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Slope Transforms: Theory and Application
to Nonlinear Signal Processing

Petros Maragos, Senior Member, IEEE

Abstract—Fourier transforms are among the most useful linear
signal transformations for quantifying the frequency content of
signals and for analyzing their processing by linear time-invariant
systems. In this paper, some nonlinear signal transforms are
developed that can provide information about the slope con-
tent of signals and are useful analytic tools for large classes
of nonlinear systems. Many of their theoretical properties are
examined, showing a striking conceptual resemblance to Fourier
transforms and their application to linear systems. These novel
transforms, called slope transforms, are originally derived from
the eigenvalues of morphological dilation and erosion systems,
where the corresponding eigenfunctions are lines at -+ b param-
eterized by their slope a. They obey a nonlinear superposition
principle of the supremum- or infimum-of-sums type. Applied
to the impulse response of dilation or erosion systems, the slope
transforms provide a slope response function for these systems,
which allows their analysis and design in a transform domain,
the slope domain. Applied to arbitrary signals, the slope trans-
forms provide information about upper or lower tangents to the
signal’s graph at varying slopes. The upper or lower envelopes
of the signal can be obtained from the inverse transforms.
Overall, the slope transforms provide a new transform domain
for signals and morphological systems where time lines become
slope impulses, time cones become slope bandpass filters, and
time dilation/erosion transform into addition of slope transforms.
Their application to the design of slope-selective filters is also
presented.

I. INTRODUCTION

OURIER transforms are one of the major analytic tools

for quantifying the frequency content of signals. Further,
they enable the analysis and design of linear time-invariant
(LTI) systems in the frequency domain. For example, they
transform the system’s input-output description through a
convolution in the time domain to the simpler operation
of multiplication of transforms. Similarly, they transform
the linear differential equation describing a system’s time
dynamics to the frequency response (a rational function of
the frequency variable), which is an algebraic description of
the system.

Morphological systems is a broad class of nonlinear signal
operators that have found many applications in image analysis
and nonlinear filtering [10], [8]. They are all based on parallel
or serial interconnections of morphological dilations @ or
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morphological erosions ©, defined as

sty @g(t) =\ z(r) +g(t-7) )
TER

styogt) 2 N z(r)—g(r - 1) @)
reR

where \/ denotes supremum and /\ denotes infimum. In spite
of their wide applicability, so far their analysis has been done
only in the time/spatial domain because of lack of transforms
to describe them in a transform domain.

In this paper, we develop and study three types of non-
linear signal transforms that can quantify the slope content
of signals and provide a transform domain for morpholog-
ical systems; we call them slope transforms because they
are based on eigenfunctions of morphological systems that
are lines parameterized by their slope. The three types are
i) a single-valued slope transform for signals processed by
dilation systems, ii) a single-valued slope transform for signals
processed by erosion systems, and iii) a multivalued transform
that results by replacing the suprema and infima of signals
with the signal values at stationary points. In the area of
morphological systems and signal analysis, both transforms i)
and ii) were introduced by Maragos in [7]. The contributions
in this paper include the analysis of the fundamental ideas
behind these transforms, their properties, and applications
to morphological systems. Transform iii) was introduced by
Dorst and Boomgaard [4], and part of the contributions in
this paper is the study of the interrelationships among the
three transforms and their relative merits. For continuous-time
signals that are convex or concave and have an invertible
derivative, if we ignore possible differences due to boundary
effects, all three transforms coincide and become equal to
the Legendre transform [3]. For discrete-time signals, only
transforms i) and ii) can be used directly. Throughout the
paper, we emphasize both the differences and the often striking
conceptual similarities between the slope transforms and their
application to nonlinear systems versus the Fourier transforms
and their application to linear systems.

Ideas related to slope transforms have also appeared in
other areas. For example, the Legendre transform has found
numerous applications in various methods of mathematical
physics [2], [3]. Further, in convex analysis [9] and optimiza-
tion [1], given a convex function f, there is another useful
convex function f*(a) =V, at — f(t), called the conjugate
of f, which is closely related to the slope transforms. Cer-
tain operations among two convex functions f, g correspond
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to simpler operations among their conjugates [1], [9], e.g.,
(fOg)* = f* + g*, where

fO0g) & N\ F(r) + gt —7) 3)

is called the infimal convolution of f and g and is closely
related to erosion. Finally, in [5], planar polygonal shapes are
characterized by a “slope diagram,” and this representation is
used to compute set dilation of these shapes.

We begin in Section II by showing that the eigenfunctions
of dilation and erosion systems are lines, which leads to
introducing a slope response for these systems. Section III
contains the basic definitions of the three slope transforms.
Sections IV and V contain many of their examples and
properties. We also study in Section VI the application of slope
transforms to the analysis and design of slope-selective filters
and some max-min (nonlinear) differential equations that can
realize them. Our work in this paper deals with continuous-
time 1-D signals and systems. For completeness, however,
in Section VII, we include a brief discussion on extensions of
slope transforms to i) 2-D signals and ii) discrete-time signals.

II. EIGENFUNCTIONS AND SLOPE
RESPONSE OF MORPHOLOGICAL SYSTEMS

An LTI system is described either by a convolution in
time or by its frequency response, which consists of the
eigenvalues corresponding to the system’s exponential eigen-
functions. Similarly, we show next that nonlinear systems
obeying morphological-type superposition principles corre-
spond to a morphological dilation or erosion in time and have
as eigenfunctions the affine signals ot +b, which endows them
with a slope response. We begin with a brief summary of
concepts behind LTI systems to see the analogies with the
morphological systems.

A. Linear Time-Invariant (LTI) Systems

An LTI system is defined as a signal operator £, mapping an
input signal z(¢) to an output L{z(t)], which obeys the linear
superposition principle £[Z;a;z;(t)] = Zia;L[xi(t)] and is
time-invariant, i.e., L{z(t — to)] = [£(z)](t — to), where {z;}
is a finite collection of signals, o is an arbitrary time shift,
and a; are real or complex weights. The output from £ can
be found via the convolution

Llz(t)] = /oo z(T)h(t —7) dr

—00

@

of the input and the impulse response h(t), which is the
system’s output due to a Dirac delta input. The exponential
signals exp(jwt) are eigenfunctions of £ because

L[exp(jwt)] = H(w) exp(jwt). &)

The eigenvalue H(w), called the system’s frequency response,
is the Fourier transform of h(t)

H(w) = /_ " h(t) exp(—jwt) dt. ©)
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B. Dilation Translation-Invariant (DTI) Systems

A signal operator D:z — y = D(z) is called a dilation
translation-invariant (DTI) system if it is a lattice dilation
[11], [6], i.e., if (it distributes over the supremum of any
collection {z;} of input signals) D(V;z;) = V,;D(x;) and if it
is translation-invariant, i.e., D[z(t—to)+c] = c+[D(z)](t—1to)
for any real constants ¢y, c. Equivalently, a system is DTI if it
is time-invariant and obeys the morphological supremum-of-
sums superposition principle

D

\/ ci + z;(t)

= \/ &+ Dlai(t)] 7

Any morphological dilation (1) is a DTI system. Proving the
converse requires an elementary signal, the morphological zero
impulse

t=20
t#0
and the output of D when the input is this impulse, herein de-

fined as its impulse response g(t) = D[u(t)]. Since any signal
can be represented as a supremum of translated impulses, i.e.

