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Multigrid Geometric Active Contour Models
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Abstract—Geometric active contour models are very popular
partial differential equation-based tools in image analysis and
computer vision. We present a new multigrid algorithm for the fast
evolution of level-set-based geometric active contours and compare
it with other established numerical schemes. We overcome the
main bottleneck associated with most numerical implementations
of geometric active contours, namely the need for very small time
steps to avoid instability, by employing a very stable fully 2-D
implicit-explicit time integration numerical scheme. The proposed
scheme is more accurate and has improved rotational invariance
properties compared with alternative split schemes, particularly
when big time steps are utilized. We then apply properly designed
multigrid methods to efficiently solve the occurring sparse linear
system. The combined algorithm allows for the rapid evolution of
the contour and convergence to its final configuration after very
few iterations. Image segmentation experiments demonstrate the
efficiency and accuracy of the method.

Index Terms—Geometric active contours, image segmentation,
implicit-explicit schemes, level sets, multigrid, partial differential
equations.

I. INTRODUCTION

CTIVE contours, also called snakes, are among the most
important tools in computer vision. They were introduced
in [1] and have been widely used for image and video analysis
tasks such as object boundary detection and tracking [2].
Despite its success, the original parametric active contour
model has some noticeable drawbacks. First, it depends not only
on the intrinsic properties of the contour but also on its param-
eterization; thus, it is a nongeometric model. Second, it cannot
naturally handle changes in the topology of the evolving contour;
significant progress towards topologically adaptable parametric
snakes has been done only recently [3]. These drawbacks of
standard active contours were addressed by geometric active
contours, introduced in [4] and [5]. An important development
has been the introduction of geodesic active contours [6], [7]. In
geodesic active contours, the energy functional to be minimized
is the contour’s geodesic length in a flat Riemannian manifold
endowed with a metric induced by image features. The model
does not entail a parameterization of the curve, rendering it
purely geometric. Augmenting the edge-based geodesic active
contours with other region-based visual cues has led to many
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powerful geometric active contour models. Many region-based
geometric active contours, e.g., [8]-[10], have been inspired
by the piecewise smooth Mumford—Shah image model [11].
Another class of region-based geometric active contour models
builds on the statistical region competition model [12]; important
developments include geodesic active regions [13] and models
such as [14]-[17], which have demonstrated state-of-the-art per-
formance in multiband segmentation tasks, like texture/motion
segmentation. Prior information on object shapes can also be
embodied into the formulation and constrain the front evolution,
leading to segmentation schemes robust against significant
image degradation and/or occlusion [18]-[21].

Most implementations of geometric active contour models
build on the level-set method of Osher and Sethian [22], in
which the active contour is given implicitly as the zero level set
of a scalar embedding function defined on the whole image do-
main; this allows for changes in the curve’s topology much more
naturally than in parametric snakes. Graph cuts [23] and min-
imal paths [24] are efficient alternatives to level sets in imple-
menting certain geometric active contour models, but they are
not as generally applicable as level sets. Despite the advantages
of the level-set method, its computational cost can be high, ren-
dering its utilization for time-critical applications problematic.
To restrict computations to the neighborhood of the evolving
contour, narrowband methods in conjuction with reinitialization
techniques from the level-set technology [25]-[27] have been
used. Adopting a pyramidal approach [28] can lead to further
improvement. Split schemes like the additive operator splitting
(AOS) scheme [29], [30] have been adapted to the problem of
geodesic active contours to relax the stability constraint on the
size of the time step associated with explicit numerical schemes
[31], [32]. Although the AOS scheme is very stable, splitting
artifacts due to reduced rotational invariance can emerge, es-
pecially when big time steps are used. Thus, unless we sacrifice
accuracy, the number of iterations needed for the contour to con-
verge still remains quite large.

In this paper, we propose efficient multigrid algorithms for
level-set implementations of geometric active contour models.
Our algorithms retain their accuracy and demonstrate excellent
stability and rotational invariance properties even with big time
steps because fully 2-D nonsplit schemes are adopted. This al-
lows for the rapid evolution and convergence of the contour after
only very few iterations. In the proposed schemes, we make a
distinction between the curvature-based active contour internal
forces, designed to keep the curve smooth, and the remaining
model-specific external forces, because the internal forces are
particularly stiff, i.e., most difficult to handle stably in numerical
implementations. Therefore, we treat the internal forces with
implicit schemes and the external forces with explicit schemes.
The resulting implicit-explicit [33] scheme combines the sta-
bility of implicit schemes and the flexibility of explicit schemes
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in a powerful blend. In the core of our algorithms is the effi-
cient solution of a big sparse linear system which occurs at each
time step. For this purpose, we apply multigrid methods [34],
similarly to the use of multigrid techniques in the context of
anisotropic diffusion [35]. The cost per iteration of the multi-
grid solver is comparable to the cost of tridiagonal solvers uti-
lized in split schemes. However, the overall time of evolution is
now typically smaller due to the reduced number of iterations
needed for convergence. Adopting the low-cost separable dis-
tance transform of [36] further eases the computational burden.
Standard pyramidal and/or narrowband techniques can naturally
fit into the proposed framework and further accelerate the curve
evolution.

Although multigrid techniques have been applied to geodesic
active contours by Kenigsberg et al. in [37] and [38], our treat-
ment is novel. In [37] and [38], a different discretization scheme
is adopted, which leads to a nonlinear system of equations at
each time step, whose solution by a nonlinear multigrid solver
might be problematic. In our work, using implicit-explicit
schemes and reinitializing the level-set embedding function
before every new step leads to a linear system which is much
easier to handle. Relative to [37] and [38], we also demonstrate
our approach to a wide variety of geometric active contour
models beyond geodesic active contours. Finally, we compare
thoroughly the multigrid and the AOS techniques, illustrating
their qualitative characteristics.

