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Abstract

We explore nonlinear signal processing methods inspired by dynamical systems and fractal theory in order to analyze and characterize
speech sounds. A speech signal is at first embedded in a multidimensional phase-space and further employed for the estimation of mea-
surements related to the fractal dimensions. Our goals are to compute these raw measurements in the practical cases of speech signals, to
further utilize them for the extraction of simple descriptive features and to address issues on the efficacy of the proposed features to char-
acterize speech sounds. We observe that distinct feature vector elements obtain values or show statistical trends that on average depend
on general characteristics such as the voicing, the manner and the place of articulation of broad phoneme classes. Moreover the way that
the statistical parameters of the features are altered as an effect of the variation of phonetic characteristics seem to follow some roughly
formed patterns. We also discuss some qualitative aspects concerning the linear phoneme-wise correlation between the fractal features
and the commonly employed mel-frequency cepstral coefficients (MFCCs) demonstrating phonetic cases of maximal and minimal cor-
relation. In the same context we also investigate the fractal features’ spectral content, in terms of the most and least correlated compo-
nents with the MFCC. Further the proposed methods are examined under the light of indicative phoneme classification experiments.
These quantify the efficacy of the features to characterize broad classes of speech sounds. The results are shown to be comparable
for some classification scenarios with the corresponding ones of the MFCC features.
� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Well-known features, such as the mel-frequency cepstral
coefficients (MFCCs), are based on the linear source-filter
model of speech. This modeling approach when fertilized
by auditory concepts that are incorporated via the mel-
scale (Davis and Mermelstein, 1980) spacing of the filter-
bank, results in a feature space representation that captures
characteristics of the speech production system. Such fea-
ture space representations are massively utilized in auto-
matic speech recognition (ASR) systems, which still suffer
as far as plain acoustic modeling is considered. Herein,
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we investigate whether an alternative feature space repre-
sentation that is taking advantage of a different perspective
may be utilized for analysis, and furthermore for character-
ization of speech signals. Specifically, we exploit novel fea-
ture descriptions that are based on simple concepts from
the system dynamics and fractal theory. Via the proposed
analysis we seek to investigate the capability of the meth-
ods concerning speech sound characterization and relate
general phonetic characteristics with the proposed mea-
surements. A practical motivation that prompts this direc-
tion is the successful, to a certain degree, application of
related methods in ASR (Maragos and Potamianos,
1999; Pitsikalis and Maragos, 2006). Hence, also contin-
uing previous work, we focus on fractal features as these
are related to a set of generalized fractal dimension
measurements and furthermore proceed by considering
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the following aspects: (1) provide statistical measurements
regarding the fractal-related features, and discuss issues
on the characterization of speech sounds by the new mea-
surements; (2) apply a variety of classification experiments;
and (3) highlight viewpoints concerning their correlation
with the cepstral features.

The employed concepts from system dynamics and frac-
tal theory originate from the experimental and theoretical
evidence on the existence of nonlinear aerodynamic phe-
nomena in the vocal tract during speech production (Tea-
ger and Teager, 1989; Kaiser, 1983; Thomas, 1986), such
as flow separation, generation of vortices e.g. at the separa-
tion boundary, jet formation and its subsequent attach-
ment to the walls; these phenomena, together with the
possible generation of turbulent flow, indicate the nonlin-
ear character of the speech production system also leading
to a discussion on the factor by which they affect phonation
(Hirschberg, 1992; Howe and McGowan, 2005). From the
observation point of view, the dynamics of systems that
demonstrate phenomena sharing characteristics with tur-
bulent flow are referred to as ‘chaotic’ (Tritton, 1988; Peit-
gen et al., 1992). Such systems are characterized by limited
predictability, whereas nonlinearity can be an essential fea-
ture of the flow. Turbulent motion can be seen as a combi-
nation of interacting motions at various length scales
leading to the formation of ‘eddies’ (Tritton, 1988), i.e.
localized structures of different sizes. Such structures func-
tion for the transfer of energy from higher to lower scales,
until the extent of energy dissipation due to viscosity; a
phenomenon known as the energy cascade. The twisting,
stretching and folding that are accounted in this context
are also characteristics of deterministic systems that resem-
ble chaotic behaviour; these are characterized by properties
such as mixing and conditional dependence on the initial
conditions (Peitgen et al., 1992). Within this frame of refer-
ence, fractal dimensions and Lyapunov exponents are
among the invariant quantities that may be used for the
characterization of a chaotic system. Besides, it has been
conjectured that methods developed in the frame of chaotic
dynamical systems and fractal theory may be employed for
the analysis of turbulent flow: for instance by utilizing frac-
tals and multifractals to model the geometrical structures
in turbulence that are related to phenomena such as the
energy cascade (Mandelbrot, 1982; Benzi et al., 1984;
Meneveau and Sreenivasan, 1991; Takens, 1981; Hentschel
and Procaccia, 1983). For further discussion on this moti-
vation see (Maragos and Potamianos, 1999). In general,
fractal dimensions can be utilized to quantify the complex-
ity, concerning the geometry of a dynamical system given
its multidimensional phase-space. This quantification is
related to the active degrees of freedom of the assumed
dynamical system, providing a quantitative characteriza-
tion of a system’s state.

Recently there have been directions in speech analysis
that are based on concepts of fractal theory and dynamical
systems. Numerous methods have been proposed (Maragos
et al., 1993; Narayanan and Alwan, 1995; Kumar and Mul-
lick, 1996; Banbrook et al., 1999) that attempt to exploit
the turbulence-related phenomena of the speech produc-
tion system in some way . Work in this area includes the
application of fractal-measures on the analysis of speech
signals (Maragos, 1991; Maragos and Potamianos, 1999),
application of nonlinear oscillator models to speech model-
ing, prediction and synthesis (Quatieri and Hofstetter,
1990; Townshend, 1991; Kubin, 1996), or multifractal
aspects (Adeyemi and Boudreaux-Bartels, 1997). For
instance (Maragos, 1991; Maragos and Potamianos,
1999), fractal dimensions are computed as an approximate
quantitative characteristic that corresponds to the amount
of turbulence that may reside in a speech waveform during
its production, via the speech waveform graph’s fragmenta-
tion. Ideas concerning phase-space reconstruction have
attracted additional interest. Methods that follow this
approach are based on the embedding theorem (Sauer
et al., 1991). The analysis may be followed by measurement
of invariant quantities on the reconstructed space. Early
works in the field employing phase-space reconstruction
include (Quatieri and Hofstetter, 1990; Townshend, 1991;
Bernhard and Kubin, 1991; Herzel et al., 1993; Narayanan
and Alwan, 1995; Kumar and Mullick, 1996; Greenwood,
1997), whereas recently there has been increasing interest
in the area (Banbrook et al., 1999; Kokkinos and Maragos,
2005; Johnson et al., 2005). These employ concepts on
Lyapunov exponents (Kumar and Mullick, 1996; Ban-
brook et al., 1999; Kokkinos and Maragos, 2005), density
models of the phase-space (Johnson et al., 2005), correla-
tion dimension measurements (Kumar and Mullick, 1996;
Greenwood, 1997), especially for fricative consonants
(Narayanan and Alwan, 1995), or surrogate analysis on
the nonlinear dynamics of vowels (Tokuda et al., 2001).