®)

oo

\V =z +ut—1) ©

T=—00

z(t) =

a system is DTI if and only if its output signal is the
morphological dilation of the input by its impulse response

DisDII @ D(x)=z&g, g=Dp). (10

Thus, in analogy to the unique description of an LTI system
as a convolution by its impulse response, DTI systems are
also uniquely described by a morphological dilation by their
impulse response. The difference is that the integration and
multiplication in the convolution are replaced by a supremum
and addition in the dilation. Similarly, the summation and
multiplicative weights in the linear superposition obeyed by
LTI systems are replaced by a signal supremum and additive
weights in the morphological superposition obeyed by DTI
systems. Another subtle difference is that the useful informa-
tion in a signal z(t) analyzed by a DTI system exists only
at times where x(t) > —oo because —oo values are ignored
by the supremum in the morphological dilation. Thus, for
DTI systems, the range of all signals are subsets of R =
RU {—00,00}, and the support of any signal z(t) is defined
by Spty(z) = {t € R : z(t) > —oo}. In contrast, the support
of signals analyzed by LTI systems is the set of time instants
where the signal is not zero.

The lines, i.e., affine signals z(t) = at+b are eigenfunctions
of any DTI system D because

Dlat +b] = \/alt —7) +b+g(1) = at + b+ G(a) (1D
where the corresponding eigenvalue is

G(a) =/ g(t) - at. (12)

We call G(a) the slope response of the DTI system; it
measures the amount of shift in the intercept of the input
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lines. While the frequency response H(w) of an LTI system
is a multiplicative eigenvalue for exponential eigenfunctions
exp(jwt), the slope response G(a) of a DTI system is an
additive eigenvalue for affine eigenfunctions «t. Comparing
(6) and (12), we also see that the frequency response of an
LTI system is obtained by multiplying its impulse response
by eigenfunctions exp(—jwt) and integrating the product,
whereas the slope response of a DTI system involves adding
its impulse response with eigenfunctions —ot and finding the
supremum of the sum. Later, viewing G(«) as a transform for
g(t) will lead us to the slope transforms.

C. Erosion Translation-Invariant (ETI) Systems

The morphological erosion is a dual operation of the dila-
tion with respect to signal negation. Hence, all the previous
concepts and results for dilation systems easily extend to
erosion systems with only a few changes. A signal operator
€ 1z — y = &) is called an erosion translation-
invariant (ETI) system if it is a lattice erosion [11], [6],
Le., distributes over any infimum of input signals, and is
translation-invariant. Equivalently, £ is an ETI system if it is
time-invariant and obeys the morphological infimum-of-sums
superposition principle

s{/\ ci+ mi(t)J = /\ci + Elzi(t)].

For ETI systems, a signal z(¢) may assume its values in R,
and its support is now the set Spt,(z) = {t € R : z(t) < oo}
The impulse response of an ETI system is defined by f(t) =
E[-n(t)]. Since any signal can be represented as infimum of
translated negated impulses, i.e.

N 2() =t - )

T=—00

(13)

x(t) = (14)
a system is ETI if and only if its output is the infimal
convolution of the input with the impulse response

A
fEE-p. (9
Note that z(t)00f(¢) = z(t) © (=f(~1)); hence, the output of
an ETI system is the morphological erosion of the input by
the negated and reflected impulse response.

The affine signals (i) = at + b are eigenfunctions of any
ETI system £ because

£ ETI & &(z) = £0O0f,

8[at+b]:at+b+F(a)

with corresponding eigenvalue

F(a) = A f(t) - at.

(16)

a7
We shall call F(a) the slope response of the ETI system.

III. SLOPE TRANSFORMS

To acquire a geometrical intuition behind the slope trans-
forms, we precede their definitions with a brief summary
of concepts from the related Legendre transform and some
definitions of concave and convex signals for which the
analysis of slope transforms is simple.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 4, APRIL 1995

-

COSINE PULSE & TANGENT LINES

0.25 0.25

0
TIME

Fig. 1. Concave signal (cos (27t), [t| < 0.25) as the lower envelope of its
tangent lines.

A. Convex and Concave Signals

Given a function f : R — R, f is concave if and only if

pf(t—q)+qf(t+p)
ft) > o

For equivalent definitions, see [9]. If its domain is smaller
than R, the function f can be viewed as concave over all R
by allowing it to have —oo values at all points where it was
originally undefined [9]. A concave function is called proper
if f(t) > —oo for at least one ¢ and f(t) < + oo for all £. A
function f is convex if —f is concave. Henceforth, whenever
we talk about concave or convex functions, we shall assume
they are proper, unless otherwise stated.

Vp,g>0and Vt. (18)

B. Legendre Transform

Let the signal z(t) be concave and have an invertible
derivative 2’ = dz/dt. The Legendre transform of z is based
on the concept of imagining the graph of z, not as a set of
points (¢,z(t)) but as the lower envelope of all its tangent
lines; e.g., see Fig. 1. The tangent at a point (t,2(t)) on the
graph has siope

a=2z'(t) (19)
and intercept equal to
X =z(t) — at. (20)
Using (19) to eliminate ¢ from (20) makes the intercept
X1(@) = 2((2')"(a)) - o[(z") Y (a)] @n

where f~1 denotes the inverse of a function f. The function
X1, of the tangent’s intercept versus the slope is the Legendre
transform [2] of z. For an inverse transform note that by (20)

X'(a) = —t. (22)

Using this equation to eliminate o from (20) yields the signal

x from its Legendre transform
2 = X((XD) =) + (X)) (=) @3)

The right-hand side is the inverse Legendre transform of Xr.
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If the signal z is convex, then the signal is viewed as the
upper envelope of its tangent lines. Although in the classical
literature the Legendre transform’ is defined only for convex
functions, its definition in (21) makes sense both for convex
and concave signals. If the signal derivative is not invertible
or the signal is not everywhere differentiable or if the signal is
neither convex nor concave, there are more general transforms
discussed next.

C. Slope Transform Based on Supremum

Viewing the slope response (12) as a signal transform with
variable the slope o, Maragos [7] was motivated to define
for any signal z : R — R its upper slope transform as the
function Xy : R — R with

Xy(@) 2 \/ z(t)-at, a€R
teR

The mapping between the signal and its transform is denoted
by Av :  — Xy. If there is one-to-one correspondence
between the signal and its transform, we may write this as
z(t) A% x, (). The subscript V in X is to differentiate this
transform from another that is based on infimum, and it will
occasionally be dropped if understood from the context.

