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74.1 Introduction

This chapter provides a brief introduction to the theory of morphological signal processing and its
applications to image analysis andnonlinearfiltering. By “morphological signalprocessing”wemean
a broad and coherent collection of theoretical concepts, mathematical tools for signal analysis, non-
linear signal operators, design methodologies, and applications systems that are based on or related
tomathematical morphology (MM), a set- and lattice-theoreticmethodology for image analysis. MM
aims at quantitatively describing the geometrical structure of image objects. Itsmathematical origins
stem from set theory, lattice algebra, convex analysis, and integral and stochastic geometry. It was
initiatedmainly byMatheron [42] and Serra [58] in the 1960s. Some of its early signal operations are
also found in the work of other researchers who used cellular automata and Boolean/threshold logic
to analyze binary image data in the 1950s and 1960s, as surveyed in [49, 54]. MM has formalized
these earlier operations and has also added numerous new concepts and image operations. In the
1970s it was extended to gray-level images [22, 45, 58, 62]. OriginallyMM was applied to analyzing
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images from geological or biological specimens. However, its rich theoretical framework, algorith-
mic efficiency, easy implementability on special hardware, and suitability for many shape-oriented
problems have propelled its widespread diffusion and adoption by many academic and industry
groups in many countries as one among the dominant image analysismethodologies. Many of these
research groups have also extended the theory and applications of MM. As a result, MM nowadays
offers many theoretical and algorithmic tools to and inspires new directions in many research areas
from the fields of signal processing, image processing and machine vision, and pattern recognition.

As thename ‘morphology’ implies (study/analysisof shape/form),morphological signalprocessing
can quantify the shape, size, and other aspects of the geometrical structure of signals viewed as image
objects, in a rigorous way that also agrees with human intuition and perception. In contrast, the
traditional tools of linear systems and Fourier analysis are of limited or no use for solving geometry-
based problems in image processing because they do not directly address the fundamental issues of
how to quantify shape, size, or other geometrical structures in signals and may distort important
geometrical features in images. Thus,morphological systems aremore suitable than linear systems for
shape analysis. Further, they offer simple and efficient solutions to other nonlinear problems, such as
non-Gaussian noise suppression or envelope estimation. They are also closely related to another class
of nonlinear systems, the median, rank, and stack operators, which also outperform linear systems
in non-Gaussian noise suppression and in signal enhancement with geometric constraints. Actually,
rank and stack operators can be represented in terms of elementary morphological operators. All
of the above, coupled with the rich mathematical background of mathematical morphology, make
morphological signalprocessing a rigorous and efficient framework to study and solvemanyproblems
in image analysis and nonlinear filtering.

74.2 Morphological Operators for Sets and Signals

74.2.1 Boolean Operators and Threshold Logic

Early works in the fields of visual pattern recognition and cellular automata dealt with analysis of
binary digital images using local neighborhood operations of the Boolean type. For example, given a
sampled1 binary image signal f [x]with values 1 for the image foreground and 0 for the background,
typical signal transformations involving a neighborhood of n samples whose indices are arranged in
a window set W = {y1, y2, . . . , yn} would be

ψb(f )[x] = b (f [x − y1], . . . , f [x − yn])
where b(v1, . . . , vn) is a Boolean function of n variables. The mapping f #→ ψb(f ) is a nonlinear
system, called a Boolean operator. By varying the Boolean function b, a large variety of Boolean
operators can be obtained; see Table 74.1 where W = {−1, 0, 1}. For example, choosing a Boolean
AND for b would shrink the input image foreground, whereas a Boolean OR would expand it.

Two alternative implementations and views of these Boolean operations are (1) thresholded convo-
lutions,where a binary input is linearly convolvedwith ann-pointmask of ones and then the output is
thresholded at 1 or n to produce the BooleanOR orAND, respectively, and (2)min /max operations,
where the moving local minima and maxima of the binary input signal produce the same output
as Boolean AND/OR, respectively. In the thresholded convolution interpretation, thresholding at
an intermediate level r between 1 and n produces a binary rank operation of the binary input data
(inside themovingwindow). For example, if r = (n+1)/2, we obtain the binarymedian filterwhose

1Signals of a continuous variable x ∈ R
d are usually denoted by f (x), whereas for signals with discrete variable x ∈ Z

d

we write f [x].
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TABLE 74.1 Discrete Set Operators and Their
Generating Boolean Function

Set Operator "(X), X ⊆ Z Boolean function b(v1, v2, v3)

Erosion: X ' {−1, 0, 1} v1v2v3
Dilation: X ⊕ {−1, 0, 1} v1 + v2 + v3
Median: X!2{−1, 0, 1} v1v2 + v1v3 + v2v3

Hit-Miss: X ⊗ ({−1, 1}, {0}) v1v2v3
Opening: X ◦ {0, 1} v1v2 + v2v3
Closing: X • {0, 1} v2 + v1v3

Boolean function expresses themajority voting logic; see the third example of Table 74.1. Of course,
numerous other Boolean operators are possible, since there are 22n possible Boolean functions of n

variables. The main applications of such Boolean signal operations have been in biomedical image
processing, character recognition, object detection, and general 2D shape analysis. Detailed accounts
and more references of these approaches and applications can be found in [49, 54].

74.2.2 Morphological Set Operators

Among the new important conceptual leaps offered by mathematical morphology was to use sets
to represent binary image signals and set operations to represent binary image transformations.
Specifically, given a binary image, let its foreground be represented by the set X and its background
by the set complement Xc. The Boolean OR transformation of X by a (window) set B (local
neighborhood of pixels) is mathematically equivalent to the Minkowski set addition ⊕, also called
dilation, of X by B:

X ⊕ B ≡ {x + y : x ∈ X, y ∈ B} =
⋃

y∈B

X+y (74.1)

whereX+y ≡ {x +y : x ∈ X} is the translation ofX along the vector y. Likewise, ifBr ≡ {x : −x ∈
B} denotes the reflection of B with respect to the axes’ origin, the Boolean AND transformation of
X by the reflected B is equivalent to theMinkowski set subtraction [24] ', also called erosion, of X
or B:

X ' B ≡ {x : B+x ⊆ X} =
⋂

y∈B

X−y (74.2)

In applications, B is usually called a structuring element and has a simple geometrical shape and a
size smaller than the image set X. As shown in Fig. 74.1, erosion shrinks the original set, whereas
dilation expands it.

The erosion (74.2) can also be viewed as Boolean templatematching since it gives the center points
atwhich the shifted structuring elements fits inside the image foreground. If we now consider a setA
probing the image foreground set X and another set B probing the background Xc, the set of points
at which the shifted pair (A, B) fits inside the images is the hit-miss transformation of X by (A, B):

X ⊗ (A, B) ≡ {x : A+x ⊆ X, B+x ⊆ Xc} (74.3)

In the discrete case, this can be represented by a Boolean product function whose uncomplemented
(complemented) variables correspond to points of A(B); see Table 74.1. It has been used extensively
for binary feature detection [58] and especially in document image processing [8, 9].

Dilating an eroded set by the same structuring element in general does not recover the original set
but only a part of it, its opening. Performing the same series of operations to the set complement
yields a set containing the original, its closing. Thus, cascading erosion and dilation gives rise to two
new operations, the opening X ◦ B ≡ (X ' B) ⊕ B and the closing X • B ≡ (X ⊕ B) ' B of X

by B. As shown in Fig. 74.1, the opening suppresses the sharp capes and cuts the narrow isthmuses
of X, whereas the closing fills in the thin gulfs and small holes. Thus, if the structuring element B
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FIGURE 74.1: Erosion, dilation, opening, and closing of X (binary image of an island) by a disk B

centered at the origin. The shaded areas correspond to the interior of the sets, the dark solid curve to
the boundary of the transformed sets, and the dashed curve to the boundary of the original set X.

has a regular shape, both opening and closing can be thought of as nonlinear filters which smooth
the contours of the input signal.

These set operations make mathematical morphology more general than previous approaches
because it unifies and systematizes all previous digital and analog binary image operations, mathe-
matically rigorous and notationally elegant since it is based on set theory, and intuitive since the set
formalism is easily connected to mathematical logic. Further, the basic morphological set operators
directly relate to the shape and size of binary images in a way that has many common points with
human perception about geometry and spatial reasoning.