In this paper, a speech signal segment is thought of as a
1-D projection of the assumed unknown phase-space of the
speech production system. We reconstruct a multidimen-

sional phase-space (Section 2) and aim to capture measures
of the assumed speech production system’s dynamics in the
way that these are described by the reconstructed space.
Such measures are related in our case to the fractal dimen-
sions. Moreover the analysis with generalized fractal
dimensions renders the detection of a set’s inhomogeneity
feasible.

Thus, as an extension of previous work (Maragos, 1991;
Maragos and Potamianos, 1999), which exploits multiscale
fractal dimension on the scalar 1-D speech signal, we move
a step forward (Pitsikalis and Maragos, 2002; Pitsikalis
et al., 2003), according to the directions outlined above
employing measurements such as, the correlation dimen-
sion (Section 3.1) and especially the generalized dimensions
(Section 3.2) on embedded spaces for the analysis of speech
phonemes. Since related methods have been employed to a
certain extent successfully in speech recognition applica-
tions (Maragos and Potamianos, 1999; Pitsikalis and Mar-
agos, 2006), we take a closer look at the employed methods
in the following ways. At first we highlight issues on their
application in the practical cases of speech phonemes and
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then construct simple descriptive feature vectors incorpo-
rating information carried by the raw measurements. We
further demonstrate (Section 3.3) indicatively the statistical
trends and patterns that the feature elements follow
depending upon general properties such as the voicing,
the manner and the place of articulation. In the same
framework we show how phonetic properties affect statisti-
cal quantities related to the fractal dimensions (Section
3.4). An implicit indication on the relation between the
information carried by the proposed fractal features and
the commonly used MFCC is presented by measuring their
in between correlation (Section 4). This lets us consider
some novel viewpoints at first on how the correlation
between the two feature sets varies with respect to the pho-
neme class, and secondly on the fractal features’ spectral
content as this is formed in maximal and minimal correla-
tion cases with the MFCC. The potential of the measure-
ments to characterize speech sounds is also investigated
in the light of classification experiments that complement
the preceding analysis (Section 5). These contain: (1) exper-
iment sets of single phoneme classification tests; after
inspecting characteristics on the phoneme confusability of
the features, we proceed by considering, and (2) experi-
ments on broad phoneme classes; in this way we examine
quantitatively the efficacy of the proposed analysis from
the viewpoint of the resulting discriminative ability. The
fractal classification accuracies are also compared with
two variants of MFCC-based baselines, showing in some
classification scenarios comparable performance for the
broad class case.

2. Embedding speech signals

We assume that in discrete time n the speech production
system may be viewed as a nonlinear, but finite dimen-
sional due to dissipativity (Temam, 1993), dynamical sys-
tem Y ðnÞ ! F ½Y ðnÞ� ¼ Y ðnþ 1Þ. A speech signal segment
sðnÞ, n ¼ 1; . . . ;N , can be considered as a 1-D projection
of a vector function applied to an unknown multidimen-

sional state vector Y ðnÞ. Next, we employ a procedure by
which a phase-space of X ðnÞ is reconstructed satisfying
the requirement to be diffeomorphic to the original Y ðnÞ
phase-space so that determinism and differential structure
of the dynamical system are preserved. The embedding the-
orem (Packard et al., 1980; Takens, 1981; Sauer et al.,
1991) provides the supporting justification to proceed while
satisfying these requirements.

According to the embedding theorem (Sauer et al., 1991),
the vector

X ðnÞ ¼ ½sðnÞ; sðnþ T DÞ; . . . ; sðnþ ðDE � 1ÞT DÞ� ð1Þ

formed by samples of the original signal and delayed by
multiples of a constant time delay T D defines a motion in
a reconstructed DE-dimensional space that shares common
aspects with the original phase-space of Y ðnÞ. Particularly,
invariant quantities of the assumed dynamical system such
as the fractal dimensions from Y ðnÞ are conserved in the
reconstructed space traced by X ðnÞ. Thus, by studying
the constructible dynamical system X ðnÞ ! X ðnþ 1Þ we
can uncover useful information on the complexity as it is
related to these invariant quantities about the original un-
known dynamical system Y ðnÞ ! Y ðnþ 1Þ. The above is
feasible provided that the unfolding of the dynamics is suc-
cessful, e.g. the embedding dimension DE is large enough.
For instance, let us consider a toy system case where the
original phase-space is known: if one uses smaller embed-
ding dimension than the one required, the resulting recon-
struction would suffer from collapsing points; these points
would otherwise belong to separate time orbits. This would
imply also a case of ambiguous determinism since there
would be multiple possible dynamic orbits for the succeed-
ing points in the time instances that follow. For further dis-
cussion on these issues see (Sauer et al., 1991). However,
the embedding theorem does not specify any methods to
determine the required parameters ðT D;DEÞ but only sets
constraints on their values. For example, DE must be great-
er than twice the box-counting dimension of the multidi-
mensional set.

The smaller the T D gets, the more correlated shall the
successive elements be. Consequently the reconstructed
vectors will populate along the separatrix of the multidi-
mensional space. On the contrary, the greater the T D gets,
the more random will the successive elements be and any
preexisting order shall vanish. To compromise, the average
mutual information I for the signal sðnÞ is first estimated as

IðT Þ ¼
XN�T

n¼1

P ðsðnÞ; sðnþ T ÞÞ � log2

P ðsðnÞ; sðnþ T ÞÞ
P ðsðnÞÞ � P ðsðnþ T ÞÞ

� �

ð2Þ
where P ð�Þ is a probability density function estimated from
the histogram of sðnÞ. IðT Þ is a measure of nonlinear corre-
lation between pairs of samples of the signal segment that
are T positions apart. Then, the time delay T D is selected as

T D ¼ minfarg min
T Ps0

IðT Þg ð3Þ

The final step in the embedding procedure is to set the
dimension DE. As a consequence of the projection, points
of the 1-D signal are not necessarily in their relative posi-
tions because of the true dynamics of the multidimensional
system, referred to as true neighbors; manifolds are folded
and different distinct orbits of the dynamics may intersect.
A true versus false neighbor criterion is formed by compar-
ing the distance between two points Sn; Sj embedded in suc-
cessive increasing dimensions. If their distance dDðSn; SjÞ in
dimension D is significantly different, for example by one
order of magnitude, from their distance in dimension
Dþ 1, i.e.