The definition (24) was motivated by the form of the
eigenfunctions and eigenvalues of DTI systems. However,
there is also a close relationship with the Legendre transform.
To see this, assume that the signal z(¢) is concave and has
an invertible derivative. For each real «, the intercept of the
line passing from the point (¢, 2(t)) on the signal’s graph with
slope a is equal to z(t) — at (see Fig. 2). For a fixed a, as ¢
varies there is a time instant ¢* for which the intercept attains
its maximum value. This occurs when the line becomes tangent
to the graph; then we have z’(t*) = a. As « varies, the tangent
changes, and the maximum intercept becomes a function of the
slope a. By its definition, the upper slope transform is equal
to this maximum intercept function. Further, the maximization
of the concave function z(t) — at can be found from its value
at its unique stationary point ¢t* where z’/(¢*) = «. Thus, if
the signal z is concave and has an invertible derivative, then
the upper slope transform is equal to its Legendre transform
(with possible exception over slope intervals controlled by
the signal’s boundaries). For such an example, consider the
concave cosine pulse

y(t) = {cos(wot),

(24)

[t| <T/4. 27

|>T/4° T=w—0. (25)

—00,
For |t| < T/4,y'(t) = —wosin(wpt) = « and the maximum
intercept occurs at t* = — arcsin(o/wg)/wo, where |a| < wp
and |arcsin()} < m/2. Thus

12 (e in (2 <
Yo(a) = e " arcsin UTO , || < wp

T|a|/4, || > wo.
(26)
Note that for |a| > wyg, the Legendre transform is not defined,

but the upper slope transform consists of lines T'|a|/4 due to
the signal boundaries over |t| > T/4.
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Fig. 2. Concave signal x, its tangent with slope «, and a line parallel to
the tangent.

Now, if the signal is concave but either i) it does not have
an invertible derivative, e.g., when its graph contains some
line segments, or ii) it is not differentiable everywhere on its
support, e.g., when it has some corner points, then its Legendre
transform is not well (or cannot be) defined, but the upper slope
transform still gives an answer. An important example of case
i) is the signal z(t) = aot+b. Then 2’ is not invertible, but the
maximization of the intercept becomes simple if we express it
via the supremum in (24). Thus, Xy (a) = b+ V,(ap — a)t,
which yields

b, a = ag

400, a# ag. @n

agt +b A% b — pla—ap) = {
Thus, as the Fourier transform of an LTI system’s eigenfunc-
tion exp(jwot) is a Dirac impulse at frequency wy, the upper
slope transform of a DTI system’s eigenfunction oot + b is a
morphological impulse at slope «y.

If the signal is neither concave nor convex, then its Legendre
transform is not a single-valued function. In this case, the
upper slope transform still provides a single-valued function,
which is the slope transform of the upper concave envelope
of the signal, as explained next.

In general

z(t) < Xy(a) + ot,VYa, V. (28)

Thus, z(t) is covered from above by all the lines X\ (o) + o,
and hence, z(t) < &(t) where

#t) 2 /\ Xv(a)+ at.
acR

We view the mapping Xy +— £ as an ‘inverse’ upper slope
transform of X, which yields a signal Z that is sometimes
equal to z and never smaller. Further, at any time instant ¢,
we shall show that the reconstructed signal value Z(¢) is equal
to the original z(¢) if and only if

() > pz(t —q) + qz(t + p)
- P+q

assumingl z(v) <+oo for all v. We can view (30) as a
definition of a “pointwise concavity”: A signal z(t) is called

(29)

Vp,g>0  (30)

! The assumption «(v) < +0c Vv helps avoiding undefined cases such as
—0G + 00,
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pointwise concave at a point t if it satisfies (30). An alternative
way to interpret (30) is for any point A = (¢t — ¢,z(¢t — ¢))
on the signal’s graph to the left of B = (¢, z(t)) and for any
point C = (¢ + p,z(t + p)) to its right, the slope of the left
segment AB is not smaller than the slope of the right segment
BC. Of course, a signal is concave if it is pointwise concave
at all the points of its domain.

The following theorem states several important properties
of the upper slope transform and its inverse.

Theorem 1: For any? signal + : R — R U {—o0}, the
following hold:

a) Xy is convex and Z is concave.

b) For all ¢, &(t) > z(t).

c) At any time instant ¢, 3(t) =

satisfies (30).
d) #(t) = =z(t) for all t if = is concave and upper
semicontinuous.
e) & is the smallest concave upper envelope of z.
Proof: We denote X\ simply by X. .
a) is true because X () is the supremum of the lines
z(t) —at and £(t) is the infimum of the lines X () +ot.
b) follows from (28). ‘
c) Sufficiency: At some time ¢, let z(t) satisfy (30), which
can be rewritten as

z(t + p) — z(t) < z(t) — z(t — q)

z(t) if and only if z(t)

< Vp,g>0. (31
P q P, q
This is equivalent to saying there exists ag € R such
that
t —z(t t) — -
st+p)—a(t) o o2(t) —2(t - q) Vp.g>0
p q
(32)
or equivalently that
Jdog s.t. z(t) —apt > 2(7) —aer VT #£t.  (33)

Then X (ap) = z(t) — apt and hence, z(t) = X(ap) +
opt. This implies that z(t) > £(t), which coupled with
(b) proves that z(t) = &(¢) if (30) is true. Necessity:
Assume now z(t) = £(t). Then, for all p,¢>0

px(t — q) + qx(t + p)

p+q
_PAX(@) +alt -9+ g\, X(o) +oft +p)
ptq
< NP+ @) X(2) +atlp+q) _

g z(t).

Thus, (30) is true if z(t) = £(¢), and the proof of (c)
is complete.

d) results from (c) and (18). Note: Since z is concave, it
is upper semicontinuous in the interior of its support.
Upper semicontinuity is needed only to guarantee clo-
sure at boundary points. From a different viewpoint,

2 Although we allow a signal and its slope transform to also assume +oo
values, these extreme values usually correspond to trivial cases. For example,
if w(t) = +oo for at least one t. then X'y (a) = +oo Va and i(t) = 400
Vt. Also, Xy (a) > —oc for all a unless x(t) = —oo Vt. If & = ~o0, then
Xy = - and ¥ = —oco. .
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assuming the concave x is proper, upper semicontinuity
is equivalent to z being “closed” [9]. (Note that £ is
always closed.)

e) Since £ > z,Z is an upper concave envelope of .
Assume now that there is another signal y that is an
upper concave envelope of = but smaller than Z, ie.,
z(t) < y(t) < Z(t) for all ¢. Then Ay(z) < Ay(y) <
Ay(Z) = Ay(z). Hence, Ay(y) = Ay (). Since now
the mapping Ay is one-to-one on concave signals, we
obtain y = £, which completes the proof. Q.E.D.

