarity. The difficulty, however, lies ip finding appro;?rxate mapst ;:,Ss
which (by variation of their scaling, rotation, and translation paramete
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‘can collage F well. The majority of earlier solutions required either

considerable human intervention or exhaustive searching of all parameters

— In a discretized space. An approximate solution to this problem has been

§, provided for binary images by Libeskind-Hadas and Maragos (1987) who

"used the morphological skeleton transform to efficiently extract the
parameters of these affine maps, as explained in the next section.

The collage models have also been extended to gray-level images by
modeling image functions as measures and using the Hutchinson metric to
quantify the goodness of the collage approximation (Barnsley, 1988). This
measure-theoretic framework, however, is difficult to apply to images with
discrete-domain. Recent improvements of the gray-level collage models for
images with discrete-domain include the works of Jacquin (1992) and
Lundheim (1992). Lundheim has also developed a least-squares approach

to find optimal collage parameters, which is efficient and mathematically
tractable.

B. Finding the Collage Parameters via Morphological Skeletons

First we summarize the morphological skeleton transform for binary
images, and then we outline its usage for finding the collage parameters.

Since the medial axis transform (also known as symmetric axis or
skeleton transform) was first introduced by Blum (1967), it has been studied
extensively for shape representation and description, which are important
issues in computer vision. Among the many approaches (Rosenfeld and
Kak, 1982) to obtain the medial axis transform, it can also be obtained via
erosions and openings (Mott-Smith, 1970; Lantuejoul, 1980; Serra, 1982;
Maragos and Schafer, 1986). Let F < Z” represent a finite discrete binary
image, and let B € Z? be a binary structuring element containing the origin.
The nth skeleton component of F with respect to B is the set

S, = (F © nB\[(F © nB) O B], n=01,...,N (145)

where N = max{n: F © nB # @} and \ denotes set difference. The S, are

disjoint subsets of F, whose union is the morphological skeleton of F.

(If B is a disk, then the morphological skeleton becomes identical with the

medial axis.) We define the morphological skeleton transform of F to be the

finite sequence (Sy, Sy, ..., Sy). From this sequence we can reconstruct
; exactly or partially; i.e.,

FOQkB= \J S,® nB,

k=nsN

Thus, if k¥ = 0 (i.e., if we use all the skeleton subsets), F O kB = F and we
have exact reconstruction. If 1 < k < N, we obtain a partial reconstruction,

O0<k=N (146)
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FIGURE 4. Morphological skeletonization of a binary image F (top left image) with respect
to a 21-pixel octagon structusing element B. (a) Erosions F © nB, n = 0, 1, 2, 3; (b) openings
of erosions (F © nB) O B. (c) Skeleton subsets S,. (d) Dilated skeleton subsets S, @ nB.
(¢) Partial unions of skeleton subsets U= k= n Sk - () Partial unions of dilated skeleton subsets
UnakanSe @ kB. (From Maragos and Schafer, 1986; © 1986 IEEE.)

i.e., the opening (smoothed version) of F by kB. The larger the size index
k, the larger the degree of smoothing. Figure 4 shows a detailed description
of the skeletal decomposition and reconstruction of an image. Thus, we can
view the S, as shape components. That is, skeleton components of small size
indices n are associated with the lack of smoothness of the boundary of F,
whereas skeleton components of large indices n are related to the bulky
interior parts of F that are shaped similarly to nB.

Libeskind-Hadas and Maragos (1987) used the information in the
morphological skeleton transform in the following way to obtain the collage
model parameters. First note (referring to the notation of Section VII.A)
that the collage theorem does not change if the collage map W is modified
to contain a fixed condensation set C:

WF)=C (n) w;(F) (147)

i=1
The set C is set equal to the dilation of the skeleton subset Sy corresponding
to the largest scale index. This will model the bulky parts of the interior of
an image F. (The origin of the plane is set equal to the mass centroid
of Sy.) Then, every major skeleton branch is associated with a map w;.
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The translation vector (¢, ¢,;) is taken as the vector of pixel coordinates
of 'the skelfeton branch point b. (The selection of the major skeleton branch
points, W.thh also determines the number of affine maps, is the only part of
the algorithm done by visual inspection.) The rotation angle 6, is found as
the ang]e' that the skeleton branch forms with the horizontal. (iistimates of
the rotation angle can also be obtained from fitting a line via least-squares
Fo several known points on the specific branch.) Finally, the scaling factor
is .se.t equal t9 r= n/N, where n is the index of the skeleton subset con-
talmr!g b ThJS algorithm can model images F that exhibit some degree of
self-DSImllanty; i.e., when local details of F closely resemble F as a whole
Flgure. 5. shows an example of the application of morpholo 'cai
skeletonization to find the parameters of a collage model for the frzital