RDðSn; SjÞ ¼
dDþ1ðSn; SjÞ � dDðSn; SjÞ

dDðSn; SjÞ
ð4Þ

exceeds a threshold (in the range 10–15) then they are con-
sidered to be a pair of false neighbors. Note that any differ-
ence in distance should not be greater than some second



V. Pitsikalis, P. Maragos / Speech Communication 51 (2009) 1206–1223 1209
order magnitude multiple of the multidimensional set ra-
dius RA ¼ 1

N

PN
n¼1ksðnÞ � �sk. The dimension D at which

the percentage of false neighbors goes to zero, or is mini-
mized in the existence of noise, is chosen as the embedding
dimension DE. An extensive review of such methods can be
found in (Abarbanel, 1996; Kantz and Schreiber, 1997).

Following the procedures described we set the embed-
ding parameters for the cases of speech signals and next
construct the embeddings of three indicative types of pho-
nemes. Fig. 1 illustrates a few multidimensional phonemes
together with their corresponding scalar waveforms. Before
the analysis and measurements of the following sections, it
seems, by inspection of the multidimensional signals, that
the different phoneme types are characterized in the recon-
structed phase-spaces by different geometrical properties.
For instance the vowel phoneme /ah/ demonstrates
dynamic cycles that resemble laminar ‘‘flow” in the
phase-space, the unvoiced fricative /s/ is characterized by
many discontinuous trajectories, and the unvoices stop
/p/ shows a single trajectory that settles to a region of inter-
woven tracks. Similar observations have been made since
(Bernhard and Kubin, 1991; Herzel et al., 1993). Our goal
is to describe this variation by means of statistical measure-
ments that are related to the fractal dimensions.

3. Fractal dimensions and feature extraction

The Renyi hierarchy of generalized dimensions Dq; q P
0 is defined (Hentschel and Procaccia, 1983; Peitgen
et al., 1992) by exploiting the exponential dependency, with
respect to the order parameter q, of a set’s natural measure.
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Fig. 1. Phoneme signals from the TIMIT database (upper row) with the c
In this way it constructs a sequence that unifies and extends
known fractal dimensions. Such cases are of geometrical
type such as the box-counting dimension DB corresponding
to q ¼ 0, or of probabilistic type such as the information DI

and correlation dimension DC for q ¼ 1 and q ¼ 2, respec-
tively. Our exploration of methods for the analysis of
speech signals by fractal measurements has started (Mara-
gos, 1991; Maragos and Potamianos, 1999) with the already
presented multiscale fractal dimension (MFD) which corre-
sponds to the DB. In the sections that follows, a step ahead
of these first order measurements employed on the scalar 1-
D speech signal involves the exploitation of the multidimen-
sional embedded speech signals. Towards speech feature
extraction we consider at first measurements that are related
to the correlation dimension DC and a set of generalized
dimensions that has been shown to extend the aforemen-
tioned cases of the Renyi set of fractal dimensions (Badii
and Politi, 1985).

3.1. Correlation dimension

3.1.1. Background

The correlation dimension can be estimated by employ-
ing a practical method from the category of average
point-wise mass algorithms for dimension estimation
(Grassberger and Procaccia, 1983). A quantity used for
its estimation is the correlation sum C that measures how
often a typical sequence of points visits different regions
of the set and quantifies its mass in this way. C is given
for each scale r by the number of points with distances less
than r normalized by the number of pairs of points:
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orresponding embeddings (bottom row): (a,d) /ah/, (b,e) /s/, (c,f)/p/.
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CðN ; rÞ ¼ 1

NðN � 1Þ
XN

i¼1

X
j–i

hðr � kX i � X jkÞ ð5Þ

where h is the Heaviside unit-step function. The correlation
dimension is then defined as

DC ¼ lim
r!0

lim
N!1

log CðN ; rÞ
log r

ð6Þ

For small enough scales and for large enough N, CðrÞ is
proportional to rDC .

3.1.2. CD features and characterization of speech signals

In the unfolded phase-space we measure C and DC as in
(6) using least squares local slope estimation of the
log CðN ; rÞ versus log r data, weighted with the correspond-
ing variance of each set of points. In this way we form the
local-scale correlation dimension function DCðrÞ with
respect to the local-scale parameter r 2 ½rmin; rmax�. The
scale boundaries are selected by ignoring a small percent-
age of scales at each extent (Kantz and Schreiber, 1997).
In order to derive information from the set of raw measure-
ments we form the following 8-dimensional feature vector,
whose elements are related to the correlation dimension
(CD). This concerns both the sum C, i.e. the average pair-
wise correlation over the whole set, and how this quantity
is varying in terms of the scale parameter’s exponent DCðrÞ.
The feature components represent the measurements by:
(1) calculating over the whole range of scales r the mean
ðlÞ and the deviation ðrÞ of both C and DC, and (2) break-
ing the set of scales into two distinct subsets ½rmin;�r� and
½�r; rmax�, where �r is the mean scale value, and calculating
the corresponding means and deviations of DC, in order
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Fig. 2. Density of selected single-feature vector elements related to correlation
and stops. Top row: feature vector elements for selected phonemes from mixed
Bottom row: cases of stops, affricatives and fricatives for (d) CD2 ¼ rðCÞ, (e)
to include local-scale information. Hence, the feature vec-
tor CD ¼ ½CD1;...;8� is defined as

CD ¼

½lðCÞ; rðCÞ
lðDCð½rmin; rmax�ÞÞ rðDCð½rmin; rmax�ÞÞ
lðDCð½rmin;�r�ÞÞ rðDCð½rmin;�r�ÞÞ
lðDCð½�r; rmax�ÞÞ rðDCð½�r; rmax�ÞÞ�

ð7Þ

In order to explore the variation of the measurements
either among different types of phonemes, or among pho-
nemes that share similar phonetic characteristics, we mea-
sure the CD feature vector on a large set of embedded
isolated phonemes from the TIMIT database (Garofolo
et al., 1993), independently of the speaker sex or dialect;
the amount of data used has on average order of magni-
tude of 2000 instances per phoneme. The measurements
concern the univariate component densities so as to exam-
ine each component’s relation to phonetic characteristics.
The densities are shown in some cases in logarithmic scale
for better visualization. The setup described holds for all
succeeding density measurements.