74.2.3 Morphological Signal Operators and Nonlinear Convolutions

In the 1970s, morphological operators were extended from binary to gray-level images and real-
valued signals. Going from sets to functions was made possible by using set representations of signals
and transforming these input sets via morphological set operations. Thus, consider a signal f (x)
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defined on the d-dimensional continuous or discrete domain D = R
d or Z

d and assuming values
in R̄ = R ∪ {−∞, ∞}. Thresholding the signal at all amplitude values v produces an ensemble of
threshold binary signals

θv(f )(x) ≡ 1 if f (x) ≥ v, and 0 else, (74.4)

represented by the threshold sets [58]

$v(f ) ≡ {x ∈ D : f (x) ≥ v} , −∞ < v < +∞ (74.5)

The signal can be exactly reconstructed from all its thresholded versions since

f (x) = sup{v ∈ R : x ∈ $v(f )} = sup{v ∈ R : θv(f )(x) = 1} (74.6)

Transforming each threshold set by a set operator " and viewing the transformed sets as threshold
sets of a new signal creates a flat signal operator ψ whose output is

ψ(f )(x) = sup{v ∈ R : x ∈ "[$v(f )]} (74.7)

Using set dilation and erosion in place of ", the above procedure creates the two most elementary
morphological signal operators: the dilation and erosion of a signal f (x) by a set B:

(f ⊕ B)(x) ≡
∨

y∈B

f (x − y) (74.8)

(f ' B)(x) ≡
∧

y∈B

f (x + y) (74.9)

where
∨

denotes supremum (or maximum for finite B) and
∧

denotes infimum (or minimum
for finite B). These gray-level morphological operations can also be created from their binary
counterparts using concepts from fuzzy sets where set union and intersection becomes maximum
and minimum on gray-level images [22, 45]. As Fig. 74.2 shows, flat erosion (dilation) of a function
f by a small convex set B reduces (increases) the peaks (valleys) and enlarges the minima (maxima)
of the function. The flat opening f ◦ B = (f ' B) ⊕ B of f by B smooths the graph of f from
below by cutting down its peaks, whereas the closing f • B = (f ⊕ B) ' B smoothes it from above
by filling up its valleys.

More generalmorphological operators for gray-level 2D image signals f (x) can be created [62] by
representing the surface of f and all the points underneath by a 3D set U(f ) = {(x, v) : v ≤ f (x)},
called its umbra; then dilating or erodingU(f ) by the umbra of another signal g yields the umbras of
two new signals, the dilation or erosion of f by g, which can be computed directly by the formulae:

(f ⊕ g)(x) ≡
∨

y∈D

f (x − y) + g(y) (74.10)

(f ' g)(x) ≡
∧

y∈D

f (x + y) − g(y) (74.11)

and two supplemental rules for adding and subtracting with infinities: r ± s = −∞ if r = −∞
or s = −∞, and +∞ − r = +∞ if r ∈ R ∪ {+∞}. These two signal transformations are
nonlinear and translation-invariant. Their computational structure closely resembles that of a linear
convolution (f ∗ g)[x] = ∑

y f [x − y]g[y] if we correspond the sum of products to the supremum
of sums in the dilation. Actually, in the areas of convex analysis [50] and optimization [6], the
operation (74.10) has been known as the supremal convolution. Similarly, replacing −g(−x) with
g(x) in the erosion (74.11) yields the infimal convolution

(f !g)(x) ≡
∧

y∈D

f (x − y) + g(y) (74.12)
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FIGURE 74.2: (a) Original signal f . (b) Structuring function g (a parabolic pulse). (c) Erosion f ' g with dashed line and flat
erosion f ' B with solid line, where the set B = {x ∈ Z : |x| ≤ 10} is the support of g. Dotted line shows original signal f .
(d) Dilation f ⊕ g (dashed line) and flat dilation f ⊕ B (solid line). (e) Opening f ◦ g (dashed line) and flat opening f ◦ B

(solid line). (f) Closing f • g (dashed line) and flat closing f • B (solid line).
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Thenonlinearityof⊕ and' causes somedifferencesbetween these signaloperations and the linear
convolutions. A major difference is that serial or parallel interconnections of systems represented
by linear convolutions are equivalent to an overall linear convolution, whereas interconnections of
dilations and erosions lead to entirely different nonlinear systems. Thus, there is an infinite variety
of nonlinear operators created by cascading dilations and erosions or by interconnecting them in
parallel viamax /min or addition. Two such useful examples are the opening ◦ and closing •:

f ◦ g ≡ (f ' g) ⊕ g (74.13)

f • g ≡ (f ⊕ g) ' g (74.14)

which act as nonlinear smoothers.

Figure 74.2 shows that the four basicmorphological transformations of a 1D signal f by a concave
even function g with a compact support B have similar effects as the corresponding flat transforma-
tions by the set B. Among the few differences, the erosion (dilation) of f by g subtracts from (adds
to) f the values of the moving template g during the decrease (increase) of signal peaks (valleys)
and the broadening of the local signal minima (maxima) that would incur during erosion (dilation)
by B. Similarly, the opening (closing) of f by g cuts the peaks (fills up the valleys) inside which no
translated version of g(−g) can fit and replaces these eliminated peaks (valleys) by replicas of g(−g).
In contrast, the flat opening or closing byB only cuts the peaks or fills valleys and creates flat plateaus
in the output.

The four above morphological operators of dilation, erosion, opening, and closing have a rich
collection of algebraic properties, some of which are listed in Tables 74.2 and 74.3, which endow
them with a broad range of applications, make them rigorous, and lead to a variety of efficient serial
or parallel implementations.

TABLE 74.2 Definitions of Operator Properties
Property Set operator " Signal operator ψ

Translation-Invar. "(X+y ) = "(X)+y ψ[f (x − y) + c] = c + ψ(f )(x − y)
Shift-Invariant "(X+y ) = "(X)+y ψ[f (x − y)] = ψ(f )(x − y)
Increasing X ⊆ Y 1⇒ "(X) ⊆ "(Y ) f ≤ g 1⇒ ψ(f ) ≤ ψ(g)
Extensive X ⊆ "(X) f ≤ ψ(f )

Anti-extensive "(X) ⊆ X ψ(f ) ≤ f
Idempotent "("(X)) = "(X) ψ(ψ(f )) = ψ(f )

TABLE 74.3 Properties of BasicMorphological Signal Operators
Property Dilation Erosion Opening Closing

Duality f ⊕ g = −[(−f ) ' gr ] f ◦ g = −[(−f ) • gr ]
Distributivity (∨i fi ) ⊕ g = ∨i fi ⊕ g (∧i fi ) ' g = ∧i fi ' g No No
Composition (f ⊕ g) ⊕ h = f ⊕ (g ⊕ h) (f ' g) ' h = f ' (g ⊕ h)
Extensive Yes if g(0) ≥ 0 No No Yes

Anti-Extensive No Yes if g(0) ≥ 0 Yes No
Commutative f ⊕ g = g ⊕ f No No No
Increasing Yes Yes Yes Yes

Translation-Invar. Yes Yes Yes Yes
Idempotent No No Yes Yes
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74.3 Median, Rank, and Stack Operators

Flat erosion anddilation of adiscrete-domain signalf [x] by a finitewindowW = {y1, . . . , yn} ⊆ Z
d

is a moving local minimum or maximum. Replacing min /max with a more general rank leads to
rank operators. At each location x ∈ Z

d , sorting the signal values within the reflected and shifted
n-point window (Wr)+x in decreasing order and picking the pth largest value, p = 1, 2, . . . , n =
card (W), yields the output signal from the pth rank operator:

(f !pW)[x] ≡ pth rank of (f [x − y1], . . . , f [x − yn]) (74.15)

For odd n andp = (n+1)/2we obtain themedian operator. If the input signal is binary, the output
is also binary since sorting preserves a signal’s range. Representing the input binary signal with a set
S ⊆ Z

d , the output set produced by the pth rank set operators is

S!pW ≡ {x : card ((Wr)+x ∩ S) ≥ p} (74.16)

Thus, computing the output from a set rank operator involves only counting of points andno sorting.
All rank operators commute with thresholding [21, 27, 41, 45, 58, 65]; i.e.,

$v

[

f !pW
]

= [$v(f )]!pW, ∀v , ∀p . (74.17)

This property is also shared by all morphological operators that are finite compositions or max-
ima/minima of flat dilations and erosions, e.g., openings and closings, by finite structuring elements.
All such signal operators ψ that have a corresponding set operator " and commute with thresh-
olding can be alternatively implemented via threshold superposition [41, 58] as in (74.7). Namely, to
transform amultilevel signal f byψ is equivalent to decomposing f into all its threshold sets, trans-
forming each set by the corresponding set operator", and reconstructing the output signalψ(f ) via
its thresholded versions. This allows us to study all rank operators and their cascade or parallel (using
∨, ∧) combinations by focusing on their corresponding binary operators. Such representations are
much simpler to analyze and they suggest alternative implementations that do not involve numeric
comparisons or sorting.