Thus, there is one-to-one correspondence between X and
the signal envelope £. Of course, x will be exactly recon-
structed via z if z is concave. Otherwise, all signals between
z and £ will have the same slope transform

z(t) < y(t) < £(t) Vt = Xy(a) = Yy (a) Va. 34)

Let a signal z be concave and have an invertible derivative.
Then its Legendre transform X is equal to its upper slope
transform, ignoring possible boundary effects. Since z is the
lower envelope of all its tangents, for each ¢ we can reconstruct
z(t) by finding the minimum value of X(a) + at. This
minimum is the value of the inverse upper slope transform.
Further, since X is convex and has an invertible derivative,
this minimum value will occur at a unique slope a* such
that X'(a*) = —t. Thus, in this case, the inverse Legendre
transform and the inverse upper slope transform will yield
identical results. For such an example, consider the cosine
pulse y(t) = cos(wot), |t| < 7/2wp and its Legendre transform
Y () equal to the function in (26) over |a| < wo. Then, since
Y () is convex and differentiable, the minimization over « of
the convex function Y (a) + at can be done either by taking
its global infimum or equivalently by finding its value at the
stationary point a* = (Y')~1(~t) = —wpsin(wot). Thus, the
inverse transform reconstructs the signal Y (a*) + a*t = y(¢).

As another example, consider the slope transform (27) of
a line z(t) = ot + b. In this case, the transform is not
differentiable. Hence, the minimization of X (a) + ot cannot
be done using stationary points. However, the inverse upper
slope transform yields the answer in a simple way

/\b—u(a—ao)+at:b+aot.

D. Siope Transform Based on Infimum
The form of the eigenfunctions and eigenvalues (slope
response) of ETI systems E (17) motivated us in [7] to define

for any signal z : R — R its lower slope transform as the -
function X, : R — R with

Xn(a) 2 /\ z(t) — at,
teR

a€R. (35)

Denoting the mapping between the signal and its lower slope
transform by Ax : £ — Xa, we easily find a relationship
between the upper and lower slope transform

An[z®)](a) = —Av[-z(®))(-a) = —Av[-z(-?)](a).
(36)
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Fig. 3.

Whatever we discussed for upper slope transforms also
applies to the lower slope transform, the only differences being
that the term pairs supremum/infimum and concave/convex
must be interchanged. If a signal is convex and has an
invertible derivative over its support, then its lower slope
transform is equal to its Legendre transform (except over
slope regions controlled by the signal’s boundaries). Such an
example is the convex cosine pulse z(t) = —y(t), where y
is the concave signal in (25); then Zx(a) = —Yy (). Now,
if a signal is not everywhere differentiable or does not have
an invertible derivative, then the lower slope transform should
be used instead of the Legendre transform. For example, if
z(t) = apt + b, then X(0a) = b+ A, (a0 — a)t, which yields

aot+b A5 bt pla — ag). 37

By duality to the upper slope transform, the inverse lower
slope transform of X, is the signal

2(t) 2\ Xa(e)+at

aER
that is sometimes equal to z(t) and never larger. By working
as for upper slope transforms, the following properties of the

lower slope transform and its inverse can be found:
Theorem 2: For any signal  : R — RU {+oo}

a) X, is concave, and & is convex.
b) For all ¢,E(t) < z(t).
c) At any time instant ¢

pr(t—q) + qz(t +p)

(38)

#(t) = z(t) @ z(t) < Vp,q>0.

) o) 1 .q
(39

d) Z(t) = z(¢) for all ¢ if = is convex and lower semicon-

tinuous.
€) & is the largest convex lower envelope of z.

Thus, any signal between « and & will have the same lower

slope transform as z, i.e.
() > y(t) > #(t) ¥t = Xa(a) = Ya(a) Va.  (40)

The correspondence of X, with the lower envelope # (and
with the signal z if the latter is convex) is one-to-one.
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MULTIVALUED LEGENDRE TRANSFORM
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(a) Three half-periods of a cosine and (b) the upper or lower slope transforms (equal to Legendre transforms) of the three concave or convex
cosine pulses. (Time pulses and their transforms have the same line types.)

Finally we note that, given a convex function f, its conju-
gate f* from convex analysis [9] is closely related to its lower
slope transform since f* = —Fj.

E. Slope Transform Based on Stationary Points
Dorst and Boomgaard [4] extended the Legendre transform
to arbitrary differentiable signals by rewriting (21) as

Xstar(@) = {z(t) — at: 2'(t) = a}. @1

If 2’ is invertible, then X, is a single-valued function
identical to the Legendre transform of x given by (21). If z is
differentiable but is neither convex nor concave, then X ¢ is
a multivalued function, i.e., a set collection of single-valued
transform functions. Thus, for each a, Xgat(a) is a set of
numbers since the equation z’(f) = o might have more than
one solutions. Obviously, the two definitions in (21) and (41)
are equivalent if we interpret (z')~!(a) more generally as the
set 7 = {t: 2'(t) = o} and z(7) as the image of 7 under
. It is this generally multivalued Legendre transform that was
defined in [4] as a slope transform for differentiable signals.
For example, consider the signal
3T 27

f|<=, T==
||-4 wo

z(t) = cos(wot), 42)
which is a sequence of two convex and one concave half-
period cosine pulses. Then its multivalued Legendre transform
(shown in Fig. 3) consists of three different functions, one for
each convex or concave piece, as follows:

Xeeae) = { Vi) + G Vil Vi) - S} o

where Y7, is the Legendre transform for a single cosine pulse
y(t) = cos(wot), {t| < T/4 equal to the slope transform in (26)
for |a| < wp. In general, the number of different functions in
the multivalued Legendre transform is equal to the number of
consecutive convex and concave pieces making up the signal.

Assuming the original signal z(t) is a sequence of convex
or concave pieces each possessing invertible derivatives, we
can exactly reconstruct it by applying the inverse Legendre
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transform to each single-valued function belonging to the
multivalued transform Xgii (). Each such usage of the
inverse Legendre transform will reconstruct the original signal
only over the time interval over which the corresponding
convex or concave piece is defined. For example, in the
case of the signal in (42), the inverse Legendre transform of
Yi () will reconstruct cos(wot) only over t € [—-T/4,T/4].
whereas the inverse Legendre transform of —Y7(a) — oT/2
will reconstruct cos(wot) only over ¢ € [T/4,3T/4).

Finally, note that the above multivalued transform can
be extended to nondifferentiable signals by replacing the
Legendre transforms of each signal piece with the more
general upper or lower slope transforms.