In Fig. 2 we present indicative cases of histograms
drawn from the CD feature vector such as the CD5,
referred to from now on as CDlow, that is the correlation
dimension over the lower scales ð½rmin;�r�Þ, for selected pho-
neme types (see Fig. 2c and f). We observe that CDlow is
higher for cases of strident fricative sounds (/s/,/z/), espe-
cially voiced ones, and lower for non-strident (/v/,/f/). Cor-
responding values for vowels seem to lie in between. Also,
CDlow shows greater variance, and mainly lower values, for
stops, with the voiced ordered higher than the unvoiced.
Especially for the fricatives, as illustrated by Fig. 2f, it is
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classes are (a) CD3 ¼ lðDCÞ, (b) CD4 ¼ rðDCÞ, (c) CD5 ¼ lðDCðrmin;�rÞÞ.

D8 ¼ rðDCð�r; rmaxÞÞ, and (f) CD5 feature vector elements.
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observed that, among the non-strident ones, the voiced
(e.g. /v/) demonstrate higher CDlow compared to the corre-
sponding unvoiced ones (/f/) or alternatively to the affric-
atives (/jh/,/ch/). Furthermore on the fricatives, the
deviation of the CD in higher scales (CD8) is shown in
Fig. 2e, assumes on average lower values for the non-stri-
dent fricatives (/th/,/dh/,/f/,/v/) versus their strident coun-
terparts (/s/,/z/,/sh/,/zh/). Voiced stops (/b/,/d/,/g/) exhibit
systematically different statistical characteristics than their
unvoiced counterparts (/p/,/t/,/k/); this holds either for
the CDlow or for the CD2, as shown in Fig. 2d; the latter
quantifies the spread of the correlation sum function over
the range of scales. Other presented components include
the average of the correlation dimension over all scales,
and the corresponding deviation is shown in Fig. 2a and
b, respectively.

3.2. Generalized dimensions

3.2.1. Background

The description of a phase-space via a single quantity,
such as box-counting or correlation dimension, might not
represent sufficiently a set since the underlying probability
density may vary. Although fractal dimensions of the prob-
abilistic type do take into account the variability of how
often the system visits the different regions, they are a
weighted average.

A method in the category of generalized dimensions of
(Hentschel and Procaccia, 1983), which served as inspira-
tion for the extension of the conducted measurements, is
the generalized dimension function that defines an infinite
class of dimensions, introduced in (Badii and Politi
(1985)). This is accomplished by the computation of the
moments of nearest neighbors’ distances among randomly
chosen points on the multidimensional set. Let dðnÞ be the
nearest neighbor distance among a reference point of the
embedded set and the n� 1 others, and P ðd; nÞ be the prob-
ability distribution of d, then the moment of order c of
these distances is

hdci � M cðnÞ ¼
Z 1

0

dcP ðd; nÞdd:

Since hdci depends on n as � n�
c

DðcÞ (Badii and Politi, 1985),
the dimension function is defined as

DðcÞ ¼ � lim
n!1

c log n
log M cðnÞ

ð8Þ

where c is the parameter that suppresses or enhances the
different distances of scale d. Since for increasing c the lar-
ger distances are more weighted and vice versa, DðcÞ is the-
oretically a monotonic non-decreasing function of c.
Among the infinite number of fractal dimensions with re-
spect to the order parameter c, one can find the Renyi class
of dimensions Dq for q P 0. When c ¼ ð1� qÞDq the corre-
spondence is realized as DðcÞ ¼ Dq. Geometrically the Dq’s
are the intersection of the DðcÞ graph with a set of lines
with slope 1

1�q. Thus, Dq¼0 is the point that c ¼ DðcÞ and
Dq¼1 is the intersection with c ¼ 0. If DðcÞ is not varying
with respect to c, then the set is said to be homogeneous,
with respect to the scales that are suppressed or amplified,
possessing constant fractal dimension in the Renyi hierar-
chy of Dq : D0 ¼ D1 ¼ . . . ¼ Dq; q P 0, and vice versa.

The integral equation of hdci can be rewritten as a sum
for a discrete signal of finite length N:

M cðnÞ ¼
1

N

XN

i¼1

dc
i ðnÞP ðdi; nÞ ð9Þ

where i is an index for the points of the data set. The prob-
ability density function P ðd; nÞ can be computed for an
arbitrary scale dj as the difference of volume estimates
based on the resolution of the successive scales (Hunt
and Sullivan, 1986). Let fyðkÞ : k ¼ 1; . . . ;Mg be a set of
uniform random numbers of the same dimensionality as
the data set X, and let us define the membership function
fdjðkÞ ¼ 1 if distðyðkÞ;X Þ 6 dj and 0 otherwise where
distðyðkÞ;X Þ ¼ infx2XkyðkÞ � xk. Then the volume estimate
of a dj-cover of the set X is AðdjÞ � 1

M

PM
k¼1fdjðkÞ. Given the

above, P ðdj;NÞ � AðdjÞ � Aðdjþ1Þ is an estimate of the
probability that some point has a nearest neighbor at dis-
tance d 2 ðdjþ1; dj�. This probability P ðdi; nÞ equalizes the
corresponding nearest neighbor distances. The latter dis-
tances are computed among randomly sampled subsets of
the original data. This procedure is repeated for the varying
number of points that are included, in the considered sub-
set giving rise to the n dependence, and for all the c values,
according to the above details, leading to the final moment
M of order c for varying number of points M cðnÞ.
3.2.2. Computation and intermediate measurements

In order to compute the dimension function we need to
estimate the slope of log nc versus log M cðnÞ data. This is
practically achieved by computing the mean slope of
sequential estimations that result by a sliding window esti-
mation within the range of log nc data. An indicative win-
dow utilized for slope estimation covers 7 points on the
log M cðnÞ data.

Next we present intermediate measurements on the com-
putation for a test data set, i.e. the Sinai toy system (see
Fig. 3). The measurement of the generalized dimensions
is conducted on two variants of data sampled from the uni-
form or the non-uniform Sinai system, respectively.1 We
show in the same plots a number of nc versus M c data
points; in these we have subtracted the mean value of each
one in order to make visualization feasible. Each group of
points corresponds to a discrete c value. Moreover, for
each curve that corresponds to a different c value there is
superimposed the corresponding line-fit that shares the
respective mean slope. This mean slope is considered as
the average dimension with respect to each c. Thus, by
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computing the slope for each c value we create the DðcÞ
curve, henceforth referred to as Dc for simplicity, shown
in Fig. 3c. We also employ a schematic plot as shown in
Fig. 3d in which we visualize via straight lines the minimum
and maximum slopes for the two cases of system states, i.e.
uniform versus non-uniform. Via this explicit comparison,
the greater variation of the slope in the second case
becomes apparent.

Following this procedure in Fig. 4b and d we show the
corresponding measurements for two isolated phonemes
after being embedded in the multidimensional phase-space.
These correspond to two opposite cases: one in which the
numerous dimensions for the subsequent c values are con-
stant, and to the other in which the dimensions vary with
respect to the order parameter c. In practice we use c values
in the range of [�3,3]. However, the sparsity of the data
points of the set might not allow the computation of the
respective Dc for all c. This leads sometimes to possibly dif-
ferent domains in which the generalized dimension mea-
surements are computed.