This paper extends our earlier conference work [39] on multi-
grid algorithms for geodesic active contours in several direc-
tions. First, we demonstrate the utility of multigrid curve evolu-
tion algorithms in efficiently solving a variety of additional com-
puter vision models which encompass geometric active contours
ideas, such as the Mumford—Shah and the region competition/
geodesic active regions models; this is achieved in the frame-
work of implicit-explicit schemes. Second, we elaborate on the
optimal design of the multigrid solver components, depending
on the numerical properties of the specific problem one solves,
thus extending the scope of [39] which was confined to alge-
braic multigrid techniques. Third, we use the separable distance
transform algorithm of [36] to rapidly reinitialize the front.

The rest of the paper is organized as follows. We begin in
Section II with a review of some geometric active contour
models which can be effectively treated by our algorithm. In
Section III, we present discretization methods for geometric
active contours from the unifying viewpoint of implicit-explicit
schemes and discuss alternative algorithms for re-initializing
the level-set embedding function to distance transform. Our
multigrid algorithm for evolving geometric active contours is
developed in Section IV. Finally, in Section V, we give experi-
mental results demonstrating the performance of our method.

II. GEOMETRIC ACTIVE CONTOUR MODELS
Let C' be a planar curve with length L(C) and C(s) =
(z(s),y(s)) : [0, L(C)] — R? its arc-length parameterization;
also, let I be an intensity image. In geodesic active contours,
we minimize the curve’s geodesic length [6], [7]

B(C) = /C o(IVI(G(s)))ds )
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where the edge indication function g : [0, +00) — IR is a de-
creasing function of |VI| (other measures of edge strength can
also be used), such that g(0) = 1, g(r) — 0asr — +oo.
Minimization of the functional in (1) by means of variational
techniques leads to a Euler—Lagrange partial differential equa-
tion (PDE); to reach (local) minima, we start with an initial
contour and evolve it in the direction of steepest descent, in-
troducing a pseudo-time variable ¢. Numerical implementation
of the geodesic active contour model using level sets [22] nat-
urally allows for changes in the contour’s topology, permitting
splits and merges. In the level-set framework, the moving con-
tour C(t) is defined implicitly as the zero level set of an em-
bedding scalar function « with domain the whole image plane,
ie, C(t) = {(z,y) : u(z,y,t) = 0}, where u(z,y,t) :
R2 x [0,4+00) — IR. By convention, we assign negative values
to the interior and positive values to the exterior of the curve.
The signed distance function from the contour is often chosen
for extending u away from the curve due to its good numerical
properties. Laws describing the motion of the contour can be
translated to compatible laws governing the motion of the em-
bedding function u [22]. For geodesic active contours, the law
is [6]

ou

) Vu
O = |uldiv (g<|W|)—

o) FealvIDIT @
In the last equation, we have added a so-called balloon force
term, which acts like erosion/dilation, favoring the inward (if
¢ > 0) or the outward (if ¢ < 0) motion of the contour, re-
spectively [40]. Improved contour alignment with image edges
can be achieved by supplementing the model with the Laplacian
edge detection term of [41].

The edge-based geodesic active contour model can be consid-
erably enhanced by incorporating information from the whole
image into the curve evolution process; advantages of such re-
gion-based models are less dependence on initialization and tol-
erance to noise. Many of these methods have been inspired by
the model of Mumford—Shah [11], in which a curve C splits the
domain £ in foreground R and background R’ and the image
is a degraded version of an ideal image f; f is assumed to be
smooth inside the segments R and R’, but not on the boundary
C. The corresponding geometric active contour level-set evolu-
tion law is [9], [10]

% = |Vul {div (;—Z') +5 (Fn =1 = (e = D7)

@

+ (IVlez—IVfRflz)} 3)
with « and (3 positive weights. Since f is also unknown, it needs
to be re-estimated as the front moves [19]. A cartoon version of
the Mumford—Shah model is the Chan—Vese model [8], where
the image intensity is assumed piecewise constant (cg/cps in-
side/outside the contour) and the curve evolves by

2_1: = |V4l {div (;—ZO +5 ((ern =12~ (er - 1)2)} .
“
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Beyond the piece-wise smooth intensity assumption, in a
class of region-based geometric active contour models pio-
neered by Region Competition [12], one partitions the image
into statistically homogeneous regions, where the statistics are
computed on features that offer good discriminatory power for
a particular application [13]-[17]. When a foreground model R
competes with a background one R’, we obtain the law

ou ' Vu Pr(z|R)
o = vl {aiv (91D ) + atos il b o

where Pr(z|R) denotes the probability assigned to pixel z by
model R. In purely region-based approaches, one typically sets
g = 1 in (5); boundary-based information can be integrated
by utilizing an edge indicator function g, similar to that of (1)
[13]. Applications of these models to image segmentation or
object tracking tasks has given excellent results. Techniques that
integrate object-specific shape prior statistical information into
the curve evolution process can also be described by laws similar
to (5) [18]-[21].

III. NUMERICAL SCHEMES FOR GEOMETRIC
ACTIVE CONTOUR MODELS

A common characteristic of the geometric active contour
models reviewed in Section II is that they can be cast as

% — |V {div <g(|VI|)%> + F(u)} ©)

where the right-hand side term F'(u) groups the external forces
of each specific model used [cf. (2)—(5)].

The last equation emphasizes that all these models share
the same parabolic term |Vu|div (¢(|VI|)(Vu/|Vul)), which
turns into the familiar nonhomogeneous heat diffusion term
when the embedding function w is constrained to be a distance
transform [42] (in which case |Vu| = 1). This internal geodesic
curvature force term acts on the evolving front as a geometric
regularizer, penalizing nonsmooth boundaries. It plays a similar
role to the membrane and thin-plate force terms of snakes [1]
and can be interpreted probabilistically as enforcing a generic
prior favoring short region borders. Although this regularizing
term is indispensable in geometric active contour models, it
makes the resulting PDE particularly stiff [43] numerically: If
one uses simple explicit methods for numerically evolving the
contour, then instability incurs unless very small time steps are
applied. To overcome this shortcoming, implicit integration in
time is needed for this term. On the other hand, the stability
constraint associated with the remaining external forces term
F(u) is typically much looser; therefore, simple explicit in
time schemes are adequate for F'(u). Before explaining these
further, we will first discuss appropriate discretization of the
different terms in (6).