Binary rank operators and all other binary discrete translation-invariant finite-window operators
can be described by their generating Boolean function; see Table 74.1. Thus, in synthesizing discrete
multilevel signal operators from their binary countparts via threshold superposition all that is needed
is knowledge of this Boolean function. Specifically, transforming all the threshold binary signals
θv(f )[x] of an input signal f [x]with an increasing Boolean function b(u1, . . . , un) (i.e., containing
no complemented variables) inplaceof the set operator" in (74.7) creates a large varietyofnonlinear
signal operators via threshold superposition, called stack filters [41, 70]

φb(f )[x] ≡ sup{v : b (θv(f )[x − y1], . . . , θv(f )[x − yn]) = 1} (74.18)

For example,φb becomes thepth rankoperator ifb is equal to the sum
(

n
p

)

product termswhere each
contains one distinct p-point subset from the n variables. In general, the use of Boolean functions
facilitates the design of such discrete flat operators with determinable structural properties. Since
each increasing Boolean function can be uniquely represented by an irreducible sum (product) of
product (sum) terms, and each product (sum) term corresponds to an erosion (dilation), each stack
filter can be represented as a finite maximum (minimum) of flat erosions (dilations) [41].

74.4 Universality of Morphological Operators

Dilations or erosions, the basic nonlinear convolutions of morphological signal processing, can be
combined in many ways to create more complex morphological operators that can solve a broad
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variety of problems in image analysis and nonlinear filtering. In addition, they can be implemented
using simple and fast software or hardware; examples include various digital [58, 61] and analog,
i.e., optical or hybrid optical-electronic implementations [46, 63]. Their wide applicability and
ease of implementation poses the question which signal processing systems can be represented by
using dilations and erosions as the basic building blocks. Toward this goal, a theory was introduced
in [33, 34] that represents a broad class of nonlinear and linear operators as a minimal combination
of erosions or dilations. Here we summarize the main results of this theory, in a simplified way,
restricting our discussion only to signals with discrete domain D = Z

d .
Consider a translation-invariant set operator" on the class P(D) of all subsets of D. Any such"

is uniquely characterized by its kernel that is defined [42] as the subclass Ker(") ≡ {X ∈ P(D) : 0 ∈
"(X)} of input sets, where 0 is the origin of D. If" is also increasing, then it can be represented [42]
as the union of erosions by its kernel sets and as the intersection of dilations by the reflected kernel
sets of its dual operator "d(X) ≡ ["(Xc)]c. This kernel representation can be extended to signal
operatorsψ on the class Fun(D, R̄) of signals with domain D and range R̄. The kernel ofψ is defined
as the subclass Ker(ψ) = {f ∈ Fun(D, R̄) : [ψ(f )](0) ≥ 0} of input signals. If ψ is translation-
invariant and increasing, then it can be represented [33, 34] as the pointwise supremum of erosions
by its kernel functions, and as the infimum of dilations by the reflected kernel functions of its dual
operator ψd(f ) ≡ −ψ(−f ).

The two previous kernel representations require an infinite number of erosions or dilations to
represent a given operator because the kernel contains an infinite number of elements. However, we
can find more efficient (requiring less erosions) representations by using only a substructure of the
kernel, its basis. The basis Bas(·) of a set (signal) operator is defined [33, 34] as the collection of
kernel elements that areminimal with respect to the ordering ⊆ (≤).

If a translation-invariant increasing set operator" is also upper semicontinuous, i.e., obeys amono-
tonic continuity where "(

⋂

n Xn) = ⋂

n"(Xn) for any decreasing set sequence Xn, then " has a
nonempty basis and can be represented via erosions only by its basis sets. If the dual"d is also upper
semicontinuous, then its basis sets provide an alternative representation of" via dilations:

"(X) =
⋃

A∈Bas(")

X ' A =
⋂

B∈Bas("d )

X ⊕ Br (74.19)

Similarly, any signaloperatorψ that is translation-invariant, increasing, andupper semicontinuous
(i.e., ψ(∧nfn) = ∧nψ(fn) for any decreasing function sequence fn) can be represented as the
supremum of erosions by its basis functions, and (if ψd is upper semicontinuous) as the infimum of
dilations by the reflected basis functions of its dual operators:

ψ(f ) =
∨

g∈Bas(ψ)

f ' g =
∧

h∈Bas(ψd )

f ⊕ hr (74.20)

where hr(x) ≡ h(−x). Finally, if φ is a flat signal operator as in (74.7) that is translation-invariant
and commutes with thresholding, then φ can be represented as a supremum of erosions by the basis
sets of its corresponding set operator&:

φ(f ) =
∨

A∈Bas(&)

f ' A =
∧

B∈Bas(&d )

f ⊕ Br (74.21)

While all the above representations express translation-invariant increasing operators via erosions
or dilations, operators that are not necessarily increasing can be represented [4] via operations closely
related to hit-miss transformations.

Representing operators that satisfy a few general properties in terms of elementary morphological
operations can be applied to more complex morphological systems and various other filters such as
linear rank, hybrid linear/rank, and stack filters, as the following examples illustrate.
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EXAMPLE 74.1: Morphological Filters

All systemsmade up of serial or sup/inf combinations of erosions, dilations, opening, and closings
admit a basis, which is finite if the system’s local definition depends on a finite window. For example,
the set opening &(X) = X ◦ A has as a basis the set collection Bas(&) = {A−a : a ∈ A}. Consider
now 1D discrete-domain signals and let A = {−1, 0, 1}. Then, the basis of & has 3 sets: G1 =
A−1, G2 = A, G3 = A+1. The basis of the dual operator &d(X) = X • A has 4 sets: H1 =
{0}, H2 = {−2, 1}, H3 = {−1, 2}, H4 = {−1, 1}. The flat signal operator corresponding to& is the
opening φ(f ) = f ◦ A. Thus, from (74.21), the signal opening can also be realized as a max (min)
of local minima (maxima):

(f ◦ A)[x] =
3

∨

i=1







∧

y∈Gi

f [x + y]







=
4

∧

k=1







∨

y∈Hk

f [x + y]







. (74.22)

EXAMPLE 74.2: Linear Filters

A linear shift-invariant filter is translation-invariant and increasing (see Table 74.2 for definitions)
if its impulse response is everywhere nonnegative andhas area equal to one. Consider the 2-point FIR
filterψ(f )[x] = af [x]+ (1−a)f [x −1], where 0 < a < 1. The basis ofψ consists of all functions
g[x] with g[0] = r ∈ R, g[−1] = −ar/(1 − a), and g[x] = −∞ for x 7= 0, −1. Then (74.20)
yields

af [x] + (1− a)f [x − 1] =
∨

r∈R

[

min
{

f [x] − r, f [x − 1] + ar

1− a

}]

, (74.23)

which expresses a linear convolution as a supremum of erosions. FIR linear filters have an infinite
basis, which is a finite-dimensional vector space.