Among the practical issues, we should mention that the
computational complexity of the fractal features is higher
than the one of the MFCC. This is due mainly to the com-
plexity of the embedding procedures including the compu-
tation of the embedding parameters; this complexity is
increased by two orders of magnitude compared to the
one of the cepstral features. However, computational issues
can be further more radically accounted for by procedures
discussed in (Kantz and Schreiber (1997)).

3.2.3. Comparison of measurements among fractal

dimensions
We present next the geometrical correspondence

among fractal dimensions from the Renyi hierarchy
together with an indicative comparison among the fractal
dimension-related measurements, i.e. the correlation
dimension and the generalized dimensions. As mentioned
in Section 3.2.1 this relation is given geometrically by the
intersection of the graph of the Dc function with a series
of straight lines with slope 1=ð1� qÞ. Here, we show the
generalized dimensions measurement for two cases of
phonemes. In Fig. 5a along with the Dc graph we have
superimposed the lines that correspond to the cases of
q ¼ 0; 1; 2. It seems that the relatively constant case of
the Dc leads to almost equal Dq’s: D0 � D1 � D2. This is
an example of the type of uniformity or homogeneity that
we seek to detect since the dimension function is relatively
constant. Besides, this measurement is close to the average
correlation dimension (CD) that is superimposed in the
same figure, as computed along the lines of Section 3.1.
In this case the description of the set by a single quantity
would be sufficient. Nevertheless, this information
enriches our knowledge on the specific speech signal, since
in the case that we would only have access to the single-
valued correlation dimension we would not be aware of
the set of values that the generalized dimensions render
accessible. On the contrary, a different case is shown in
Fig. 5b in which the characterization of the embedded
phoneme is not sufficient by this single measurement,
whereas the generalized dimensions vary with respect to
the c values. In this case the single CD measurement
would not be sufficient.

3.3. GD features and characterization of speech signals

Based on the above raw measurements we construct a 9-
element feature vector that is related to the generalized
dimensions. This consists of: (1) the mean lðDcÞ and the
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standard deviation rðDcÞ of the dimension function, which
include statistical information of the measurements; (2) the
minimum, minðDcÞ, and maximum, maxðDcÞ, values of the
same function; (3) the parameters ½p1; p2; p3� of a 2nd order
polynomial fit p1 þ p2 � cþ p3 � c2 of the dimension function
Dc, which is also weighted by the corresponding estimation
variances; these coefficients include more specific informa-
tion on the location of the Dc measurements and are
thought of as the parametric decomposition of the Dc into
the specific basis; and (4) and finally, the boundaries
argmincðDcÞ and argmaxcðDcÞ of the range of c values for
which the dimension function has been constructed. Hence,
the generalized dimensions-related feature vector, referred
to as GD, summarizes characteristics of the generalized
dimensions and is defined as follows by its GD1. . .9

components:

GD ¼
½lðDcÞ; rðDcÞ; minðDcÞ; maxðDcÞ
p1; p2; p3; argmincðDcÞ; argmaxcðDcÞ�

ð10Þ

Next we examine in detail how the distinct feature vector
components are related to general phonetic characteristics,
by examining their univariate densities.
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3.3.1. Mean and variance feature components

Both the lðDcÞ and rðDcÞ measurements are of interest:
the mean dimension value is related to the values of the
computed set of dimensions corresponding to an offset-like
value over the generalized dimensions; in addition by
focusing on the deviation, as if the above offset has been
subtracted, low deviation suggests that the dimension func-
tion tends to be quite constant along the subsequent c val-
ues and vice versa. By viewing the mean value lðDcÞ (see
1st row of Fig. 6) for phoneme classes that share phonetic
characteristics we observe the formation of statistical
trends: the vowels have mean values in a specific range of
values and their deviation (see Fig. 6 2nd row) is relatively
low, compared to the one of the stops. Fricatives seem to
share larger mean value again forming a discriminable sta-
tistical pattern for the cases of strong fricatives (/s/,/z/,/sh/,
/zh/) as presented on the corresponding histogram. Taking
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a closer look, for example, at the stops we shall observe
that among them the unvoiced ones versus the voiced ones
follow two distinct trends, with the latter sharing broader
distributed average values. Next, in Fig. 7, we see these sta-
tistical measurements superimposed for phoneme types
that belong to different broad categories. Phonemes of
the same broad class, sharing similar statistical characteris-
tics, form densities that are consonant with each other; at
the same time, these trends seem to be moderately distin-
guishable in some cases among the phonemes of the differ-
ent type.

3.3.2. Lower and upper bound feature components

In the following we examine the minimum and maxi-
mum values of the generalized dimensions that represent
a practical approximation to their lower and upper bounds.
As Fig. 8a illustrates, the lower bound provides different
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forms for the cases of voiced versus unvoiced stops. The
same component, as pictured in Fig. 8b, differentiates
slightly the densities of the front voiced fricatives (/v/, /
dh/) from the corresponding unvoiced ones (/f/, /th/) or
from the strong voiced ones (e.g. /z/) assigning on average
lower values to the former. The vowels show lower values
than most of the fricatives apart from the voiced fronts.
The upper bound tends to lead to systematic forms in terms
of statistical characteristics, demonstrating, as shown in
Fig. 8c, greater values for the case of unvoiced fricatives,
smaller for the voiced ones and even smaller for the
vowels.

3.3.3. Polynomial decomposition feature components

The polynomial coefficient components of the GD fea-
ture vector are interpreted as a constant, a linear and a sec-
ond order trend, all together approximating the Dc
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function; moreover the constant term corresponds to an
approximation of the information dimension DI from the
Renyi hierarchy, i.e. the value of the dimension function
Dc for c ¼ 0. We view next measurements on the three coef-
ficients, denoted as p1;2;3. The p1 term shown in Fig. 9a
seems to form statistical trends that differ either for the
voiced non-strident fricatives (/v/, /th/) compared to either
the unvoiced fricatives or to the voiced stridents (/z/, /zh/).
Similar patterns are demonstrated in Fig. 9b among the
vowels, the voiced stops, the unvoiced stops and the frica-
tive unvoiced non-stridents or the voiced stridents. The val-
ues of the linear coefficient p2, as pictured in Fig. 9c for the
case of fricatives, show dependence on their type, for exam-
ple, the front fricatives versus the strident fricative pairs.
The p3 term tends to lead to typical forms as shown in
Fig. 9d demonstrating greater values for the unvoiced stops
showing in addition higher variance. In the case of
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fricatives, see Fig. 9e, the corresponding measurement gets
lightly grouped, in terms of statistical characteristics, in
pairs of related phonemes, such as the pair of front labials
(/f/, /v/), the alveolar pair (/s/, /z/), and the palatal pair
(/sh/, /zh/). Similar observations have been spotted among
several types of phonemes, depending on the feature com-
ponent utilized, as for instance, fricatives versus affric-
atives. However, an exhaustive enumeration of such
properties is beyond our scope, since our goal is rather to
expose indicative aspects on how the proposed measure-
ments are related to the phonetic characteristics.