A. Spatial Discretization

Finite difference discretization schemes for the various terms
involved in (6) have been extensively studied in the level-set
literature [25], [44].

The first term on the right-hand side of (6) describes motion
under geodesic curvature and is of parabolic nature. Therefore,

central difference schemes are suitable for descritizing it [22],
[32]. As noted in [31], a particularly attractive simplification
occurs if we reinitialize the embedding function u to be a signed
distance transform before each iteration, which implies |Vu| =
1. Then, the short-time curve evolution driven by this term is
described by the linear nonhomogeneous diffusion equation

ou(z,y,t)
ot

where the conduction coefficient g(z,y) = ¢(|VI|) depends
on the image I and not on the evolving function u. We adopt
this reinitialization technique in our scheme because it yields
the time-independent operator div (g(z,y)V-); this is particu-
larly desirable in the multigrid context of our approach, since the
system matrices at all levels need to be computed only once in a
setup phase. Moreover, reinitialization of the embedding func-
tion to a distance transform improves the robustness of level-set
methods [25]. Fast distance transform algorithms for this task
are discussed in Section III-C.

Following the extensive literature on numerical methods for
anisotropic diffusion, we discretize div(gVu) = (guz)s +
(guy )y of (7) by the standard five-point stencil [30], [32]

= div(g(z,y)Vu) @)

. 1
div(gVu)li; = h_z{gi-i-%,j(ui-i-l,j — Uij)
xr

= gi—y j(uij — uv:—l,j)}
1
+ ﬁ{gi,j+%(uid+1 — ;)
Yy

= 9ij—1 (uij — Ui,j—l)} ®)

where h, h, are the spatial finite difference discretization mesh
grid lengths. In the following we assume for convenience that
hy = hy = h. We also make a linear approximation for g,
obtaining, for example, g4 (1/2),; ~ (git1,j + 9ij)/2.

If we raster-scan the pixels lexicographically (in a row-major
order) into a column vector u, we can compactly write (8) in
matrix-vector notation as

div(gVu) = Au )

where A = [a;;] is the NxN (N = N,N, is the total number
of pixels of the N, x N, image) time-independent matrix with
elements

Sl j € N(i)
aj={ = 2 U =i (10)
keN (i)
0, otherwise

where N (7) denotes the 4-neighborhood of pixel P;. This matrix
is extremely sparse: It has only five nonzero elements per row,
apart from the rows corresponding to pixels on the sides or cor-
ners of the image where it has four or three nonzero elements,
respectively, and properly incorporates the reflecting boundary
conditions.

Finally, the remaining external force terms F'(u) of (6) should
be discretized by appropriate numerical schemes, depending on
their nature. For example, upwind schemes might be needed
for the discretization of the balloon force term of (2) and other
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hyperbolic or convective terms that might exist in a particular
model [25], [44]. Treating the external forces of the models pre-
sented in Section II is straightforward and needs not be dis-
cussed further here.

B. Timestepping With Implicit-Explicit Schemes

Combining the spatially discrete expressions for the internal
(9) and external force terms while keeping a continuous-in-time
formulation [45], we end up with the following system of IV (as
many as the number of pixels) ordinary differential equations in
time

ou

— = Au+ F(u)

En an

where u is the raster-scanned vectorized level-set function.
A time-integration scheme needs to be adopted next for dis-
cretizing the time variable ¢ and numerically advancing the
solution of (11).

The explicit scheme (u™t! — u™)/7 = Au™ + F(u™) has
been widely used for level-set calculations since it is the most
straightforward and easy to implement: both right hand side
terms are evaluated using only current function values. Unfor-
tunately, due to the stiff internal parabolic term Awu, the explicit
scheme is only stable for very small time steps 7 < h?/4 [30].
This stability constraint is practically very restrictive [43]: If the
active contour moves by this internal force by a distance D to
reach its steady state, we need to run the algorithm for time
T o D?. Therefore, the number of steps needed is (7/7) o
(D?/h?) = O(N). Thousands of iterations are required to
process a moderately sized picture. Since the cost per itera-
tion is also O(N), the overall cost of the explicit algorithm is
O(N?). For example, the processing cost for a 200x 200 image
is roughly 16 times bigger than that for the same image at half
the resolution 100x 100.

To improve performance, a key observation is that stability
and not accuracy is the performance bottleneck of the explicit
scheme [30]. One can sacrifice some accuracy by employing
schemes which permit bigger time steps, since for most image
processing applications the accuracy lost is hardly visible. This
is particularly true for active contours, since for this application
(unlike anisotropic diffusion) one is interested in the steady-
state of the system and not in accurately describing transient
phenomena [43]. Therefore, utilizing big time steps in conjuc-
tion with implicit schemes, which are excellent for stably in-
tegrating stiff sets of differential equations [43], [46], is well
suited to geometric active contours.

A fully implicit scheme for (11) is the backward Euler method
(u*t!' —u") /T = Aumt! + F(u™*"). This scheme can stably
treat the stiff parabolic term Au no matter how large the time
step is [30], but, depending on the particular form of F', solving
the resulting (usually dense and nonlinear) algebraic system for
1™+ might be complicated. This is generally true for most of
the geometric active contour models of Section II, making the
fully implicit scheme impractical.