EXAMPLE 74.3: Median Filters

All rank operators have a finite basis; hence, they can be expressed as a finite max-of-erosions
or min-of-dilations. Further, they commute with thresholding, which allows us to focus only on
their binary versions. For example, the set median by the window W = {−1, 0, 1} has 3 basis sets:
{−1, 0}, {−1, 1}, and {0, 1}. Hence, (74.21) yields

median (f [x − 1], f [x], f [x + 1]) = max









min(f [x − 1], f [x]) ,

min[f (x − 1), f (x + 1)] ,

min[f (x), f (x + 1)]









. (74.24)

EXAMPLE 74.4: Stack Filters

Stack filters (74.18) are discrete translation-invariant flat operators φb, locally defined on a finite
window W , and are generated by a increasing Boolean function b(v1, . . . , vn), where n = card(W).
This function corresponds to a translation-invariant increasing setoperator&. For example, consider
1D signals, let W = {−2, −1, 0, 1, 2} and

b(v1, . . . , v5) = v1v2v3 + v2v3v4 + v3v4v5 = v3(v1 + v4)(v2 + v4)(v2 + v5) . (74.25)
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This function generates via threshold superposition the flat openingφb(f ) = f ◦A, A = {−1, 0, 1},
of (74.22). There is one-to-one correspondence between the three prime implicants of b and the
erosions (localmin) by the three basis sets of&, as well as between the four prime implicates of β and
the dilations (local max) by the four basis sets of the dual&d . In general, given b,& or φb is found
by replacing Boolean AND/OR with set ∩/∪ or with min /max, respectively. Conversely, given φb,
we can find its generating Boolean function from the basis of its set operator (or directly from its
max /min representation if available) [41].

The above examples show the power of the general representation theorems. An interesting
applications of these results is the design of morphological systems via their basis [5, 20, 31]. Given
the wide applicability of erosions/dilations, their parallelism, and their simple implementations, the
previous theorems theoretically support a general purpose vision (software or hardware) module
that can perform erosions/dilations, based on which numerous other complex image operations can
be built.

74.5 Morphological Operators and Lattice Theory

In the late 1980s and 1990s a new and more general formalization of morphological operators was
introduced [59, chaps.1,5-8], [26, 51, 52], which views them as operators on complete lattices. A
complete lattice is a set L equipped with a partial ordering ≤ such that (L, ≤) has the algebraic
structure of a partially ordered set (poset) where the supremum and infimum of any of its subsets
exist in L. For any subset K ⊆ L, its supremum∨K and infimum ∧K are defined as the lowest (with
respect to ≤) upper bound and greatest lower bound of K, respectively. The two main examples
of complete lattices used in morphological processing are: (1) the set space P(D) where the ∨/∧
lattice operations are the set union/intersection, and (2) the signal space Fun(D, R̄) where the ∨/∧
lattice operations are the supremum/infimum of sets of real numbers. Increasing operators on L are
of great importance because they preserve the partial ordering, and among them four fundamental
examples are:

δ is dilation ⇐⇒ δ(
∨

i∈I

fi) =
∨

i∈I

δ(fi) (74.26)

ε is erosion ⇐⇒ ε(
∧

i∈I

fi) =
∧

i∈I

ε(fi) (74.27)

α is opening ⇐⇒ α is increasing, idempotent, and anti-extensive (74.28)

β is closing ⇐⇒ β is increasing, idempotent, and extensive (74.29)

where I is an arbitrary index set.
The above definitions allow broad classes of signal operators to be grouped as lattice dilations,

erosions, openings, or closing and their common properties to be studied under the unifying lattice
framework. Thus, the translation-invariantmorphologicaldilations, erosions,openings, andclosings
we saw before are simply special cases of their lattice counterparts. Next, we see some examples and
applications of the above general definitions.

EXAMPLE 74.5: Dilation and Translation-Invariant (DTI) Systems

Consider a signal operator that is shift-invariant and obeys a supremum-of-sums superposition:

D
[

∨

i

ci + fi(x)

]

=
∨

i

ci + D[fi(x)] (74.30)
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Then D is both a lattice dilation and translation-invariant. We call it a DTI system in analogy
to linear time-invariant (LTI) systems that are shift-invariant and obey a linear (sum-of-products)
superposition. As an LTI system corresponds in the time-domain to a linear convolution with
its impulse response, a DTI system can be represented as a supremal convolution with its upper
‘impulse response’ g∨(x) defined as its output when the input is the upper zero impulse ı(x), defined
in Table 74.4. Specifically,

D is DTI ⇐⇒ D(f ) = f ⊕ g∨, g∨ ≡ D(ı) (74.31)

A similar class is the erosion and translation-invariant (ETI) systems ε which are shift-invariant
and obey an infimum-of-sums superposition as in (74.30) but with ∨ replaced by ∧. Such systems
are equivalent to infimal convolutions with their lower impulse response g∧ = ε(−ı), defined as
the system’s output due to the lower impulse −ı(x). Thus, DTI and ETI systems are uniquely
determined in the time/spatial domain by their impulse responses, which also control their causality
and stability [37].

TABLE 74.4 Examples of Upper Slope Transform
Signal: f (x) Transform: F∨(a)

ı(x − x0) ≡ 0 if x = x0 , and −∞ else −ax0
a0x −ı(a − a0)

λ(x) ≡ 0 if x ≥ 0, and −∞ else −λ(a)

a0x + λ(x) −λ(a − a0)
{

0, |x| ≤ r
−∞, |x| > r

r|a|

−a0|x|, a0 > 0
{

0, |a| ≤ a0
+∞, |a| > a0

√

1− x2, |x| ≤ 1
√

1+ a2

−(|x|p)/p , p > 1 (|a|q )/q , 1/p + 1/q = 1
exp(x) a(1− log a)

EXAMPLE 74.6: Shift-Varying Dilation

Let δB(f ) = f ⊕ B be the shift-invariant flat dilation of (74.8). In applying it to nonstationary
signals, the need may arise to vary the moving window B by actually having a family of windows
B(x), possibly varying at each location x. This creates the new operator

δB(f )(x) =
∨

y∈B(x)

f (x − y) (74.32)

which is still a lattice dilation, i.e., it distributes over suprema, but it is shift-varying.

EXAMPLE 74.7: Adjunctions

An operator pair (ε, δ) is called an adjunction if δ(f ) ≤ g ≤⇐⇒ f ≤ ε(g) for all f, g ∈ L.
Given a dilation δ, there is a unique erosion ε such that (ε, δ) is adjunction, and vice versa. Further, if
(ε, δ) is an adjunction, then δ is a dilation, ε is an erosion, δε is an opening, and εδ is a closing. Thus,
from any adjunction we can generate an opening via the composition of its erosion and dilation.
If ε and δ are the translation-invariant morphological erosion and dilation in (74.11) and (74.10),
then δε coincides with the translation-invariant morphological opening of (74.13). But there are
also numerous other possibilities.
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EXAMPLE 74.8: Radial Opening

If a 2D image f contains 1D objects, e.g., lines, and B is a 2D convex structuring element, then
the opening or closing of f by B will eliminate these 1D objects. Another problem arises when f

contains large-scale objects with sharp corners that need to be preserved; in such cases opening or
closing f by a disk B will round these corners. These two problems could be avoided in some cases
if we replace the conventional opening with

α(f ) =
∨

θ

f ◦ Lθ (74.33)

where the setsLθ are rotated versions of a line segmentL at various angles θ ∈ [0, 2π). The operator
α, called radial opening, is a lattice opening in the sense of (74.28). It has the effect of preserving
an object in f if this object is left unchanged after the opening by Lθ in at least one of the possible
orientations θ .

EXAMPLE 74.9: Opening by Reconstruction

Consider a set X = ⋃

i Xi as a union of disjoint connected components Xi and let M ⊆ Xj be a
marker in the j th component; i.e., M could be a single point or some feature set in X that lies only
in Xj . Then, define the conditional dilation of M by B within X as

δB|X(M) ≡ (M ⊕ B) ∩ X (74.34)

If B is a disk with a radius smaller than the distance between Xj and any of the other components,
then by iterating this conditional dilation we can obtain in the limit

MRB|X(M) = lim
n→∞

(

δB|X · · · (δB|X(δB|X(M))
)

︸ ︷︷ ︸

n times

(74.35)

the whole component Xj . The operator MR is a lattice opening, called opening by reconstruction,
and its output is called the morphological reconstruction of the component from the marker. An
example is shown in Fig. 74.3. It can extract large-scale components of the image from knowledge
only of a smaller marker inside them.