IV. EXAMPLES OF SLOPE TRANSFORMS

Example 1: Time impulse and step: The impulse in time
becomes a line in slope domain

u(t —to) <% —ato. (44)

Another elementary signal is the morphological zero step

/\(t)é{o, t>0

—o00, t<0. “3)

The slope transform of a shifted step A(t — to) is V,5,, —ot,
which is equal to a half-line in the slope domain

At —to) L5 —ato — Ma). (46)

Example 2: Time pulse: The concave symmetric zero pulse
z has as its upper slope transform a convex cone

_Jo ST a4 _
x(t) = {—oo, >T = Xy(a)="T|al. 47)
By (36), the convex time pulse y(¢) = —z(t) transforms into
a concave slope cone Yp(a) = —T|a|.

Example 3: Causal line: Consider a signal z(¢) = ag(t) +
A(t) equal to agt for £ > 0 and —oo elsewhere. Thus, adding
to a signal the step A(f) makes it right-sided, also called
“causal.” Since Xy(a) = Viso(ag — a)t

agt + At) 25 Ma — ap). 48)

Thus, a causal line transforms into a negated shifted step in the
slope domain. Its lower slope transform is a reflected shifted
step

aot — A(t) A2, Mao — a). 49)

A DTI system whose impulse response is the causal line
aot+ A(t) behaves as a slope highpass filter, which suppresses
all input lines with slope smaller than ag and leaves all
higher slopes unchanged. Note that for the slope response of
DTI systems a value of +oo corresponds to suppressing the
corresponding slope, whereas a value of 0 leaves it unchanged.
Similarly, an ETI system whose impulse response is the causal
line agt — A(t) behaves as a slope lowpass filter, rejecting all
slopes higher than ¢ and passing the rest.

3We call right-sided signals “causal,” borrowing the terminology from the

case where the signal is the impulse response of a causal dilation or erosion
system.
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Example 4: Time cone: Let z(t) = —aglt|,ae>0 be
an even concave cone. By using the duality between time
and slope domains (explained in Section V), its upper slope
transform is an even convex slope pulse

07 lal S Qg

+o0, |a}> ap. (50)

(1) = —oaf] 25 Xo(a) = {
By (36), the lower slope transform of an even convex cone
y(t) = —z(t) is a concave slope pulse Yp(a) = —Xy(a).
Thus, DTI or ETI systems whose impulse responses are
these conical functions behave as ideal-cutoff symmetric slope
bandpass filters.

Example 5: Piecewise-linear signal: Consider a concave
signal that is a piecewise-linear function z(¢) with corner
points at the time instants ¢; <t < - -+ <t,, and correspond-
ing values 1,29, -, Zm. Let ag > a1 > -+ > o, be the
slopes of the m 4 1 line pieces comprising the signal from left
to right. The m — 1 intermediate segments have slopes

Tgy1 — Tk

Q= )
tet1 — tk

k=1,2,---,m-1 (1)
determined by the corner-point data. The upper slope transform

of z(t) is a convex piecewise-linear function

+o00, a >y
Xv(a)z{l'k—atk, ak—lZOtZak, kzlv"'am
+00, a<@m.
(52)

Thus, the class of concave or convex piecewise-linear signals
is mapped onto itself under the upper or lower slope transform.

The rest of the examples deal with known mathematical
functions z possessing invertible derivatives. Hence, ignor-
ing possible differences due to boundary effects, the slope
transforms of their concave or convex subparts become equal
to Legendre transforms, which can be found using stationary
point values z(t*) — at* where z/(t*) = a.

Example 6: Circle: Let z(t) = V1 —12,|t] < 1. The
maximum intercept is z(t*) — at*, where t* = a/V1+ o2.
Hence

Vi)
z(t) = 1=, Ji<1 ﬂ-»XV(a)zx/l-l-az.
—00, |t >1
(53)
Example 7: Parabola: Let z(t) = —t?/2. Substituting * =
(#')"Y @) = —a into z(t*) — at* gives
—2/2 &% a2)2. (54)

As observed in [4], the parabola plays the same role in
slope transforms as the Gaussian function does for Fourier
transforms. Further, as in the case of piecewise-linear signals, ,
its transform belongs to the same class of functions as the
signal. The parabola transform pair is actually a special case
of a general class of conjugate concave/convex functions [9]

L1,

p q
Example 8: Exponential: Let x(t) = exp(t). Setting

z'(t) = exp(t) = « yields ¢* = log(«) for a > 0. Hence

Ay
=tP/p <5 |al/q, pg>1l. (55

exp(t) Ay, afl — log(a)] — Aa). (56)
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Fig. 4. (a) Signal tanh (¢) and (b) its two-valued slope transform. (Signal segments and their transforms have same line types.)

Example 9: Hyperbolic tangent: Let 2(t) = tanh(¢). Since
#'(t) = 1/ cosh?(t), the slope is limited to 0 < « < 1. Then
t* = cosh™'(1/\/a). The signal consists of one convex piece
2(t) (over t < 0) and one concave piece y(t) (over ¢t > 0).
The concave piece has Legendre transform

YL(a)=v1—a—alog<l—+%), 0<a<l.
(57)

The upper slope transform pair is y(t) + A(¢) A,
Yi(a) — A(c). For the negative-time piece, observe that
z(t) = —y(—t). Hence, by (36), Z(a) = —Yz(c). Thus,
the two-valued Legendre transform of tanh(¢) is equal to
{Yr(a),—YL(a)}. Fig. 4 shows the two signal pieces and
their transforms.

Example 10: Entropy pulse: The entropy of a binary source
that produces the symbols 0 and 1 with probabilities ¢ and
1 —t is given by z(t) = —tlog(t) — (1 — ¢) log(1 — ¢) with
0 <t < 1. Assume z(t) = —oo if <0 or ¢> 1. Setting
z'(t) = log[(1 — t)/t] = e yields that the maximum intercept
occurs at t* = 1/[1 + exp(a)] for any o. Hence

Xv(a) = log[l + exp(a)] — a. (58)

Note the differences between the upper slope and Legendre
transforms due to boundary effects. In examples 6, 9, and
10, the Legendre transform allows the time signals to exist
only over their function domains. In contrast, the upper slope
transform allows the signal to be defined over the whole time
axis by using —oo values for padding. Similarly, in examples
8 and 9, the Legendre transform allows the slope functions to
be defined only over their initial domains, whereas the upper
slope transform can always yield values over the whole slope
axis.

V. PROPERTIES OF SLOPE TRANSFORMS

Table I lists several properties of the upper slope transform.
Again, we observe many similarities among properties of
Fourier and slope transforms, where the general analogy
appears to be as follows: Signal summation or multiplication
in Fourier transforms becomes supremum or addition in slope

TABLE 1
PROPERTIES OF UPPER SLOPE TRANSFORM
[ Signal | Transform ]
z(t) X(a) =V, z(t) — ot
Via t+zi(t) Vi + Xi(a)
z(t — to) X(a) — oty
z(t) + oot X(a - ag)
z(rt) X(a/r)
z(-t) X(-a)
z(t) = z(-t) X(a) = X(-a)
rz(t) ,r>0 rX(a/r)
z(t)Dy(t) X(a)+Y(a)
Voz(r) +y(t+7) X(-a)+Y(a)

z(t) <y(t) Vit X(@) < ¥Y(@) Ve

V, z() = X(0) Ao X(2) 2 2(0)
z(£) Ay(t) < X(a) AY(a)
z(t) + y(t) < X(o)UY(a)
z(t) + y(t) , y is convex Xv(a)®Ya(a)

Y(a) = X(a)OT}al

wo-{ 0 T<T

—o0, |t|>T

transforms, multiplicative weights become additive, and com-
plex exponentials become lines. Next we prove a few of these
properties. The proofs of the rest can be derived easily. We
shall use the notation X (o) = \/, z(t) — at.