However, implicit integration of the external force term F'(u)
may not be required. This term is usually amenable to stable in-
tegration by explicit schemes with much bigger time steps than
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that allowed for the internal force term treated explicitly. Com-
bining the benefits of stable implicit integration for the stiff term
and simple explicit integration for the nonlinear term yields the
hybrid class of so-called implicit-explicit IMEX) schemes [33],
the simplest of them being
= Au™t + F(u™). (12)
Obviously, in the absence of an external force term F, as in
the pure geodesic active contour case we studied in [39], the
fully implicit and the IMEX schemes coincide. Various IMEX
schemes have been successfully used in practice for years. For
example, algorithms for integrating parametric snakes with
IMEX schemes have been used early on [1].

Adopting the IMEX scheme of (12) means that one needs to
solve the following linear system at each iteration:

(13)

[lf - A} "t = lu" + F(u™).
T T
While solving an analogous system in 1-D (which is essentially
the case of parametric spline snakes [1]) is quite easy, the sit-
uation in our 2-D level-set case is not so straightforward. The
system matrix L. = (1/7)I — A is very large and inherits the
sparse structure of A described in Section III-A. This specific
sparse structure does not lend itself to application of efficient
elimination techniques (the matrix does not have small band-
width). Although L is strictly diagonally dominant, simple iter-
ative methods such as Jacobi or Gauss—Seidel converge slowly
for such big systems. Convergence gets even slower with bigger
time steps 7, since then the regularizing diagonal term 1/7 di-
minishes, and, hence, the diagonal dominance of L weakens.
With these simple iterative methods, the number of iterations
required to reduce the error by a predefined factor is propor-
tional to the number of pixels N[43]. Since their cost per itera-
tion is also O(IV), this leads to an O(N?) cost for each step of
(13)—no improvement over the explicit algorithm.

To avoid solving the full-blown system (13), the authors in
[31] and [32] adopt the AOS scheme, whose IMEX variant is

u"t = 1 Z {LI — Al} 1 {iun + lF(u")] (14)
2 2T 2T 2
le{z,y}
where the matrices A;,! € {x,y} are the 1-D counterparts of A
[cf. (10)]. The AOS scheme is also unconditionally stable with
respect to the stiff internal force term and was first introduced
in the context of nonlinear diffusion [30]. It belongs to the class
of alternating direction implicit (ADI) methods [46]; a multi-
plicative locally one-dimensional (LOD) variant of it has been
used in [47]. The AOS scheme is a simplified version of the
fully 2-D IMEX scheme (13) in which a 2-D diffusion process
of duration 7 is approximated as the average of two independent
1-D ones of duration 27 each. The advantage of this approach
is that the 2-D problem is approximated with two simpler 1-D
ones. The two linear systems involved in (14) are tridiagonal and
can be solved efficiently with O(N) cost per step [30]. The dis-
advantages are, first, reduced accuracy, since the effective 1-D
diffusion time step is double in the case of AOS (27 instead of
7); this implies that for a given desired accuracy one should take
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roughly twice as many steps with the AOS scheme. More impor-
tantly, unless the time step 7 is very small, splitting artifacts can
emerge due to loss of rotational invariance. The LOD scheme,
treating nonsymmetrically the = and y axes, has even worse ro-
tational invariance properties [30]. This constrains the size of
the time step and keeps the number of iterations needed for the
contour to converge still large.

In the algorithm we propose, we adopt the fully 2-D IMEX
scheme in its complete form (12). In order to efficiently solve the
corresponding full-blown system (13) in optimal O(NN) time,
we resort to multigrid techniques, as described in Section IV.
By carefully selecting the constituting multigrid components,
the fully 2-D IMEX scheme has essentially the same computa-
tional cost per time step as the split AOS scheme of (14), while at
the same time preserving the benefits of the fully 2-D approach,
namely increased accuracy and rotational invariance. These ad-
vantageous properties of the proposed 2-D IMEX/multigrid al-
gorithm allow using even bigger values of the time step 7 than
in the AOS case, resulting in the rapid evolution of the contour
to its final configuration after very few iterations.

It is worth mentioning that the proposed discretization of (12)
is not the only possible IMEX scheme [33]. For example, one
can evaluate the derivative of the stiff term half-way between the
current and the next step, to obtain the Crank—Nicolson (CN)
scheme (u"*! —w™)/7 = A(u™ + w"*1)/2 + F(u™). This
scheme, in comparison to all previously mentioned schemes
which are only O(7) accurate, has superior O(72) accuracy.
However, the CN scheme is not as stable as (12): Although
u™t1 computed by CN remains bounded even for very large
7, undesirable oscillations of high spatial frequency modes can
emerge (for 7/h% = 100, in practice), as can be verified by
a Fourier-type analysis of the scheme [43], [46]. This renders
the CN scheme less competitive in our application, since we
are mainly interested in the steady-state position of the active
contour and stability is of utmost importance. In contrast, for
applications like anisotropic diffusion, where one needs to ac-
curately describe the evolution of the contour and smaller time
steps are usually utilized, the second-order accuracy of the CN
scheme (or split variants of it) could lead to visible quality im-
provements [47].