74.6 Slope Transforms

Fourier transforms are among the most useful linear signal transformations because they enable us
to analyze the processing of signals by linear time-invariant (LTI) systems in the frequency domain,
which could be more intuitive or easier to implement. Similarly, there exist some nonlinear sig-
nal transformations, called slope transforms, which allow the analysis of the dilation and erosion
translation-invariant (DTI and ETI) systems in a transform domain, the slope domain. First, we
note that the lines f (x) = ax + b are eigenfunctions of any DTI system D or ETI system E because

D[ax + b] = ax + b + G∨(a) , G∨(a) ≡
∨

x

g∨(x) − ax

E[ax + b] = ax + b + G∧(a) , G∧(a) ≡
∧

x

g∧(x) − ax (74.36)

with corresponding eigenvalues G∨(a) and G∧(a), which are called, respectively, the upper and
lower slope response of the DTI and ETI system. They measure the amount of shift in the intercept
of the input lines with slope a and are conceptually similar to the frequency response of LTI systems.
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FIGURE 74.3: Let X be the union of the two region boundaries in the top left image, and let M

be the single-point marker inside the left region. Top right shows the complement Xc. If Y0 = M

and B is a disk-like set whose radius does not exceed the width of the region boundary, iterating the
conditional dilation Yi = (Yi−1 ⊕ B) ∩ Xc, for i = 1, 2, 3, . . ., yields in the limit (reached at i = 18
in this case) the interior Y∞ of the left region via morphological reconstruction, shown in bottom
right. (Bottom left shows an intermediate result for i = 9.)

Then, by viewing the slope response as a signal transform with variable the slope a ∈ R, we
define [37] for a 1D signal f : D → R̄ its upper slope transform F∨ and its lower slope transform2

F∧ as the functions

F∨(a) ≡
∨

x∈D

f (x) − ax (74.37)

F∧(a) ≡
∧

x∈D

f (x) − ax (74.38)

Since f (x)−ax is the intercept of a line with slope a passing from the point (x, f (x)) on the signal’s
graph, for each a the upper (lower) slope transform of f is the maximum (minimum) value of this
intercept, which occurs when the above line becomes a tangent. Examples of slope transforms are
shown in Fig. 74.4. For differentiable signals, f , the maximization or minimization of the intercept
f (x) − ax can also be done by finding the stationary point(s) x∗ such that df (x∗)/dx = a. This
extreme value of the intercept is the Legendre transform of f :

FL(a) ≡ f
(

(df/dx)−1(a)
)

− a[(df/dx)−1(a)] (74.39)

It is extensively used in mathematical physics. If the signal f (x) is concave or convex and has an
invertible derivative, its Legendre transform is single-valued and equal (over the slope regions it is

2In convex analysis [50], to a convex function h there uniquely corresponds its Fenchel conjugate h∗(a) = ∨

x ax − h(x),
which is the negative of the lower slope transform of h.
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defined) to the upper or lower transform; e.g., see the last three examples in Table 74.4. If f is neither
convex nor concave or if it does not have an invertible derivative, its Legendre transform becomes a
setFL(a) = {f (x∗)−ax∗ : df (x∗)/dx = a} of real numbers for each a. Thismultivalued Legendre
transform, defined and studied in [19] as a ‘slope transform’, has properties similar to those of the
upper/lower slope transform, but there are also some important differences [37].

FIGURE 74.4: (a) Original parabola signal f (x) = −x2/2 (in dashed line) and its morphological
opening (in solid line) by a flat structuring element [−5, 5]. (b) Upper slope transform F∨(a) of the
parabola (in dashed line) and of its opening (in solid line).

The upper and lower slope transform have a limitation in that they do not admit an inverse for
arbitrary signals. The closest to an ‘inverse’ upper slope transform is

f̂ (x) ≡
∧

a∈R

F∨(a) + ax (74.40)

which is equal to f only if f is concave; otherwise, f̂ covers f from above by being its smallest
concave upper envelope. Similarly, the supremum over a of all lines F∧(a) + ax creates the greatest
convex lower envelope f̌ (x) of f , which plays the role of an “inverse” lower slope transform and is
equal to f only if f is convex. Thus, for arbitrary signals we have f̌ ≤ f ≤ f̂ .

Tables 74.4 and 74.5 list several examples and properties of the upper slope transform. The most
striking is that (dilation) supremal convolution in the time/space domain corresponds to addition
in the slope domain. Note the analogy with LTI systems where linearly convolving two signals
corresponds to multiplying their Fourier transforms. Very similar properties also hold for the lower
slope transform, the only differences being the interchange of suprema with infima, concave with
convex, and the supremal ⊕ with the infimal convolution !.

The upper/lower slope transforms for discrete-domain and/or multi-dimensional signals are de-
fined as in the 1D continuous case by replacing the real variable x with an integer and/or multidi-
mensional variable, and their properties are very similar or identical to the ones for signals defined
on R. See [37, 38] for details.

Oneof themostuseful applicationsof LTI systems andFourier transform is thedesignof frequency-
selective filters. Similarly, it is also possible to design morphological systems that have a slope
selectivity. Imagine a DTI system that rejects all line components with slopes in the band [−a0, a0]
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TABLE 74.5 Properties of Upper Slope
Transform

Signal: f (x) Transform: F∨(a)

∨i ci + fi (x) ∨i ci + Fi (a)

f (x − x0) F (a) − ax0
f (x) + a0x F(a − a0)

f (rx) F (a/r)

f (x) ⊕ g(x) F (a) + G(a)

∨yf (x) + g(x + y) F (−a) + G(a)

f (x) ≤ g(x) ∀x F(a) ≤ G(a) ∀a

g(x) =
{

f (x), |x| ≤ r
−∞, |x| > r

G(a) = F(a)!r|a|

and passes all the rest unchanged. Then its slope response would be

G(a) = 0 if |a| ≤ a0, and + ∞ else . (74.41)

This is an ideal-cutoff slope bandpass filter. In the time domain it acts as a supremal convolution
with its impulse response

g(x) = −a0|x| (74.42)

However, f ⊕ g is a non-causal infinite-extent dilation, and hence not realizable. Instead, we could
implement it as a cascade of a causal dilation by the half-line g1(x) = −a0x + λ(x) followed by an
anti-causal dilation by another half-line g2(x) = a0x + λ(−x), where λ(x) is the zero step defined
in Table 74.4. This works because g = g1 ⊕ g2. For a discrete-time signal f [x], this slope-bandpass
filtering could be implemented via the recursivemax-sum difference equation f1[x] = max(f1[x]−
a0, f [x]) run forward in time, followed by another difference equation f2[x] = max(f2[x + 1] +
a0, f1[x]) run backward in time. The final result would be f2 = f ⊕ g. Such slope filters are useful
for envelope estimation [37].

74.7 Multiscale Morphological Image Analysis

Multiscale signal analysis has recently emerged as a useful framework for many computer vision
and signal processing tasks. Examples include: (1) detecting geometrical features or other events
at large scales and then refining their location or value at smaller scales, (2) video and audio data
compression using multiband frequency analysis, and (3) measurements and modeling of fractal
signals. Most of the work in this area has obtained multiscale signal versions via linear multiscale
smoothing, i.e., convolutions with a Gaussian with a variance proportional to scale [15, 53, 72].
There is, however, a variety of nonlinear smoothing filters, including the morphological openings
and closings [35, 42, 58] that can provide a multiscale image ensemble and have the advantage over
the linear Gaussian smoothers that they do not blur or shift edges, as shown in Fig. 74.5. There we
see that the gray-level close-openings by reconstruction are especially useful because they can extract
the exact outline of a certain object by locking on it while smoothing out all its surroundings; these
nonlinear smoothers have been applied extensively in multiscale image segmentation [56]. The use
of morphological operators formultiscale signal analysis is not limited to operations of a smoothing
type; e.g., in fractal image analysis, erosion and dilation can provide multiscale distributions of the
shrink-expand type from which the fractal dimension can be computed [36].