TimelSlope Shift: A shift of a signal in time by ¢y adds
to its slope transform the line —aty because

@t —to) 2% \/a(t —to) — at = —aty + X(a).
t

(59

For example, in Fig. 3, the first and last cosine pulses are

shifted versions of the center pulse by +7'/2; this adds a

component of FaT /2 to the slope transforms. Similarly, a

shift of the transform by g adds to the signal the line agt.
Signal Dilation in Time:

Avls(t) @ y(0)](@) = \/ (V () +y(t - T)) —at

= Vx(r) + (Vy(t -T)— at)
= V:L‘(T) +Y(a)—ar

=X(a)+Y(a). (60)
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(b)

-2 /2 (in dashed line) and a time-limited version (in solid line) resulting from adding to the signal a rectangular

pulse with support [—5, 5]. (b) Upper slope transform of the parabola (in dashed line) and of its time-limited version (in solid line).

This is the most important property: Dilation in the time
domain corresponds to addition in the slope domain. If two
signals are concave, then their dilation can be done by first
transforming the signals to the slope domain, adding their
upper slope transforms, and then returning back to the time
domain via the inverse upper slope transform. This opens
new ways of implementing dilations, since addition is a
much simpler operation. Contrast the above idea with the
correspondence between convolving two signals in the time
domain and multiplying their Fourier transforms. Finally, by
the above property and since time reflection causes slope
reflection, the nonlinear autocorrelation (maximum of sums)
V., #(1)+=z(t+7) corresponds to adding X () and X (—a).
Signal Addition in Time: For any signals z,y

Avlz(t) + y(b)](a) = Vr(t)+y( ) —at
< \/ (t)+/\X(b +bt — at
< /\X(b +Vy

= /\ X(b) +Y(a—-b).

(a—b)t
(61)

The first inequality follows from (28), and the second is
true because for any real-valued function f(a,b), we have

Vo Ao f(a,8) < Ay V., f(a,b).

Now, if y is convex, then y(t) = \/,, Ya(a) + ot. Hence

Avfz(t) + y(®))(@) = \ () + \/ Ya(b) + bt—at
t b
= VY,\(b) + Xv(a - b)
b

=Xy(a) ® Y (). (62)

Thus, under the constraint that one of the signals is con-
vex, adding two signals in time corresponds to dilating or
eroding their slope transforms. Note the analogy with LTI
systems, where multiplying two signals in time corresponds
to convolving their Fourier transforms.

Time-Limiting: Consider a signal z(t) added with a sym-
metric rectangular time pulse w(t) equal to w(t) = 0 for
[t} < T and —oo elsewhere. This addition time-limits x(t)
over the interval [T, T]. The time-limited signal is

er(t) = {z(t), [t <T

—oo, |t|>T. 63)
Assuming z(t) is concave, the upper slope transform Xr(c)

of zr(t) is
Xr(e)= \/ z(t) - ot (64)
ltI<T
V AX®) +@-a) (65)
[tI<T b
= A\NX®) +b—aT (66)
b

where the transition from (65) to (66) is possible because X (b)
and X (b) + (b — a)t are convex functions of b. The last result
establishes that

Avlzr(t)] = X(e) © (=Tlaf) = X

This result is also valid when xz(f) is not concave, assum-
ing that z(t) < +oo for all ¢, because then X (c) uniquely
corresponds to the upper envelope Z(t), and time-limiting
z(t) also time-limits £(¢). Thus, time-limiting a signal over
the interval [—T,T] erodes its upper slope transform by the
conical structuring element —7'|a|. As shown in Fig. 5, this
results into replacing high-slope parts of the original slope
transform with two supporting tangent lines of slope +T.
These high-slope parts will be the semi-infinite slope intervals
where o> &'(—T) and o < 3'(T).

Signal Opening: Let z(t) be a concave and (without loss
of generality) even signal. Consider its opening

y(t) = [=(t) © g(t)] ® g(t)

by a flat structuring element g(¢) = 0 for |¢| < T and —o0
else. As shown in Fig. 6, such a flat morphological opening
cuts off the signal peaks whose support has length smaller than

()OT |} (67)

(68)
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Fig. 6. (a) Original parabola signal x(t) = —t2/2 (in dashed line) and its morphological opening (in solid line) by a flat structuring element [-5, 5].
(b) Upper slope transform of the parabola (in dashed line) and of its opening (in solid line).
2T. The effect in the slope domain is to replace the low-slope TABLE 1II
parts of the original transform with supporting tangent lines. PROPERTIES OF LOWER SLOPE TRANSFORM
Specifically, the upper slope transform of the opening is [ Signal T Transform
z(t) X(@) = A, z(t) —at
Yv(a) — Tlal + .'L'(T), |O£| <ar (69) A;ci + zi{t) Aic +‘X,-(a)
X(a), la| > ar z(t - to) X(a) — oty
z(t) + ot X(a~ap)
where the breakpoint is at the slope ar = |z(T)|. Likewise, j((i?) 2 ((‘i/(: ))
the_ closing of a convex signal' wil.l replace the low-slope parts 2(8) = z(=0) X(a) = X(—a).
of its lower slope transform with lines. Finally, if z is a general rz(t) ,r >0 rX(a/r)
signal, then the above effects apply to its concave/convex A ;(g))fi’l((? 5 ;(((_";)T;(?;)
segments. z(t) <y(t) Vit X(a) <Y(a) Va
Duality Between Time and Slope Domain: If we sequen- /\czét)): g )(0) \>/¢x ))(f ((0)) VS;((U;

. . T (23 a
tially apply to any signal z(¢) the upper slope transform = 0) +Z(t) S X(@) 77 (@)
followed by the lower slope transform, we return to the time z(t) + y(t) , y is concave XA (0)0Y (a)
domain W) = { O WSt | Y@ = x@e-Ti)

a(t) 2% Xo 25 3(-1). (70)

Of course, if = is concave, and hence, z = &, then

An[Av[z(t)] = z(—t). This duality between time and slope
domains implies that, for any mapping between a time function
to a slope function, there also exists its dual mapping where the
role of the two functions is interchanged. For example, time
lines become slope impulses and vice-versa; also, time cones
become slope pulses, and time pulses become slope cones.