Finally, we comment on appropriate schemes to treat the bal-
loon force term of (2), described by the hyperbolic equation
Ou/ot = ¢g(|VI|)|Vu| which corresponds to adaptive dila-
tion/erosion [48]. The first option, following [31] and [32], is
to incorporate the balloon force into the external force terms F’
and treat it explicitly into the framework of IMEX schemes just
described. This approach leads to a CFL stability constraint to
the allowable time step [25]: |¢|7/h < 0.25. The second option
we used in [39] is to adopt a fractional steps scheme [43], in
which the front first moves under the balloon force and then by
the remaining (internal and external) force terms. Motion under
the balloon force term is treated separately by an uncondition-
ally stable numerical scheme and the remaining forces are in-
tegrated by IMEX schemes as usual. The idea behind the nu-
merical scheme for the balloon force term is that evolution of
the zero level-set C'(¢) under this law can be cast in stationary
form as C(t) = {(z,y) : T(z,y) = —ct}, where the func-
tion T'(x,y) satisfies the eikonal PDE |VT|g(x,y) = 1. The

fast marching (FM) algorithm can then be applied to compute
T [25], [42]. Although the resulting scheme is uncondition-
ally stable, its drawback is the increased computational cost
of applying the FM algorithm every time step. However, no
matter which approach one follows in discretizing it, the pre-
cence of the balloon force term can lead to problems when very
big time steps are utilized, because the contour may skip over
and miss weak object boundaries, something also noticed in
[31]. A heuristic modification of the edge indicator function g
to ameliorate this effect has been proposed in [38]. A better so-
lution is to altogether replace the balloon force with the gradient
vector flow (GVF) external force [49], which does not exhibit
this problem, while offering most of the advantages of the bal-
loon force, such as convergence to boundary concavities and re-
duced sensitivity to initial conditions.

C. Distance Transform Algorithms for Reinitialization

As explained in Section III-B, it is advantageous before every
iteration to reinitialize the embedding function u to be a signed
distance transform, i.e., signed distance function from the con-
tour, so that [Vu| = 1 and u < 0 (u > 0) for the pixels in
the interior (exterior) of the front. Moreover, using the distance
transform as level-set embedding function facilitates the com-
putation of the Hausdorff distance [50] between shapes, which
is useful in checking the convergence of the contour to its final
configuration.!

We have compared various distance transform algorithms
for level-set reinitialization. The most common approaches in
the level-set community are the FM algorithm [25] and the
PDE-based method of [26] and [27]. The FM algorithm uti-
lizes an efficient insert-sort procedure based on heaps and has
O(N log N) complexity. A nice property of the FM algorithm
is that it first computes the distance function near the zero level
set and gradually expands further. Therefore, the procedure
costs less if the distance function is only needed in a narrow
band around the contour. The alternative method of [26], [27]
drives the PDE du/0t + sign(u)(|Vu| — 1) = 0 to steady state,
thus yielding |Vu| = 1 for ¢ — co. While this PDE method is
easy to implement and effective if the embedding function
is close to a distance function, it converges slowly in our case
since we typically utilize big time steps which cause to u big
deviations from the signed distance function.

We have also investigated an algorithm by Felzenszwalb and
Huttenlocher to reinitialize « to a distance function [36]. This
algorithm is very simple to implement and, to the best of our
knowledge, has not been used in level-set applications before.
It first computes in linear cost the 1-D distance transform of
each row as the lower envelope of parabolas. It then exploits
the min-plus separability of the Euclidean distance transform
(distance transforms can be seen as morphological min-plus
convolutions [42]) and applies the 1-D procedure columnwise
on the intermediate result to obtain the 2-D distance function.

IIf C, C’ are two active contours and wu, u’ their distance trans-
form embedding functions, then their Hausdorff distance is H
max(h(C,C"), h(C', C)), where the directed Hausdorff metric h(C, C")
maXccc min.ccr ||¢ — ¢’||2 can be computed efficiently as h(C, C”)
max.cc |u'(c)| and similarly for h(C’, C).
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Extension to more dimensions is straightforward. Being sep-
arable, this algorithm has optimal cost—only O(N) compar-
isons. Indeed, we have found it to be the fastest in practice in
our experiments.

IV. MULTIGRID EVOLUTION OF THE CONTOUR

Multigrid numerical methods employ a hierarchy of grids of
different mesh sizes to efficiently solve a wide range of prob-
lems, most notably those arising from PDE models [51]. Some
excellent books on multigrid are [34], [52], and [53]. Multigrid
algorithms were first employed systematically in computer vi-
sion problems in [54]. For multigrid optical flow algorithms, see
[55] and the references therein; other relevant multigrid com-
puter vision applications include [19], [35], [38], [39], [56],
and [57].

A. The Multigrid Principle

Multigrid techniques overcome the typically slow conver-
gence properties of conventional uni-grid iterative methods
[43] (e.g., Jacobi, Gauss—Seidel, and conjugate gradients.)
While uni-grid relaxation procedures are particularly effective
at eliminating the high spatial frequency part of the error,
they suppress very slowly its low-frequency part. This be-
havior stems from the local nature of computations in uni-grid
methods, which allows attenuation of error components that
vary on scales comparable to the discretization mesh grid
size h, but prevents quick suppression of larger scale errors.
As discretization grids get finer, information propagates even
more slowly and the shortsightedness of local uni-grid methods
becomes more pronounced. Multigrid cycles overcome these
difficulties by employing conventional relaxation procedures,
called smoothers in multigrid terminology, in a hierarchy of
grids. Since relaxation performed at each resolution level
smooths the error components at scales comparable to the grid
size of this level, one multigrid cycle can effectively eliminate
error components at the whole range of frequencies. Moreover,
applying a relaxation procedure at coarse scales costs signifi-
cantly less than applying it at fine scales, since less variables
are involved. Such multigrid techniques are optimal for a wide
range of interesting problems, both linear and nonlinear, in
the sense that discretization accuracy can be achieved after a
number of cycles which is independent of the problem size with
total cost O(N). The multigrid method is also applicable to
3-D problems, such as active surfaces implemented with level
sets; however, this is not pursued further here.

Algorithm 1 Generic two-level multigrid
1: Relax ni-times on Lpup = fp.
: Compute the residual r, = fr — Lpuy, in the fine grid.
: Restrict the residual ry;, = Rrj, to the coarse grid.
: Solve directly the coarse-grid system Lopesp, = Top.
: Prolong the error to the fine grid e, = Peyy,.
: Correct the fine grid solution uy, < up, + ep.
: Relax ng-times on Lyup = f.