Overall,many applications of morphological signal processing such as nonlinear smoothing, geo-
metrical feature extraction, skeletonization, size distributions, and segmentation, inherently require
or can benefit from performingmorphological operations at multiples scales. The required building
blocks for a morphological scale-space are the multiscale dilations and erosions. Consider a planar
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FIGURE 74.5: (a)Original image and itsmultiscale smoothings via: (b,c,d)Gaussian convolution at
scales 2, 4, 16; (e,f,g) close-openingby a square at scales 2, 4, 16; (h,i,j) close-openingby reconstruction
at scales 2, 4, 16.
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compact convex set B = {(x, y) : ‖(x, y)‖p ≤ 1} that is the unit ball generated by the Lp norm,
p = 1, 2, . . . ,∞. Then the simplest multiscale dilation and erosion of a signal f (x, y) at scales
t > 0 are the multiscale flat sup/inf convolutions by tB = {tz : z ∈ B}

δ(x, y, t) ≡ (f ⊕ tB)(x, y) (74.43)

ε(x, y, t) ≡ (f ' tB)(x, y) (74.44)

which apply both to gray-level and binary images.

74.7.1 Binary Multiscale Morphology via Distance Transforms

Viewing the boundaries of multiscale erosions/dilations of a binary image by disks as wavefronts
propagating from the original image boundary at uniform unit normal velocity and assigning to each
pixel the time t of wavefront arrival creates a distance function, called the distance transform [10].
This transform is a compact way to represent their multiscale dilations and erosions by disks and
other polygonial structuring elements whose shape depends on the norm ‖ · ‖p used to measure
distances. Formally, the distance transform of the foreground set F of a binary image is defined as

Dp(F)(x, y) ≡
∧

(v,u)∈Fc

{‖(x − v, y − u)‖p} (74.45)

Thresholding the distance transform at various levels t > 0 yields the erosions of the foreground F

(or the dilation of the background Fc) by the norm-induced ball B at scale t :

F ' tB = $t [Dp(F)] (74.46)

Another view of the distance transform results from seeing it as the infimal convolution of the
(0, +∞) indicator function of Fc,

IFc (x) ≡ 0 if x ∈ Fc, and + ∞ else, (74.47)

with the norm-induced conical structuring function:

Dp(F)(x) = IFc (x)!‖x‖p (74.48)

Recognizing g∧(x) = ‖x‖p as the lower impulse response of an ETI system with slope response

G∧(a) = 0 if ‖a‖q ≤ 1, and − ∞ else , (74.49)

where 1/p + 1/q = 1, leads to seeing the distance transform as the output of an ideal-cutoff slope-
selective filter that rejects all input planes whose slope vector falls outside the unit ball with respect
to the ‖ · ‖q norm, and passes all the rest unchanged.

To obtain isotropic distance propagation, the Euclidean distance transform is desirable because
it gives multiscale morphology with the disk as the structuring element. However, since this has a
significant computational complexity, various techniques are used to obtain approximations to the
Euclidean distance transform of discrete images at a lower complexity. A general such approach is
the use of discrete distances [54] and their generalization via chamfer metrics [11]. Given a discrete
binary image f [i, j ] ∈ {0, +∞} with 0 marking background/source pixels and +∞ marking fore-
ground/object pixels, its global chamfer distance transform is obtained by propagating local distances
within a small neighborhood mask. An efficient method to implement it is a two-pass sequential
algorithm [11, 54] where for a 3× 3 neighborhood the min-sum difference equation

un[i, j ] = min( un−1[i, j ], un[i − 1, j ] + a, un[i, j − 1] + a ,

un[i − 1, j − 1] + b, un[i + 1, j − 1] + b ) (74.50)
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is run recursively over the image domain: first (n = 1), in a forward scan starting from u0 = f to
obtain u1, and second (n = 2) in a backward scan on u1 using a reflectedmask to obtain u2, which is
the final distance transform. The coefficients a and b are the local distances within the neighborhood
mask. The unit ball associated with chamfer metrics is a polygon whose approximation of the disk
improves by increasing the size of the mask and optimizing the local distances so as to minimize the
error in approximating the true Euclidean distances. In practice, integer-valued local distances are
used for faster implementation of the distance transform. If (a, b) is (1, 1) or (1, ∞), the chamfer
ball becomes a square or rhombus, respectively, and the chamfer distance transform gives poor
approximations to multiscale morphology with disks. The commonly used (a = 3, b = 4) chamfer
metric gives a maximum absolute error of about 6%, but even better approximations can be found
by optimizing a, b.

74.7.2 Multiresolution Morphology

In certain multiscale image analysis tasks, the need also arises to subsample the multiscale image
versions and thus create a multiresolution pyramid [15, 53]. Such concepts are very similar to the
ones encountered in classical signal decimation. Most research in image pyramids has been based on
linear smoothers. However, since morphological filters preserve essential shape features, they may
be superior in many applications. A theory ofmorphological decimation and interpolation has been
developed in [25] to address these issues which also provides algorithms on reconstructing a signal
after morphological smoothing and decimation with quantifiable error. For example, consider a
binary discrete image represented by a set X that is smoothed first to Y = X ◦ B via opening and
then down-sampled to Y ∩ S by intersecting it with a periodic sampling set S (satisfying certain
conditions). Then theHausdorff distance between the smoothed signal Y and the interpolation (via
dilation) (Y ∩ S) ⊕ B of its down-sampled version does not exceed the radius of B. These ideas also
extend to multilevel signals.

74.8 Differential Equations for Continuous-Scale Morphology

Thus far, most of the multiscale image filtering implementations have been discrete. However, due
to the current interest in analog VLSI and neural networks, there is renewed interest in analog
computation. Thus, continuous models have been proposed for several computer vision tasks based
on partial differential equations (PDEs). In multiscale linear analysis [72] a continuous (in scale t

and spatial argument x, y) multiscale signal ensemble

γ (x, y, t) = f (x, y) ∗ Gt(x, y) , Gt (x, y) = exp[−(x2 + y2)/4t]√
4π t

(74.51)

is created by linearly convolving an original signal f with a multiscale Gaussian function Gt whose
variance (2t) is proportional to the scale parameter t . The Gaussian multiscale function γ can be
generated [28] from the linear diffusion equation

∂γ

∂t
= ∂2γ

∂x2
+ ∂2γ

∂y2
(74.52)

starting from the initial condition γ (x, y, 0) = f (x, y).
Motivated by the limitations or inability of linear systems to successfully model several image

processing problems, several nonlinear PDE-based approaches have been developed. Among them,
some PDEs have been recently developed to modelmultiscalemorphological operators as dynamical
systems evolving in scale-space [1, 14, 66].
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Consider the multiscale morphological flat dilation and erosion of a 2D image signal f (x, y) by
the unit-radius disk at scales t ≥ 0 as the space-scale functions δ(x, y, t) and ε(x, y, t) of (74.43)
and (74.44). Then [14] the PDE generating these multiscale flat dilations is

∂δ

∂t
= ‖∇δ‖ =

√
(

∂δ

∂x

)2
+

(

∂δ

∂y

)2
(74.53)

and for the erosions is ∂ε/∂t = −‖∇ε‖. These morphological PDEs directly apply to binary images
because flat dilations/erosions commute with thresholding and hence, when the gray-level image is
dilated/eroded, each one of its thresholded versions representing a binary image is simultaneously
dilated/eroded by the same element and at the same scale.

In equivalent formulations [10, 57, 66], the boundary of the original binary image is considered
as a closed curve and this curve is expanded perpendicularly at constant unit speed. The dilation
of the original image with a disk of radius t is the expanded curve at time t . This propagation of
the image boundary is a special case of more general curvature-dependent propagation schemes for
curve evolution studied in [47]. This general curve evolution methodology was applied in [57] to
obtain multiscalemorphological dilations/erosions of binary images, using an algorithm [47] where
the original curve is first embedded in the surface of a 2D continuous function &0(x, y) as its zero
level set and then the evolving 2D curve is obtained as the zero level set of a 2D function &(x, y, t)

that evolves from the initial condition&(x, y, 0) = &0(x, y) according to the PDE ∂&/∂t = ‖∇&‖.
This function evolution PDE makes zero level sets expand at unit normal speed and is identical to
the PDE (74.53) for flat dilation by disk. Themain steps in its numerical implementations [47] are:

&n
i,j = estimate of&(i/x, j/y, n/t) on a grid

D+
x =

(

&n
i+1,j −&n

i,j

)

//x , D−
x =

(

&n
i,j −&n

i−1,j
)

//x

D+
y =

(

&n
i,j+1 −&n

i,j

)

//y , D−
y =

(

&n
i,j −&n

i,j−1
)

//y

G2 = min2(0, D−
x ) + max2(0, D+

x ) + min2(0, D−
y ) + max2(0, D+

y )

&n
i,j = &n−1

i,j + G/t , n = 1, 2, . . . , (R//t)

where R is the maximum scale (radius) of interest, /x,/y are the spatial grid spacings, and /t is
the time (scale) step.