As Table II shows, the lower slope transform has very sim-
ilar properties with the upper transform, the only differences
being the interchange of suprema with infima and dilation with
erosion.

In {4], several properties of the stationary-point-based Le-
gendre transform (41) were given that seem similar to the
properties of the upper slope transform, but there are some
important differences. First, the stationary-point-based trans-
form is generally multivalued, and hence, adding lines to or
shifting and scaling of this transform has to be understood
as a simultaneous vector translation or homothetic scaling
of a set. Second, and most important, the dilation—addition
property (60) of the upper slope transform must undergo
two significant changes in order to retain a similar form
for the multivalued Legendre transform: 1) The supremum

in the morphological signal dilation is replaced by values at
stationary points (and hence, it becomes set-valued), and 2)
the addition of transforms becomes a Minkowski set addition.

VI. SLOPE-SELECTIVE FILTERS

One of the most useful applications of LTI systems is the
design of frequency-selective filters, e.g., approximations to
an ideal lowpass filter with frequency response H(w) equal to
one for |w| < wp and zero else. We show next that it is also
possible to design morphological systems that have a slope
selectivity and can be used for envelope estimation.

Imagine a DTI system that rejects all line components with
slopes in the band [a1, as] and passes all the rest unchanged.
Then its slope response would be

7

_Jo, o Lala
Gla) = {+oo, else.

This is a general ideal-cutoff slope bandpass filter. In the time
domain, it acts as a morphological dilation by its impulse




874

INPUT SIGNAL
=3

TIME (SEC)

(a)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 4, APRIL 1995

1.5,

OUTPUTS FROM MAX--MIN DIF. EQS.

i
\
)
i
i
1
1
1
1}
i
[}
]
i
i
'
1
|
H
1
1
1
i
i
\
i
\
i)

o
’ —
-1 5 1
TIME (SEC)

®

Fig. 7. (a) Original signal x(t) = [1 + 0.5 cos (2t)] cos (10xt). (b) Upper solid line is the output of a max differential equation with coefficient g = —5
whose input is the signal x(t). Lower dashed line is the output of the corresponding min differential equation.

response (found via A, G(a) + ot)

o= { 25

t>0

£<0 (72)

azt,

which is a concave cone. However, this is not a causal dilation,
and hence, it is not realizable. But if we view g = g1 V go as
the maximum of two signals
91(t) = ent + (),

gg(t) = aat + /\(—t) (73)

one causal and the other anticausal, then we could implement
the dilation by g, by

+ dilating the input z(t) by the causal g;(¢) and producing
an output y;(t) = z(t) ® g1(t).

+ dilating the input z(¢) by the anticausal g,(t); this can be
implemented by reversing time, dilating z(—%) by ga(—t),
and reversing time again to produce y»(t) = z(t) ® ga(t).

* taking the maximum of the two outputs.

For simplicity, assume now that o = —a; = ag>0,
which makes G a symmetric bandpass filter rejecting all
slopes with |a| > ap and g a symmetric cone. Fig. 7 shows
an example of running a signal z(t) through a dilation by the
half-line g1(t) = —aot + A(¢). It produces a type of upper
envelope where, scanning toward the positive time direction,
all the parts of the signal with slope larger than —aq remain
unchanged, whereas parts with slope smaller than —q are
covered by lines of slope —ayp that extend until points of the
signal graph with slope larger than —cyg. After such points,
the same pattern repeats. The dynamics of this causal dilation
z(t) — y(t) = z(t) ® g1(t) are described by the following
first-order nonlinear differential equation:

y(0) = z(0)
, _ [ max(2'(t+), —ao), if y(t) = z(t)
y(tt) = { _ o, i Z(t) Saty

where z'(t4) = limpo[z(t + p) — z(¢)]/p. The reason for
using right-sided derivatives is twofold: i) they are sufficient
to create the forward dynamics, and ii) the input and the output
signals are assumed continuous, but they might not possess a
two-sided derivative at all points.

Consider now a system x(t) — y(t) described by the
first-order linear differential equation y'(t) + ay(t) = z(¢).
Assuming zero initial conditions and the system being initially
at rest, this corresponds to an LTI system whose impulse
response is a causal exponential h(t) = exp(—at),t >
0 and its frequency response H(w) = 1/(a + jw) has
magnitude 1/v/a? + w?. Thus, although both the above linear
and nonlinear differential equations are of first order, and
they correspond to systems whose impulse responses 2 and g
are eigenfunctions of LTI and DTI systems, respectively, the
frequency response of the LTI system is only approximately
lowpass, whereas the slope response of the DTI system has
an ideal cut-off characteristic. Further, this ideal analog slope
filter is realizable in the time domain. either via a dilation
with a causal line or via running the dynamical system
of (74). This analog slope filter described by (74) can be
hardware-implemented with electronic circuits using analog
differentiators and comparators.

Whatever we discussed for DTI systems extends to ETI
systems, too, with only a few minor changes. An ETI system
with slope response

Fo) = {
acts as an ideal slope bandpass filter with impulse response

) = { ozt

alt»

0,
—00,

ay Sala

else (5)

t>0

t<0 (76)

which is a convex cone. The bandpass DTI and ETI systems
are closely related because F(a) = —G(a) and f(¢) =
—g(—t). Their difference is that the DTI system yields as
output an upper envelope of the input signal, whereas the ETI
system produces a lower envelope. As for the DTI system,
the above ETI system can be realized by taking the minimum
of the outputs of two ETI systems, one with causal impulse
response oot — A(t) and the other with anticausal impulse
response oyt — A(—t). Each system can be realized in the
time domain either by eroding the input by a half-line or by
running a dynamical system based on a minimum version of
the differential equation in (74). If as = —a;3 = ag >0, then
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Fig. 8. Signals « (in solid lines) and their upper envelopes & (in dashed lines) obtained via the composition of the upper slope transform and its inverse.
Signals are (a) a cosine whose amplitude has been modulated by a slower cosine pulse and (b) the output  of a recursive discrete DTI system described by
the max difference equation x[n] = max (u[n], V, <r<10 [n — k] +ax ), where ap = —|5 — k| for k =1,---, 9, a10 = 1, and the input is «[n] = p{n].

this differential equation for the causal ETI system is

if y(t) = 2(t)

it yty<z(t)y 7

Qo,

y(t+) = { min(z'(+), ao),

with y(0) = z(0). The output of this dynamical system is
shown in Fig. 7(b) as the lower envelope.

VII. DISCUSSION

We conclude with some general comments on slope trans-
forms and some of their extensions.