(e)

outer branch points

(a)

(d)
FIGURE 5. (a) Original binary i i
y image F (fractal Koch island). (b) Recursive pr
: . ocess to
construct the boundary of F. (c) Morphological skeleton of F (using a discrete dils)k for B).

(d) Three of the six affine transf i i i
S 1087 Sp1b ) ransformations of F. (From Libeskind-Hadas and Maragos, 1987;



242 PETROS MARAGOS

image of a Koch island. (The boundary of this 2D fra.ctgl se:t is dg.enera.tgil1
through the recursive process of Fig. §b and has smnlarltyK nge:rsni:nd
log(4)/10g(3).) Note that, due to the rotational symmetry of the 1otc 1e land
with respect to its center, the rotation angles can also be set equal to z o n
this example. Since the Koch island can be perfectly r;lod‘eled as a ggl ag
of six affine maps (scaled by r = 1/3) and a large disk in the: middle as
condensation set, the attractor synthesized from the corresponding iterate
function system is identical to the original image.

VIII. CONCLUSIONS

In this chapter two important aspects of fractal s.ignal§ have been a_nal'yi;i
using concepts and operations from morphological signal processm%. o
measurement of the fractal dimension of 1D and 2D signals an e
modeling of binary images as attractors of iterated systems of afﬁpe maps.
The major emphasis of the discussion was on the fractal dlmeélmfon
measurement. In this area a theoretical appr9ach was pr'esex}te 1 ‘cJ)r
measuring the fractal dimension of arbit.rary contl_nuous-don?am signals t)e'
using morphological erosion and dilation function operations 'foh crea
covers around a signal’s graph at multiple scales. A related a%gorlt m \/YS.S
also described for discrete-domain signals. This morphologlf:a.l coyernilg
approach unifies and extends the theoretical aspects afu.:l digital imp ctz-
mentations of several other covering methods. Many empirical .expenlrlneél.s
on synthetic fractal signals indicate that the Performance of this ;x;etl 0 1 is
good since it yields average estimation errors in the orc}er of 0to 4%. tha ;o
has a low computational complexity, which is linear with rgspect to bo(ti the
signal’s size of support and the maximum scale. It can b.e 1mp1ement; verz
efficiently by using morphological filtering and can yield results t l?t arf
invariant with respect to shifting the signal’s domain and afﬁr}e scaling 0
its dynamic range. The latter advantage makes the mon.)hologlcgl‘covermg
method more robust than the box-counting method in the_: dlgltd ;:as;:
An interesting area of future research couldfbe _the investigation of the
ce of this method in the presence of noise. o
pe;\t;[(:)rdrgﬁgg binary images with large deg{ee of self-s.u.mlarlty asl.the
attractors of iterated systems of affine maps is very promising for applica-
tions. However, efficient methods must be developed to find th? parameters
of these affine maps. A preliminary approach toward tps goal zas
described based on the morphological skeleton .transform. This ‘ap;')roac 13
promising but it needs further work in automat.mg the part for fnlldmg gooa
branch points to place the collage patcl_u?s; using connected ske etpns m Fy
help finding such branch points. In addition, for the collage of an image £,
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improved rotation angles and scaling factors for each affine map w; can be
found by searching in a relatively small discretized space around the initial
estimates found via morphological skeletonization and minimizing the area
difference between F and (F O kB) U w;(F), where k is a smoothing scale
at which the fractal details do not exist. An extension of these idea to gray-
level images using gray-level skeletonization could also be interesting.

Overall, the main characteristic of the morphological signal operators
that enables them to be efficient in measuring the fractal dimension or
finding the collage model parameters is their ability to extract information
about the geometrical structure of signals at multiple scales.
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