Continuous multiscale morphology using the above curve evolution algorithm for numerically
implementing the dilation PDE yields better approximations to disks and avoids the abrupt shape
discretization inherent in modeling digitalmultiscale using discrete polygons [16, 57]. Comparing it
to discretemultiscalemorphologyusing chamferdistance transforms, wenote that for binary images:
(1) the chamfer distance transform is easier to implement and yields similar errors for small scale
dilations/erosions; (2) implementing the distance transform via curve evolution is more complex,
but at medium and large scales gives a better and very close approximation to Euclidean geometry,
i.e., to morphological operations with the disk structuring element. See Fig. 74.6.

74.9 Applications to Image Processing and Vision

There are numerous applications of morphological image operators to image processing and com-
puter vision. Examples of broad application areas include biomedical image processing, automated
visual inspection, character and document image processing, remote sensing, nonlinear filtering,
multiscale image analysis, feature extraction, motion analysis, segmentation, and shape recogni-
tion. Next we shall review a few of these applications to specific problems of image processing and
low/mid-level vision.
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FIGURE74.6: Distance transformsof abinary image, shown as intensity imagesmodulo 20, obtained
using: (a) Metric ‖ · ‖∞ (chamfer metric with local distances (1,1)), (b) chamfer metric with 3× 3
neighborhood and local distances (24,34)/25, and (c) curve evolution.

74.9.1 Noise Suppression

Rank filters and especially medians have been applied mainly to suppress impulse noise or noise
whose probability density has heavier tails than the Gaussian for enhancement of image and other
signals [2, 12, 27, 64, 65], since they can remove this type of noise without blurring edges, as would
be the case for linear filtering. The rank filters have also been used for envelope detection. In their
behavior as nonlinear smoothers, as shown in Fig. 74.7, themedians act similarly to an ‘open-closing’
(f ◦B) •B by a convex set B of diameter about half the diameter of themedian window. The open-
closinghas the advantagesover themedian that it requires less computation anddecomposes thenoise
suppression task into two independent steps, i.e., suppressing positive spikes via the opening and
negative spikes via the closing. Further, cascading open-closings βtαt atmultiple scales t = 1, . . . , r ,
where αt (f ) = f ◦ tB and βt (f ) = f • tB, generates a class of efficient nonlinear smoothing
filters βrαr . . .β2α2β1α1, called alternating sequential filters, which smooth progressively from the
smallest scale possible up to a maximum scale r and have a broad range of applications [59, 60, 62].

74.9.2 Feature Extraction

Residuals between a signal and some morphologically transformed versions of it can extract line- or
blob-type features or enhance their contrast. An example is the difference between the flat dilation
and erosion of an image f by a symmetric disk-like set B whose diameter, diam(B), is very small;

edge (f ) = (f ⊕ B) − (f ' B)

diam (B)
(74.54)

If f is binary, edge (f ) extracts its boundary. If f is gray-level, the above residual enhances its
edges [7, 58] by yielding an approximation to ‖∇f ‖, which is obtained in the limit of (74.54) as
diam(B) → 0. See Fig. 74.8. This morphological edge operator can be made more robust for
edge detection by first smoothing the input image signal and compares favorably with other gradient
approaches based on linear filtering.

Another example involves subtracting the opening of a signal f by a compact convex set B from
the input signal yields an output consisting of the signal peaks whose support cannot containB. This
is the top-hat transformation [43, 58]

peak (f ) = f − (f ◦ B) (74.55)

and can detect bright blobs, i.e., regions with significantly brighter intensities relative to the surround-
ings. Similarly, to detect dark blobs, modeled as intensity valleys, we can use the closing residual
operator f #→ (f • B) − f . See Fig. 74.8. The morphological peak/valley extractors, in addition to
their being simple and efficient, have some advantages over curvature-based approaches.
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FIGURE 74.7: (a) Noisy image f , corrupted with salt-and-pepper noise of probability 10%.
(b) Opening f ◦ B of f by a 2 × 2-pixel square B. (c) Open-closing (f ◦ B) • B. (d) Median
of f by a 3× 3-pixel square window.

74.9.3 Shape Representation via Skeleton Transforms

There are applications in image processing and vision where a binary shape needs to be summarized
down to its thinmedial axis and then reconstructed exactly from this axial information. This process,
known asmedial axis (or skeleton) transformhas been studied extensively for shape representation and
description [10, 54]. Amongmany approaches, it can also be obtained viamultiscalemorphological
operators, whichoffer as a by-product amultiscale representation of the original shape via its skeleton
components [39, 58]. Let X ⊆ Z

2 represent the foreground of a finite discrete binary image and let
B ⊆ Z

2 be a convex disk-like set at scale 1 and B⊕n be its multiscale version at scale n = 1, 2, . . .
The nth skeleton component of X is the set

Sn = (X ' B⊕n)\
[(

X ' B⊕n
)

◦ B
]

, n = 0, 1, . . . , N , (74.56)

where \ denotes the difference, n is a discrete scale parameter, and N = max{n : X ' B⊕n 7= ∅} is
the maximum scale. The Sn are disjoint subsets of X, whose union is the morphological skeleton
of X.

The morphological skeleton transform of X is the finite sequence (S0, S1, . . . , SN). The union
of all the Sns dilated by a n-scale disk reconstructs exactly the original shape; omitting the first k

components leads to a smooth partial reconstruction, the opening of X at scale k:

X ◦ B⊕k =
⋃

k≤n≤N

Sn ⊕ B⊕n , 0 ≤ k ≤ N . (74.57)

Thus, we can view the Sn as ‘shape components’, where the small-scale components are associatedwith
the lack of smoothness of the boundary of X, whereas skeleton components of large scale indices n
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FIGURE 74.8: (a) Image f . (b) Edge enhancement: dilation-erosion residual f ⊕B −f 'B, where
B is a 21-pixel octagon. (c) Peak detection: opening residual f − f ◦ B⊕3. (d) Valley detection:
closing residual f • B⊕3 − f .

are related to the bulky interior parts of X that are shaped similarly to B⊕n. Figure 74.9 shows a
detailed description of the skeletal decomposition and reconstruction of an image.

Several generalizationsormodificationsof themorphological skeletonization include: using struc-
turing elements different than disks thatmight result in fewer skeletal points, or removing redundant
points from the skeleton [29, 33, 39]; using different structuring elements for each skeletonization
step [23, 33]; using lattice generalizations of the erosions and openings involved in skeletoniza-
tion [30]; image representation based on skeleton-like multiscale residuals [23]; and shape decom-
position based on residuals between image parts and maximal openings [48]. In addition to its
general use for shape analysis, a major application of skeletonization has been binary image cod-
ing [13, 30, 39].

74.9.4 Shape Thinning

The skeleton is not necessarily connected; for connected skeletons see [3]. Another approach for
summarizing a binary shape down to a thin medial axis that is connected but does not necessarily
guarantee reconstruction is via thinning. Morphological thinning is defined [58] as the difference
between the original set X (representing the foreground of a binary image) and a set of feature
locations extracted via hit-miss transformations by pairs of foreground-background probing sets
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FIGURE 74.9: Morphological skeletonization of a binary image X (top left image) with respect to a
3 × 3-pixel square structuring element B. (a) Erosions X ' B⊕n, n = 0, 1, 2, 3. (b) Openings of
erosions (X ' B⊕n) ◦ B. (c) Skeleton subsets Sn. (d) Dilated skeleton subsets Sn ⊕ B⊕n. (e) Partial
unionsof skeleton subsets∪N≥k≥nSk . (f)Partialunionsofdilated skeleton subsets∪N≥k≥nSk⊕B⊕k .