N N 0 R W

We introduce the multigrid idea by giving the generic two-
level Algorithm 1 for solving a system of equations Lyuy, = fr,
like (13) [52]. Subscripts denote the discretization mesh grid
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2h
4h

V-cycle W-cycle FMG

Fig. 1. Usual multigrid schedules. Grid size in the left column. Illustration for
four levels.

size. Concrete procedures follow from Algorithm 1 by speci-
fying the following multigrid components.

1) The smoother and the number of pre/postsmoothing steps
n1/ng; usually ny + ne < 3 Gauss—Seidel relaxations
suffice.

2) The intergrid transfer matrices: the prolongation (interpo-
lation) Nj, X Noj matrix P and the restriction (decimation)
Napx Np, matrix R, where N(. is the number of unknowns
at a certain level, typically Naj, = (1/4)N}, for 2-D prob-
lems; simple choices are bi-linear interpolation for P and
injection (subsampling) for R.

3) The coarse grid system matrix Loy ; in simple cases redis-
cretizing the continuous problem at the coarse grid works
well.

However, the aforementioned “standard” choices for multigrid
components are not always effective. We discuss more proper
alternatives for our application in Section IV-B.

In extending the two-level Algorithm 1 to multiple grids we
have many options, depending on the order we visit the var-
ious levels. Fig. 1 depicts examples of the most popular multi-
grid schedules. These schedules are usually defined recursively
[34]; using enough levels ensures that, in the coarsest grid, very
few unknowns are left and applying a direct solver is computa-
tionally cheap. There are two types of multigrid algorithms (cf.
Fig. 1): Correction algorithms (e.g., the V and W cycles) start
at the finest level and use coarser levels to smooth the low-fre-
quency error of the residual equation; nested-iteration (e.g., the
FMG cycle) starts at coarser grids and use them to generate ini-
tial guesses for finer-grid problems. A good rule of thumb is to
use correction algorithms if a good initial estimate is available,
as is the case in our application.

The previous discussion highlights an important distinction
between multigrid techniques and other coarse-to-fine multires-
olution algorithms, such as [28], [58], and [59]. Multigrid al-
gorithms utilize both coarse-to-fine and fine-to-coarse transi-
tions to achieve optimal performance, while traditional pyra-
midal image analysis algorithms use coarse grids just to obtain
estimates of the fine-grid solution; after that, coarse grids are not
revisited. These issues are further discussed in [55] and [60].

B. Selection of Multigrid Components

Designing effective multigrid components for the linear
system of (13), which arises at every front update step when we
employ the IMEX scheme, requires that we first examine some
qualitative properties of its system matrix L, = (1/7)I, — Ap.
The positive diagonal constant 1/7 has a regularizing ef-
fect, improving the diagonal dominance of Lj; this results
in better convergence rates, particularly for small time steps
when 1/7 is substantial. As 7 — 400, we obtain the system
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c=0(@g=1)

oc=0.1

o =0.01

Fig. 2. Level-set embedding function «™**, as given by (13) (i.e., before reinitialization), depicted as gray-value image for various values of the edge threshold
o in a geometric active contour with g(w, y) = exp (—|VI|/o). As o decreases, image edges cause sharper changes to w.

—Au = f, corresponding to the inhomogeneous Poisson
equation —div(¢gVu) = f. Thus, multigrid solvers designed
for inhomogeneous Poisson boundary-value problems perform
at least as well in our case [34].

Among the various geometric active contour models reviewed
in Section II, the easiest to handle with multigrid techniques are
the purely region-based ones, such as the Mumford—Shah and
the Chan—Vese. For these models, ¢ = 1, and the corresponding
Poisson equation, —V?u = f is homogeneous. For the homo-
geneous Poisson equation, the standard multigrid components
mentioned in Section IV-A perform excellently [34].

On the other hand, a serious complication with edge-based
(i.e., g # 1) geometric active contour models is that the dif-
fusivity g(z,y) in (7) can vary several orders of magnitude
throughout the image; we typically have ¢ ~ 1 in homoge-
neous regions and g ~ 1072 at edges of the image. Such strong
discontinuities in g impair the convergence of multigrid when
the simple intergrid transfer operators and coarse grid matrices
described in Section IV-A are utilized [19], [53], [61], [62].
To see why, we recall from Section III-A that the short-time
evolution of the level-set embedding function u corresponds to
heat diffusion in a nonhomogeneous medium with conductivity
g [cf. (7)]. Therefore, although ™ has been reinitialized to be a
distance function, and is, thus, smooth, the embedding function
at the next time step u"T! before reinitialization, given as
solution to the linear system (13), is not smooth at image edges,
since there the conductivity is almost zero; the physical analogy
is that image edges act as insulators and obstruct heat transfer,
causing sharp changes to the “temperature” u across them.
Since u is nonsmooth for strongly varying ¢, using standard
linear interpolation as prolongation operator P in transfering
corrections from coarse to fine grids will blur the solution esti-
mate and deteriorate multigrid convergence rates. The situation
is illustrated in Fig. 2. Similarly, if the coarse-grid matrix Loy,
is calculated by computing image gradients on a Gaussian
pyramid of the original image and using (10) at every level,
then solutions to coarse-grid problems might be too smooth to
give useful corrections to fine-grid problems. This discussion
highlights the need for edge-preserving multigrid components
for edge-based geometric active contours.

We have explored two alternative approaches from the multi-
grid literature, both well suited to the case of strongly discontin-
uous edge indicator g(x,y): matrix-dependent restriction/
prolongation multigrid (MDMG) [53], [62] and algebraic
multigrid (AMG) [34], [52], [56], [57], [63]. MDMG is ap-
plicable to problems discretized on rectangular grids and
coarse grid meshes are conventionally formed by doubling the
discretization mesh size. Good multigrid performance in the
presense of discontinuous g is achieved by using edge-pre-
serving adaptive interpolation operators P which avoid
smoothing the coarse-grid corrections across image edges; see
[62] for details and concrete interpolation formulae. Using
specialized smoothers, such as incomplete LU factorization,
makes MDMG even more robust [53], [62].