3.4. Comparison of features’ statistical parameters

Finally, we present from a more macroscopic view,
issues on the relation of the features’ statistical parameters;
at the same time we inspect in a more explicit way, the
effect of phonetic characteristics on the features’ statistical
parameters. This is accomplished, in terms of the mean and
variance of the distributions of the features, as follows: We
question the normality or the log-normality on the univar-
iate feature’s phoneme distributions, employing hypothesis
tests. For the cases that the null hypothesis is not rejected
and that the realizations contained at least 100 entries,
the mean and the variance of the corresponding phoneme’s
type distribution are estimated. In practice, this is the case
for 90% of the distributions meeting the required constraint
on the amount of data, whereas 76% among them were
characterized as log-normal. The measurements are
repeated across subsets formed by the eight speaker dia-
lects of the TIMIT database, providing in this way multiple
realization data.

On a second observation layer of the same results we
superimpose in some indicative cases arrows that demon-
strate roughly the effects of the general phonetic character-
istics on the features’ statistical parameters. These effects
are observed due to a variation on a single characteristic
while each time holding others constant. Such single char-
acteristic variations refer for instance to the following: (1)
The existence of voicing or not in the excitation (dashed
lines); e.g. from /f/ to /v/ as shown in Fig. 10b corresponds
to the case of varying the voicing while all other character-
istics remain the same. (2) The manner of articulation (dot-
ted lines), as for instance the variation among a stop, a
fricative or a vowel; e.g. from /b/ to /v/ as shown in
Fig. 10d corresponds to the transition from a stop to a fric-
ative. (3) The place of articulation (full lines) such as the
variation among a front, a central or a back; e.g. from
/th/ to /f/ as shown in Fig. 10b that corresponds to the
altering of the place from dental to labiodental. In this
way one can see three types of ‘‘transitions” or ‘‘move-
ments” in terms of the statistical parameters. Such an
example is the existence of voicing that moves the parame-
ters of the unvoiced stops or the unvoiced fricatives from
right to the left in Fig. 10a; that is, showing lower mean.
Similarly, variation on the place of articulation moves
either the unvoiced stops or the front fricatives downwards,
that is, altering their variance. Another case of movement
due to the manner of articulation in the corresponding stop
and fricative phonemes is shown either in Fig. 10c or d for
the GD3 or CD5 component, respectively. In these cases we
observe translation of the statistical measurements for two
types of phonemes, from /d/ to /dh/ and from /b/ to /v/,
i.e. altering the place of articulation while holding the other
characteristics such as the voicing, or the manner of artic-
ulation the same. It seems that in many cases the variations
of the statistical parameters of single-feature components
form loose patterns due to the variation of phonetic char-
acteristics. The numerical results advocate in favor of the
previous observations. Moreover, they demonstrate some
finer details concerning the statistics of the measurements.
Indicative results are visualized in Fig. 10 by mean versus
variance plots. In these for the shake of clarity the points
that represent the multiple realizations – unless these are
less than three data points – are represented by an ellipsis.
Each ellipsis is centered on the center of mass of the data
for each phoneme type, and its two axes are constructed
according to the principal components of the underlying
data. Each graph corresponds to the statistics of a single-
feature component. Namely, the mean (Fig. 10a), the var-
iance (b), the lower bound (c) of the generalized dimen-
sions, and (d) the mean of the CD. It is shown by the
conducted analysis that: (1) similar statistical trends dem-
onstrated in the previous sections correspond to close
points in the mean-variance scatter plots; (2) the positions
of the phoneme parameters as visualized in these plots are
related to their phonetic characteristics; and (3) the param-
eters for the different phoneme types are distinguishable in
some cases with respect to the phoneme identity.

For instance, the statistics of the lower bound of the
generalized dimensions, namely the GD3 component, exhi-
bit lower mean values for voiced versus their unvoiced pho-
neme cases. The vowels show less variance than
consonants. In the case of fricatives the place of articula-
tion causes similar statistics on the variance of the GD1

component; assigning either in fricatives or in stops from
higher to lower variance on fronts and backs, respectively.
In the same graph unvoiced stops tend to concentrate on
the right upper corner, voiced ones left, front coming first,
followed by the central and back ones to its right.
4. Correlation between fractal and cepstral features

With the presented perspective, which employs the frac-
tal features, we attempt to measure information, which
cepstral-originated features might not represent in specific
cases. Towards this direction, next we shed some light on
issues concerning the linear correlation between the fractal
and MFCC features. In the following, that also indicate a
new approach perspective, firstly, we discuss qualitatively
the correlation between the features of the different type
with respect to the phoneme classes; secondly, we
reconstruct in the same context the spectral content that
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corresponds to the fractal features regarding the most and
least correlated components with the MFCC.
4.1. Correlation with respect to the phonemes

Towards the exploration of the linear correlation
between the fractal and MFCC features we employ canon-
ical correlation analysis (CCA) (Anderson, 2003); in this
way we create two bases, one for each feature set, i.e. the
MFCC and the CD fractal-related feature vectors. These
bases are developed so that their eigenvectors are ordered
from the most correlated ones, among the two feature sets,
to the least correlated ones. Next, we compute the sorted
eigenvalues for the two feature vectors with respect to the
different phoneme types separately for each speaker.

Fig. 11a and b visualizes the measurements, showing the
correlation coefficient among the two feature sets while this
varies with respect to the phoneme type. The phoneme type
is represented in sorted order, based on average values,
from the least correlated to the most correlated one. For
example, certain phoneme types hold larger on average
coefficients but show lower values in the less correlated
components, that fall sharply in the following components;
others may retain their modest correlation coefficient
across more components. Such a case is formed between
/p/ and /ih/ in Fig. 11. In general it seems that across
speakers the unvoiced fricative and stop phonemes are
ordered lower in terms of correlation, i.e. to the left of
the x-axis as shown in the graphs, than vowels. Among
the latter, the back vowels of the /i/-class are ordered once
again, lower than the others. Similar patterns, i.e. more
correlated components for some phoneme types, for exam-
ple /aa/-like vowels and less correlated components in oth-
ers such as some fricatives or unvoiced stops, are observed
across groups of different speakers.