(Ai, Bi) designed to detect features that thicken the shape’s axis:

X ©◦ {(Ai, Bi)}ni=1 ≡ X\
n

⋃

i=1
X ⊗ (Ai, Bi) (74.58)

Usually each hit-miss by a pair (Ai, Bi) detects a feature at some orientation, and then the difference
from the original peels off this feature from X. Since this featuremight occur at several orientations,
the above thinning operator is applied iteratively by rotating its set of probing elements until there is
no further change in the image. Thinning has been applied extensively to character images. Examples
are shown in Fig. 74.10, where each thinning iteration used n = 3 template pairs (Ai, Bi) for the
hit-miss transformations of (74.58) designed in [8].

74.9.5 Size Distributions

Multiscale openings X #→ X ◦ rB and closings X #→ X • rB of compact sets X in R
d by convex

compact structuring elements rB,parameterizedby a scaleparameter r ≥ 0, are called granulometries
and can unify all sizing (sieving) operations [42]. Because they satisfy a monotonic ordering

. . . X ◦ sB ⊆ X ◦ rB ⊆ . . . ⊆ X ⊆ . . . X • rB ⊆ X • sB ⊆ . . . , r < s , (74.59)

if we measure the volume (or area) of these sets as a function of scale, this function will also satisfy
the same ordering and hence create size distributions. Further, taking its derivative leads to a size
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FIGURE 74.10: Left column shows binary images of handwritten characters. Right column shows
their thinned version.

density function (or size histogram in the discrete case)

h(r) ≡







− dvol (X◦rB)
dr , r ≥ 0

dvol (X•|r|B)
d|r| , r < 0

(74.60)

This conveys several types of information useful for shape description andmultiscale image analysis.
For example, the boundary roughness of X relative to B manifests itself as contributions in the lower-
size part of the size histogram. Long capes or bulky protruding parts in X that consist of patterns sB

show up as isolated impulses in the histogram around positive r = s. Finally, the size density can
be defined for ‘negative’ sizes by using closings instead of openings; in this case impulses at negative
sizes indicate the existence of prominent intruding gulfs or holes in X.

If X is a random set [42], then probabilistic measures of its size distribution have been used
extensively in image analysis applications to petrography and biology [58]. All of the above ideas
can be extended to gray-level images [35]. One application of gray-level size distributions is texture
classification [17].

74.9.6 Fractals

A large variety of natural image objects (e.g., clouds, coastlines,mountains, islands, trees, leaves, etc.)
can bemodeledwith fractals [32]. Fractals aremathematical sets with a very high level of geometrical
complexity; formally, their Hausdorff dimension is larger than their topological dimension. An
important characteristic of fractals to measure for purposes of shape description or classification is
their fractal dimension. Among the various methods [32] to estimate the fractal dimension D of the
surface of a set F ⊆ R

3, the covering method is based conceptually on Minkowski’s idea of finding
the area of irregular sets; dilate them with spheres of radius r , find the volume V (r) of the dilated
set, and set its area equal to limr↓0 A(r), where A(r) = V (r)/2r . Further, the fractal dimension of
F can be found by

D = lim
r↓0

log[V (r)/r3]
log[(1/r)] (74.61)

The intuitivemeaning ofD is thatV (r) ≈ (constant) ·r3−D as r ↓ 0, fromwhichD can be estimated
by least-squares fitting a straight line to a log-log plot of V (r).

The theory of morphological operators allows us to find more efficient implementations of the
above idea when F is the graph of a 2D function f (x, y). Then, instead ofmultiscale 3D set dilations
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of F by spheres, it is computationally more efficient to perform 2D multiscale signal dilations and
erosions of f by disks rB and measure the multiscale volumes by

V (r) =
∫ ∫

[(f ⊕ rB)(x, y) − (f ' rB)(x, y)]dxdy (74.62)

Thus, morphological flat dilations and erosions are used to create a volume-blanket as a layer either
covering or being peeled off from the surface of f at various scales. This morphological covering
method can also be applied to 1D signals f (x) by replacing volumes with areas and disks rB with
horizontal linear segments [−r, r]; such a 1D application is shown in Fig. 74.11.

FIGURE 74.11: Speechwaveform of the word ‘soothing’ sampled at 10 kHz and its short-time fractal
dimension over 10-ms speech segments, computed every 1 ms and post-smoothed by a 3-point
median filter. The short-time fractal dimension increases with the amount of turbulence existing
during production of the corresponding sound, having a small value for vowels, medium for weak
voiced fricatives, and high for unvoiced fricatives.

74.9.7 Image Segmentation

One of the most powerful and advanced tools of mathematical morphology is the watershed trans-
formation [7] as applied to image segmentation. Let us regard the gray-level image to be segmented
as a topographic relief and assume a drop of water falling at a point on it and flowing down along a
steep slope path until it is trapped in a local minimum M of the relief. The set of points such that a
drop falling on them eventually reaches M is the catchment basin associated with the minimum M .
The union of the boundaries of the different catchment basins of the image constitute its watershed.
Thus, the watershed consists of contours located on crest lines separating adjacent minima.

To ease the segmentation of the original image f , the watershed transformation is usually applied
to its gradient magnitude g = ‖∇f ‖, which has higher contrast. However, direct computation
of the watershed of g usually leads to poor results, i.e., oversegmentation of f , because, even after
smoothing f or g, the latter often exhibits far too many minima. One of the best solutions to this
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problem is to usemarkers for the regions to be extracted. Amarker is a small connected component
of pixels, a feature, located inside a region. Once the markers have been extracted, the gradient
image g is modified viamorphological reconstruction so that these markers are imposed as the only
minima of the modified function while preserving the highest crest lines of g located between two
markers. Then, computing the watershed of the modified g usually provides a good segmentation
whose quality depends mainly on the markers and somewhat on g and the initial smoothing of f .
An example is shown in Fig. 74.12. The power of this approach as well as its difficulty lies in the
choice of the markers. Efficient ways to choose markers as well as fast algorithms for the watershed
computation are detailed in [44, 69]. This watershed methodology has already proved to be very
useful in various fields of image analysis, ranging from medical imaging to material sciences, remote
sensing, and digital elevation models.

FIGURE 74.12: (a) Image f . (b) Edge enhancement (magnitude of gradient) of f . (c) Markers.
(d) Watershed.

74.10 Conclusions

This chapter has provided a brief introduction of the theory of morphological signal processing and
its applications to image analysis and nonlinear filtering. This methodology nowadays offers a large
diversity of theoretical and algorithmic ideas that provide useful tools and inspire new directions
in the following research areas from the fields of signal processing, image processing and machine
vision, and pattern recognition: nonlinear filtering, nonlinear signal and system representation,
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image feature extraction, multiscale analysis and geometry-driven diffusion, image segmentation,
region-based image coding,motion analysis, automated visual inspection, and detection/estimation
in random sets.

Some attractive aspects of morphological signal operators for efficiently solving problems in the
above areas include: (1) suitability for geometry-related signal/image analysis problems; (2) unifi-
cation power because they can be defined both for numerical signals as well as for more abstract
data using their lattice generalizations; (3) simplicity of software or hardware implementations of the
basic operators; and (4) existence of efficient algorithms for implementing complex morphological
systems [68].

Three current research areas where successful future developments may significantly broaden and
improve the applicability ofmorphological signal processing are: (A)Optimal design of nonlinear sys-
tems based onmorphological and related signal operators, where, despite their numerous applications,
very few ideas exist for their optimal design. (The current three main approaches are: (1) designing
binary systems as afiniteunionof erosions [20, 31] orhit-missoperations [5]using themorphological
representation theory of [33, 34] or [4]; (2) designing stack filters via threshold decomposition and
linear programming [18]; (3) gradient-based optimization of morphological/rank filters either via
simulated annealing [71] or via a least-mean-square algorithm and adaptive filtering [55].) (B) The
continuous (differential) approach to mathematical morphology via PDEs and exploitation of its excit-
ing relationships to the physics of wave propagation and eikonal optics [38, 57, 67]. (C)Development
of morphological systems for image pattern recognition by exploiting the efficiency of morphological
operators for shape analysis and their logic-related structure.
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