While applicability of MDMG is typically confined to prob-
lems discretized on regular meshes, AMG methods are designed
to also handle problems Lju;, = f5 defined on more general
unstructured graphs G, = (Wi, &), with vertex set V;, and
edge set &,. In AMG, one partitions the fine-grid vertices V},
into two disjoint sets V;, = Cp,UF, Cp,NF, = 0; the vertices
in Cy, are retained in the coarse grid, i.e., C;, = Vs, and are
chosen in such a way that each vertex ¢ € Fj not included
in the coarse grid is strongly coupled to vertices in Cy, e.g.,
>iec, izl = B3 ey, |lij|, for some fixed 8 € (0,1), where
l;; are the elements of the system matrix Lj,. This ensures that
errors and corrections are transferred accurately across grids and
makes AMG very robust in the presence of discontinuous coef-
ficients. Moreover AMG can easily treat the irregular grids asso-
ciated with narrowband calculations and extends more readily to
3-D problems. On the other hand, the flexibility of AMG costs in
multigrid setup time and in memory; thus, MDMG is preferable
in the non-narrowband case. Hybrid approaches in the spirit of
[56], [57], and [64], having elements of AMG while still bene-
fitting from the image grid structure, could be faster than fully
general AMG and similarly support narrowband calculations.

System matrices at coarse grids must also be carefully de-
signed in the case of discontinuous g, so that the problem there
closely resembles the fine-grid one. The simplest method to ob-
tain coarse-grid system matrices (cf. Section IV-A) is to re-dis-
cretize the continuous problem at all coarse grids: a Gaussian
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(a) Fine-grid (256X 256)

(b) Rediscretization (64 x64)

(¢) Galerkin (64 x64)

Fig. 3. Continuous problem rediscretization versus Galerkin generation of coarse-grid matrices. Pictures show the modulus of the matrix L diagonal elements
diag(L), which correspond to image edge strength, cf. (10); (a) fine grid L ; (b) rediscretization level-2 Ly, ; (¢) Galerkin level-2 L, . The Galerkin approxima-

tion preserves sharp edge transitions.

pyramid /¥, k > 0, of the original image I is created and all
coarse-grid matrices Loxp,, k > 1, are computed similarly to the
fine-grid matrix Ly, i.e., by calculating g(|VI*|) and then using
(10). However, this approach leads to overly smooth coarse-grid
corrections, since image edges get excessively dispersed, as il-
lustrated in Fig. 3(b).

In our context, a much better choice for determining the re-
striction operator R and coarse-grid system matrices is through
the so-called variational approach, which is a constituent com-
ponent of both MDMG and AMG algorithms [34], [52], [53],
[62]. In the variational approach, one only needs to feed the al-
gorithm with the fine grid matrix L; and right-hand side f3;
their coarse-grid counterparts are computed recursively by

Loy, = RL;, P (Galerkin Condition)
R=P".

(15a)
(15b)

This choice naturally arises from a variational interpretation
of the solution to Ljpup, = f; common to finite element
formulations: for Lj; symmetric positive-definite (SPD)
(as in our case) the solution wu; minimizes the functional
Jn(un) = (1/2)(Lpun,un) — (fn,un), where (-, -) denotes
the Euclidean vector inner-product; seeking the coarse-grid
correction Peg;, which minimizes Jj,(up, + Pegy) yields the
variational conditions (15); see [52, Ch. 10] for details. Another
interesting property of the variational condition is that if Lj, is
SPD, then Loy, is also SPD, for arbitrary full-rank prolongation
matrix P [34]. Note that computation of coarse-grid matrices
by the Galerkin condition (15a) can be performed efficiently by
exploiting the sparse structure of R, Ly, and P [53]. Additional
efficiency can be attained in the non-narrowband case: since
we reinitialize u to be a signed distance function before every
new front update and the problem domain is unaltered, the
system matrix L; does not change over time, thus building
up the hierarchy of grids and coarse-grid matrices needs only
be done once. The effectiveness of adaptive interpolation P
in conjuction with decimation R and coarse grid matrices
selected according to the variational principles (15) in treating
edge-based geometric active contours is illustrated in Fig. 3(c):

TABLE I
COST OF MAIN OPERATIONS FOR 256 X 256 IMAGES

Time (milli-sec)
Operation Algorithm Setup Per time-step

[]
z Mat.-Dep. MG (MDMG) | 35%1 231
8 | 2DIMEX | ) oebraic MG (AMG) | 300420 4045
A AOS Tridiag. Solver (IRI) 13E1 5E1
. . Separable DT (SDT) n/a 27%1
Distance Transf. | g "Marching (FMDT) n/a 382

the edge map is well preserved in coarse grids, ensuring suffi-
ciently sharp coarse-grid corrections.

Finally, two additional qualitative characteristics of the active
contour problem are that, first, the equation at each front update
does not need to be solved at discretization accuracy since the
steady state solution matters mostly, and, second, the solution
to each step provides a good initial guess for the next step. The
first property means that typically one multigrid cycle at each
front update suffices; further cycles have usually no perceptible
effect on the final solution. The second implies that multigrid
correction schemes such as the V- and W-cycles of Fig. 1 better
fit our application since they exploit the good initial guess to the
solution. In practice, we utilize the V'(1, 1) or even the so-called
sawtooth V' (0, 1) multigrid schedule, where V' (n1,ns) denotes
a V-cycle with n; pre- and ny postsmoothing steps per level;
both are computationally cheap and sufficiently accurate for our
application.