A. Concluding Remarks on Slope Transforms

An arbitrary signal can be analyzed using slope transforms
in at least two different ways corresponding to two different
goals: signal reconstruction or envelope reconstruction. If
the goal is exact signal reconstruction, then we should first
segment the signal into consecutive convex and concave
pieces. If the signal z is twice differentiable, this can be
done by finding the inflection points z” = 0, where we
have transitions between convexity and concavity. Then we
find the slope transform of each piece, either using Legendre
transform if it is a known and differentiable mathematical
function or using the upper/lower slope transforms for general
signals. The result will generally be a set collection of slope
transforms of the signal pieces, which can reconstruct the
signal exactly. The disadvantage here is the multivaluedness
of the transform. Alternatively, if the analysis goal is more
to extract information about the long-term behavior of the
signal, as manifested by its upper and lower envelope, then
we could compute its upper and lower slope transform and
take their inverses. As Fig. 8 shows, if the signal has the
form of a wavelet packet with tapered ends and some type
of oscillations between an upper and a lower envelope, then
the inverse upper and lower slope transform can provide us
with the useful information of the upper and lower envelope.
All the oscillations between the two envelopes are ignored,
but they may not be important if our envisioned application is
envelope detection, as for instance in AM signals.

The differences between the upper/lower slope transforms
and the Legendre transform include the following: i) The
sup/inf-based transforms are more general because they can
apply to nondifferentiable signals, whereas the Legendre trans-
form cannot. ii) For differentiable signals, the Legendre trans-
form is generally multivalued, whereas the sup/inf-based trans-
forms are single-valued. Of course, the upper/lower slope
transforms can be made multivalued by applying them to
each individual concave/convex segment of a signal and
defining the transform of the total signal as the collection of
the individual transforms. iii) The sup/inf-based transforms
allow functions defined over the whole slope or time axis
by padding time-limited or slope-limited functions with £oo
values, but the Legendre transform cannot extend the time
or slope functions beyond their domain of definition. iv) For
discrete-time signals only the sup/inf-based transforms can
directly apply because the Legendre transform requires time
derivatives that are not well or uniquely defined for discrete-
time signals.

B. Multidimensional Signals

Consider a d-dimensional signal z : R® — R with d =

2,3,---. We define its upper slope transform as
A - =
xv@s \/ -V =@ - (a9 (78)
vleR vdER
where ¥ = (vy,---,vq) is the position vector, & =
(a1, ,0q) € R? is the slope vector, and (&, 7) = ¢ o0,

denotes inner product. The inverse upper slope transform of
Xy is the signal

@ N - N\ X(@ +(8,9)
xaeR a;eR

which is the smallest concave upper envelope of z. The
properties of this multidimensional transform are very similar
to and can be easily inferred from the 1-D case.

Consider now a multidimensional DTI system D : z(¥) +—
y(¥). The signals z(¥) = (&, ¥) + b are eigenfunctions of D
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because the corresponding outputs are y(¥) = (&, ¥) +b+G(Q)
with

where g = D(p) and (V) = Zip(v;).
For 2-D signals g(v;,v2), G(a1,a2) has two slope vari-
ables: horizontal and vertical. Next, we give a few examples of
the slope responses of DTI systems whose impulse responses
are structuring functions often used in morphological image
processing.
Example 11: Sphere/disk: Consider a spherical structuring
function (A > 0)
9o, v2) = {A\/l —vf—vZ, viI+ui<l1
—00,

(80)
else.

Since g is concave and has an invertible gradient, its upper
slope transform G is equal to its 2-D Legendre transform,
which can be found via stationary points. Namely, setting
dg/8v; = a; for i = 1,2 and finding the value of g(%*) —
(@,0*) at o* = (Vg)~1(Q) yields

G(og,02) = /A2 + o} + al. 81

By taking the limit of as A — 0, g becomes a flat disk with
radius one, and the slope response G becomes /a2 + ag.

Example 12: Rectangle: Consider a flat rectangular struc-
turing function

_Jo, lv1] Ty or |ue| <Th
9(vr,v2) = { —o00, else. (82)
The gradient of g is not invertible, and hence, we cannot use
the stationary points approach. Instead, we directly find the
supremum of g¢(7) — (@, ¥), i.e.

Gla,a2) = v v —(a1v1 + aavs)

[v1|€Th |v2|<T2
=Tiloa| + Ta|ez). (83)

Example 13: Paraboloid: The 2-D parabola
g(v1,v2) = —0.5(v? 4 v) (84)

has invertible gradient Vg = —%. Hence, setting Vg(7*) = &
and finding the value of g(7*) — (@, 7*) yields the upper slope
(and Legendre) transform G

G(ai, ) = 0.5(a? + a2). (85)

If we see all the above concave symmetric functions g as
structuring elements for dilations, then these DTI systems have
a convex symmetric slope response G. Since a relatively high
value of G(a) implies that input lines ot are deemphasized
in the output, the convexity and symmetry of G make it
approximately a lowpass slope response.
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C. Discrete-Time Signals

Let z.(t) be a continuous-time signal, and let X .(a) =
V. z.(t)—at be its upper slope transform. Consider sampling
z(t) at time instants ¢ = nT that are integer muitiples of a
sampling period T'. For applying slope transforms, we model
the sampling as addition of the original signal with a periodic
morphological impulse train p(t) = \/,, (¢ — nT). Thus, the
sampled signal is

zo(t) = we(t) + p(t) = \[ z[n] + u(t — nT)  (86)

n

where z[n] = z.(nT),n = 0,+1,42,--- is the discrete-time
signal. Then the upper slope transform of the sampled signal is

Xo(a) = \/ z[n] - anT. (87)

n

Since the supremum is only over discrete time instants, we
have X,;(a) < X.(«). Thus, sampling generally decreases the
values of the upper slope transform. Equality at any «, i.e.,
Xo(a) = Xc(a), occurs if the time ¢* at which x.. has slope
is a sampling instant, i.e., if t* = (27)~!(a) = nT for some n.

Further, X,(a) is always a convex piecewise-linear func-
tion. Thus, if .(¢) is a concave piecewise-linear signal and the
sampling time instants ¢ = nT include all the times at which its
corner points occur, then (see example 5) X.(a) = X,(a) for
all «, and the original signal z.(¢) can be exactly reconstructed
from its samples by applying an upper slope transform on z,(t)
followed by its inverse transform.

Now, if we define the upper slope transform of the discrete-
time signal z[n] by

Xa(a) 2 VJ,[TL] —an (88)

n

we have that
Xa(o) = Xo(a/T) < Xo(a/T). (89)

Namely, the slope transform of the discrete-time signal is a
slope-scaled version of the transform of the continuous-time
sampled signal.

Very similar results can be obtained for the relationship be-
tween the continuous- and discrete-time lower slope transform;
the latter is defined as in (88) by replacing supremum’ with
infimum.

With the exception of the time scaling property z(rt) «
X (a/r), the properties of the discrete-time (upper or lower)
slope transform are identical to its continuous-time counter-
part. Further, as the slope transforms proved to be useful
analytic tools for continuous-time morphological systems, their
discrete-time counterparts also greatly aid the analysis of
discrete DTI or ETI systems, especially of the recursive type;
examples are given in [7].
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