Given the sorting according to the average correlation
coefficient of the phonemes we proceed by computing the
density with respect to the phoneme type of the phonemes
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that are ranked as 1st or 2nd lowest according to their cor-
relation across all speakers. In this experiment all speakers
of the TIMIT database are taken into account. The results,
visualized in Fig. 12, indicate that the correlation between
the two feature sets, i.e. fractals and MFCC, varies with
respect to the phoneme class; additionally this variation
seems to follow certain phoneme-wise patterns. Unvoiced
stops and fricatives are ranked as the lowest correlated, fol-
lowed by the back vowels. Moreover,from the examined
viewpoint the above implicitly supports that the proposed
features contribute non-correlated information that
depends on the phoneme type. Next, we continue on an
effort to view aspects of this correlation information by
demonstrating maximal or minimal cases in terms of the
spectral content of speech.
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4.2. Fractal features’ spectral content

Thereafter, we explore another aspect concerning the
correlated parts of information between the fractal and
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Fig. 12. Histograms in logarithmic scale for (a) 1st and (b) 2nd ranked
phonemes across all speakers; ranking is defined in terms of lowest
correlation among the included phonemes.
the MFCC features; this focuses on the spectral content
of their most and least correlated components. We employ
once again the CCA, however, in the utterance level and
independent to the phoneme type. At first, we reconstruct
the truncated spectra of an utterance, denoted by F trunc,
by utilizing the corresponding MFCC features as shown
in Fig. 13a. Next, given the ordering among the most
and least correlated components of the learned canonical
bases, we keep only the most correlated one; then, we
reconstruct the corresponding MFCC features by utilizing
the CCA learned basis of the fractal features and mapping
them back to the MFCC vector space. At this point we
reconstruct their spectra F most in order to be comparable
with the original spectra (see Fig. 13b). This comparison
shows that this mostly correlated component owes its cor-
relation mostly to the lower frequency content retaining
time relative information; in frequencies greater than
roughly 1

4
times the sampling frequency its spectral content

is flattened across time in different frequency bands; an
effect of the scalewise processing that the fractal features
undergo. Next, we repeat the above procedure, by keeping
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this time only the least correlated component of the CCA
learned fractal features’ basis. This is used to transform
the fractal features to the MFCC vector space and on their
turn to be used for the spectra reconstruction of F least pre-
sented in Fig. 13c. This experiment shows that the least cor-
related component’s spectral content is shown to lose the
time–frequency information compared to the original spec-
tra. This observation highlights that the least correlated
information between the fractal and MFCC features does
not show any structure concerning its spectral content.

Given the variation with respect to the phoneme type of
the correlated components between the fractal and the
MFCC features in Section 4.1, we have shown maximal
and minimal correlation cases on the information that
the different features share in terms of their spectral con-
tent. At the same time, the aspects examined in the above
qualitative analysis illustrate properties of the features
employed as far as the relation to well-known quantities
such as the spectrum are considered.

5. Fractal features in phoneme classification

A first set of experiments is conducted on sets of single
phonemes. This allows us to inspect the phoneme confus-
ability among the different classes; however, the phonemes
included are restricted to the union of the subsets that are
part of the specific task. Next, we restrict the set-up by con-
sidering phoneme classification in broad classes; this is real-
ized by merging phonetically proximate classes.

On the proposed analysis we require each embedded and
further processed signal to be a complete phoneme. This
implies that each phoneme shall correspond to a single-fea-
ture vector. On the other hand MFCC features are based
on short-time processing so as to account principally for
non-stationarity, suggesting frame-wise features. To
account for this heterogeneity in terms of comparison,
apart from the frame-wise MFCC baseline that exploits
dynamical information, we also compare in some cases
the results of the fractal features with a second variant of
MFCC-based baseline. The latter utilizes an average with
respect to the cepstral coefficients so as to map all frames
into one.

The speech corpus utilized is the TIMIT database
(Garofolo et al., 1993), which is accompanied by hand-
Table 1
Partitioning of phonemes into broad classes.

Type Abrv. Phonemes

Vowel Vo aa ae ah ao ax eh ih
Fricative Fr ch dh f jh s sh th
Stop St b d g k p t
Nasal Na em en m n ng
Liquid Li el hh l r w y
Front Fro ae b eh em f ih ix
Central Ce ah ao axr d dh el en
Back Ba aa ax ch g hh jh k
Voiced Voi b d dh el em en g
Unvoiced Uv ch f hh k p s sh
labeled phoneme-level transcriptions. Each signal pro-
cessed is an isolated phoneme. The training and testing sets
have been employed as are defined in the original speaker
independent setup. The classification experiments make
use of the partitioning of phonemes into broad categories.
These classes are vowels (Vo), fricatives (Fr), stops (St),
nasals (Na), liquids (Li), voiced (Voi), unvoiced (Un),
fronts (Fro), centrals (Ce) and backs (Ba); the specific pho-
nemes that each category consists of are listed in Table 1.

5.1. Single phoneme classification and confusability

At first we examine the classification efficacy of each
fractal feature among single phonemes that are contained
in a specific subset. The subsets used are unions of the sets
defined in Table 1. The acoustic modeling has been realized
using the HTK (Young et al., 2002) with 1-state Hidden
Markov Models (HMMs) for the fractal and the MFCC
features that contain each a single feature vector per pho-
neme. In detail, we next show in Fig. 14a the classification
accuracies for each one of the CD and the GD feature vec-
tors across the various scenarios that are enumerated along
the x-axis. The accuracies for each classification task
among the single phoneme classes range from 12% to
28%, depending on the set of phonemes considered. The
single phoneme classification experiment allows us to
observe the confusability within the different phoneme clas-
ses across various scenarios. This is visualized in the confu-
sion matrix shown in Fig. 14b that corresponds to the
classification task among all phonemes contained in either
one of the classes of stop or vowels. We observe that the
intra-class confusability for either the vowels or the stops
is higher than for other cases. Another confusable intra-
group is formed among the unvoiced stops; similar results
have been observed in other scenarios too. Given these
observations we proceed and take the union of phoneme
sets into broad classes that share phonetic characteristics.

5.2. Broad class phoneme classification

In a first set of experiments we focus on each single-fea-
ture vector component of the fractal features. The acoustic
modeling has been realized with 1-state HMM for the fractal
features. We next show in detail in Fig. 15a the classification
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accuracies for each one of the GD components, and in
Fig. 15b we show the corresponding accuracies for the iso-
lated CD feature vector elements. It seems that among the
fractal feature components some are more efficient in cer-
tain classification tasks than others. For instance, the con-
stant term of the polynomial decomposition (see Eq. 10),
that is the GD5 component, performs better than the linear
term of the decomposition, that is the GD6 component, in
the fricatives versus vowels scenario compared to the stops
versus vowels scenario and vice versa. Another case that
demonstrates different performance between a scenario
that is based on the discrimination given the manner of
articulation and a scenario that represents the discrimina-
tion depending on the existence of voicing or not is the case
of the CD6 and CD8 feature elements (see Eq. 7): the for-
mer component performs better in the case of the second
scenario (voicing) and vice versa. The same holds for the
GD7, GD9 pair.