V. EXPERIMENTS AND COMPARISONS

We have tested the performance of the proposed algorithm
in conjuction with various of the geometric active contour
models of Section II in segmentation experiments. We have
experimented with two popular publicly available multigrid
(MG) codes: 1) the matrix-dependent multigrid code mgd9v
[62] (MDMG); 2) the algebraic multigrid code amglr5 [63]
(AMG). For distance transform (DT) calculations, we have im-
plemented the separable DT transform algorithm of [36] (SDT)
and the FM method [25] (FMDT). Our implementation of the
AOS scheme [30] utilizes LAPACK tri-diagonal solvers (TRI)



PAPANDREOU AND MARAGOS: MULTIGRID GEOMETRIC ACTIVE CONTOUR MODELS 237

AOS

2D IMEX

straight shape

rotated by 45°

u values

Fig. 4. Anisotropicity artifact of the AOS scheme. Top: The AOS scheme gives different results after a 45° rotation of the image. This is due to the shading effect
of the AOS scheme, better visualized in the graph of the embedding function w (third column). Bottom: The rotation has no effect on the result of the fully 2-D

IMEX scheme. (geodesic active contour, ¢ = 0, 7 = 1000).

without row pivoting, since the system matrices are strictly di-
agonally dominant. Contour convergence is established as soon
as the Hausdorff distance between two consecutive snapshots
of the front, computed as discussed in Section III-C, is less than
Hr; typically Hr = 1 — 5 pixels. Execution times refer to our
C++ implementation? and a laptop computer with a Pentium
M710 1.4-GHz processor.

In Table I, we give execution times on typical 256 x 256
images (without narrowband) of the main algorithmic compo-
nents, namely: 1) front update, using either our fully 2-D IMEX
scheme and multigrid solution of the linear system (13) (both
MDMG and AMG have been tested), or the AOS scheme in
conjuction with tridiagonal system solvers; 2) front reinitializa-
tion with distance transform algorithms. For both multigrid and
tridiagonal algorithms, we give separately the setup overhead
and the cost per time step: by re-initializing the front, unless
we employ narrowband, the system matrices do not change;
hence, in either case, solver setup (multigrid: computation of
prolongation/restriction operators and coarse-grid matrices;
tridiagonal solver: LU-decomposition) needs to be performed
only once.

As can be seen from Table I, the setup overhead is substan-
tial for AMG, but much lighter for MDMG; this clearly makes
MDMG more efficient than AMG, even if we combine AMG
with narrowband as we did in [39]: although fewer variables
are involved in each narrowband iteration, most pixels are typ-
ically included in the narrow-band at some iteration of the al-
gorithm and the costly AMG setup needs to be repeated every
time the domain changes. The cost of both MDMG and AMG
algorithms per front update is low, since one V(0,1) multigrid

2To facilitate experimentation with the proposed algorithms, we make our
source code publicly available at http://cvsp.cs.ntua.gr/gpapan

cycle suffices to suppress the error sufficiently. Especially for
MDMG, the cost per front update is of the same order with
the cost of split schemes like LOD/AOS, while retaining all
the advantages of the fully 2-D IMEX scheme. For the purely
region-based (¢ = 1) active contour models, for which the
cheaper standard multigrid components of Section IV-A are ap-
plicable, one could expect a further efficiency improvement. Re-
garding distance transform (DT) computations, the separable al-
gorithm SDT is faster than the alternative FMDT method. We
see that the combination of matrix-dependent multigrid and sep-
arable distance transform components (MDMG+SDT) costs
~ 50 msec for each front update, thus allowing 20 non-nar-
rowband updates/sec; since very few front updates with the big
time steps allowed by the fully 2-D IMEX scheme (12) suffice
for the contour to converge, we typically segment 256 x 256 im-
ages in less than a second. The computational cost also scales
linearly with the number of pixels N for MDMG+SDT; the
experiments reported next have been conducted with this ad-
vantageous choice for multigrid/distance transform algorithms.

We demonstrate next the improved accuracy and rotational
invariance properties of the fully 2-D IMEX scheme over the
AOS split scheme. In Fig. 4, we illustrate on a synthetic image an
anisotropicity artifact of the AOS scheme which we call shading
effect. Since diffusion is carried out independently in the = and
y directions, cavities with interior not completely visible by an
observer who scans the image only in these directions do not get
“lit” properly and the contour cannot get into them. The fully
2-D IMEX scheme faces no such problem because it permits
omni-directional diffusion. The better qualitative properties of
the fully 2-D IMEX discretization are further illustrated in the
segmentation detail of Fig. 5; we notice that, even for time steps
as small as 7 = 2, the AOS scheme can lead to visible artifacts.
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2D IMEX
Fig. 5. Fully 2-D IMEX versus AOS discretizations. The AOS scheme does

not regularize properly the curve and favors the formation of lines parallel to the
axes. Chan—Vese segmentation of Cameraman image (detailed view), 7 = 2.

step 3 step 5 (final)
Fig. 6. Chan—Vese segmentation of a 350 x 258 image. Convergence after five
iterations (7 = 50, execution time 0.55 s).
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Fig. 7. Structure tensor-based texture segmentation [15] of a 436 x 286 image.
Convergence after seven iterations (7 = 25, execution time 1.8 s).

Two more region-based segmentation examples employing
our algorithm are presented next; the one in Fig. 6 uses the
Chan—Vese model and the other in Fig. 7 uses the unsupervised
structure tensor-based texture segmentation approach of [15]. In
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both cases, the front converges rapidly, successfully capturing
the trees and the zebra, respectively.

VI. CONCLUSION

In this paper, we have presented a novel algorithm for the
rapid evolution of geometric active contours. It utilizes a very
stable fully 2-D implicit-explicit numerical scheme which
exhibits excellent rotational invariance properties and relies
on multigrid methods for the efficient solution of the occuring
sparse linear system at each front update. We have discussed
both its applicability in conjuction with a wide range of geo-
metric active contour models and its accuracy in comparison to
the AOS scheme. The experimental results we have presented
show that the new multigrid algorithm can be a promising tool
in the further adoption of geometric active contour methods in
time-critical applications.
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