In the second set of experiments we have explored the
classification efficacy of the whole feature vectors. More-
over, we have also employed for comparison the more
advanced baseline. The acoustic modeling in this case has
been realized with 1-state HMM for the fractal features
that contains a single-feature vector for each phoneme,
and 3-state HMM for the MFCC. The latter contain multi-
ple frame-wise feature vectors per phoneme and are aug-
mented by derivative and acceleration coefficients, taking
advantage of the phoneme dynamics. The various classifi-
cation scenarios highlight from a different viewpoint the
characteristics of the features relative to the phoneme clas-
ses they are called to represent.

The classification scores for the 8 experiments shown in
Table 2 indicate the capability of the proposed feature sets
to classify phonemes into broad classes; some cases such as
Voiced versus Unvoiced phonemes perform better than
Front versus Central versus Back phoneme classes. Whilst



Table 2
Classification scores (%) for broad phoneme classesa using either the
MFCC baseline features or plainly the fractal features. MFCC features are
computed framewise for each phoneme. Fractal features are correlation
dimension (CD), Generalized Dimensions (GDs). CD + GDs label stands
for the concatenation of the corresponding feature sets.

St/Fr/Vo St/Na/Fr/Vo Fro/Ce/Ba St/Na/Fr/Li/Vo

MFCC 88.83 84.87 61.18 75.05
CD 81.62 68.87 40.33 55.84
GD 84.65 69.89 43.04 58.02
CD + GD 87.29 75.35 42.98 61.54

St/Vo Fr/Vo Un/Vo Un/Voi
MFCC 93.61 93.41 93.09 83.29
CD 94.49 86.83 91.85 83.92
GD 95.20 89.97 94.79 86.62
CD + GD 96.62 92.93 97.07 89.05

a Classes are vowel (Vo), fricative (Fr), stop (St), nasal (Na), liquid (Li),
voiced (Voi), unvoiced (Un), front (Fro), central (Ce) and back (Ba).
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the fractal features alone contain 8 and 9 components per

phoneme, for the correlation dimension (CD) and general-
ized dimension (GD) features, respectively, they occasion-
ally yield comparable accuracies to the MFCC feature
vector containing 39 coefficients per frame. Apart from
the different, to a certain degree, information that the frac-
tal features carry, this fact could be also considered as an
indication of a more economic representation of the broad
phoneme types. Another issue to notice is that the general-
ized dimensions-related feature set performs better than the
correlation dimension feature set. The average perfor-
mance over the presented classification scenarios of the
GD features is 77.8%, compared to 75.5% of the CD fea-
tures, and 84.2% of the MFCC. Finally, when the CD
and GD features are combined by simple concatenation
in a single-feature vector they perform modestly better than
either cases in which they have been employed on their
own, showing average performance of 80.4%.
6. Conclusions

In this paper we present the application of speech signal
processing methods inspired by dynamical systems and
fractal theory for the analysis and characterization of
speech sounds. The steps taken consist of the embedding
procedure that constructs a multidimensional space, fol-
lowed by measurements related to the correlation dimen-
sion and generalized dimensions for the practical cases of
speech signals. Then, we utilize these measurements to
extract simple feature vectors. The analysis of the features
in terms of their statistical trends has shown them to form
statistical patterns depending on their general phonetic
characteristics. For instance distinct feature vector ele-
ments obtain on average values that are subject to charac-
teristics such as the voicing, the manner and the place of
articulation. Moreover the variation of the statistical
parameters of the features seems to follow loose-formed
patterns when we alter a single phonetic characteristic
(e.g. place of articulation). These patterns seem to be sim-
ilar in different types of phonemes, e.g. fricatives or stops.
Next, we employ a variety of classification experiments,
primarily among broad phoneme types. Both the interme-
diate statistical measurements together with the qualitative
analysis and quantitatively the classification experiments
indicate that the information carried by the extracted fea-
tures characterizes to a certain extent the different speech
sound classes. The quantitative results are comparable
occasionally with the baseline features’ classification
results; at the same time the features consist of much smal-
ler number of feature components. Another issue
addressed, which has not been considered up to now, is
the varying correlation with respect to the phoneme type
between the fractal features and the MFCC. This is
explored by means of canonical correlation analysis, and
shows lower correlation coefficients for unvoiced stops
and fricatives, or backs in the case of vowels compared
to other types of phonemes. Continuing the above, in this
light, we also examined this varying correlation informa-
tion in terms of the spectra of the most and least correlated
components. This direction concerns an aspect of the frac-
tal features’ spectral content and lets us observe a concen-
tration of the least correlated information in bands that
span the higher frequencies lacking any time-frequency
structure, whilst the most correlated components mainly
contain lower spectral content also characterized by time-
related resolution.

The specific fractal features cannot be compared with
the baseline MFCC features in terms of classification
experiments, as far as the resulting accuracy is concerned.
This raises a number of issues that someone would consider
to look into. Among the most important issues resides the
subject of fusion between the feature that carries the first
order information as considered in this work, i.e. the
MFCC, and the nonlinear features, which are considered
to carry second order information. On previous works we
have considered simple fusion approaches (Maragos and
Potamianos, 1999; Pitsikalis and Maragos, 2006). Interest-
ing research directions involve the exploitation of concepts
of adaptive fusion by uncertainty compensation (Papand-
reou et al., 2009), by modeling multiple sources of uncer-
tainty, such as measurement or model uncertainty; such
an approach has been explored for the case of audio and
visual streams for audio-visual classification. Towards this
direction, it seems that it would also be worth exploring
aspects of the correlation among the multiple features: we
think of expanding the ideas presented in Section 4 of this
paper, by use of the canonical correlation analysis so as to
take advantage of the varying correlation among the differ-
ent models. From another viewpoint it would be interesting
to consider the problem of fusion at the front-end level, by
incorporating the multiple types of information in a com-
mon algorithm: spectral information together with infor-
mation related to complexity quantification. As far as the
statistical modeling for fusion of the multiple feature cues
is concerned, state-synchronous modeling does not fit on
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the specific phoneme-level approach concerning the fractal
features. In contrast, models such as the parallel-HMM, or
other generalizations (Potamianos et al., 2004), could be
more appropriate. Finally, an interesting track for further
research includes the investigation of the relation of fractal
measurements with concepts that are more related to the
physics of speech production. Towards this direction, one
could explore the association of the proposed methods with
concepts from the area of articulatory characteristics of
speech production (Deng et al., 1997; Livescu et al., 2003).
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