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In this paper, the amplitude and frequen¢4M—-FM) modulation model and a multiband
demodulation analysis scheme are applied to formant frequency and bandwidth tracking of speech
signals. Filtering by a bank of Gabor bandpass filters is performed to isolate each speech resonance
in the signal. Next, the amplitude envelo®M) and instantaneous frequen@yM) are estimated

for each band using the energy separation algori{E8A). Short-time formant frequency and
bandwidth estimates are obtained from the instantaneous amplitude and frequency signals; two
frequency estimates are proposed and their relative merits are discussed. The short-time estimates
are used to compute the formant locations and bandwidths. Performance and computational issues
of the algorithm are discussed. Overall, multiband demodulation andlM&4\) is shown to be a

useful tool for extracting information from the speech resonances in the time—frequency plane.
© 1996 Acoustical Society of America.

PACS numbers: 43.72.Ar, 43.70.Bk

INTRODUCTION sult the energy and frequency of speech resonances may vary
with time (Maragoset al.,, 19933. Further, Ananthapad-
manabha and Fantl982 have shown that source—vocal
tract interaction gives rise to a frequency modulation com-
ponent in the resonant frequencies; ifét) is time varying
within a pitch period. Finally, as the vocal tract shape
changes during phonemic transitions, flow instabilities can
arise (Tritton, 1988. The AM—FM modulation model can
analyze such phenomen@ndirectly) by measuring the
modulations present at each speech resonance.

Formant tracking is an important speech analysis prob-

wheref £F is the “center value” of the formant frequency, . L .
(1) is the frequency modulating signal, aatt) is the time- lem since formant location is a very important cue for human
d i and machine speech recognition. In addition, formant trajec-

varying amplitude. The instantaneous formant frequency sig- . .
nal'is defined ag(t)=f.+q(t). Finally, the speech signal tories have been used successfully in both speech coding and

s(t) is modeled as the sure(t)==I_,r (t) of N such s_peech synthesis applications. _M_ost formant_tracking algo-
AM=FM signals, one for each formant. rithms are based on linear predictidcP) analysis(McCan-

To obtain the amplitude envelopa(t)| and the instan- dlgss, 1974; Duncan and Jack, 1988d encounter problems
taneous frequenci(t) signals from a speech resonam¢e), vylth nasal forn?a.nts,.spectral zeros, and bandW|dth estima-
a demodulation algorithm must be used. In addition, a filter-t'on'.These deficiencies stem from the fact that LP IS a para-
ing scheme is needed to isolate a single resonance sigal Metric m_etho_d that does not model spectral valleys; in addi-
from the speech signal before demodulation can be pefion, LP is alinear model unable to adequately model speech
formed. These two steps of speech analysis in the frameworRcoustics. One can overcome some of the deficiencies of LP
of the AM—FM modulation model were systematically intro- Py using a pole-zero model for formant trackiipyoshima
duced by Boviket al. (1993 and will henceforth be referred €t al., 1991. Other more complex formant tracking algo-
to asmultiband demodulation analysis (MDA). The repre- rithms use the extended Kalman filtédiranjan and Cox,
sentation of a speech signs(t) by the formant amplitude 1994 or hidden Markov modelg¢Kopec, 1986. Alterna-
envelope and instantaneous frequency signals is rich becauieely, we propose here a multiband demodulation approach
it reveals both the spectral structure and the excitation timingo formant tracking in the framework of the AM—FM modu-
information of different formant bands. The modulation lation model that is easy to implement and overcomes most
model can also account for nonlinear phenomena duringf the deficiencies of LP.
speech production, e.g., energy transfer among excitation In this paper, we combine the amplitude enveltpg)|
sourcés) and resonators in the vocal tract. Teager and Teaand the instantaneous frequenidy) signals of a resonance
ger (1990 presented experimental evidence of vorticity andr (t) into formant frequency and bandwidth estimates. We
unstable separated airflow during vowel production; as a repropose two short-time frequency measures for estimating
the average frequency of a speech band:ntban instanta-

9The author's current address is AT&T Bell Labs, Murray Hill, NJ 07974 Neous frequency, which has been used for_formam_ tracking
(E-mail: potam@research.att.chm by Hansonet al. (1994 and themean amplitude weighted

Motivated by several nonlinear and time-varying phe-
nomena during speech production, Maragmsl. (1991,
19933 proposed an AM—FM modulation model that repre-
sents a single speech resonanf® as a signal with a com-
bined amplitude modulatioAM ) and frequency modulation
(FM) structure

+6], (2)

r(t)=a(t)cos{27r fot+ J:q(r)dr
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instantaneous frequency, a time domain equivalent of the qf[s(t)]:[s(t)]z—s(t)s(t), (4)
first central spectral momeg€ohen and Lee, 1992Based . . .
on the weighted frequency estimate, the modulation modef{"here s=ds/dt. The ESA frequency and amplitude esti-

and a multiband filtering demodulation scheme, we proposEnates are
the multiband demodulation formant tracker. The algorithm 1 V[5(0)] V()]
produces reliable formant tracks and realistic formant band- > \/ Vs(] ), = ~|a(t)|. (5)
width estimates. In addition, it is simple, easy to implement, . VP[s(t)]
and avoids most of the drawbacks of LP-based formangimilar equations and algorithms exist in discrete tifhia-
trackers. ragoset al., 1993a, 1993b The ESA is simple, computation-
The organization of the paper is as follows. First, thea|ly efficient, and has excellent time resolution.
analysis tools of the modulation model are presented, i.e.,  An alternative way to estimata(t)| andf(t) is through
multiband filtering and demodulation. In Sec. Il, the un-the Hilbert transform demodulatighiTD), i.e., as the modu-
weighted and weighted short-time average frequency estiys and the phase derivative of the Gabor analytic signal
mates are proposed. The performance of the formant frepapoulis, 1984 In Potamianos and Maragg$994b, it is
quency estimates is evaluated for both synthetic and reahown that the HTD and the ESA produce similar results for
speech signals. The multiband formant tracking algorithm isspeech resonance demodulation, but the HTD has higher
introduced in Sec. l1l. The speech signal is analyzed througlgomputational complexity. Further, the performance of both
a bank of Gabor filters, each band is demodulated, and thge HTD and(especially the ESA is poor for a low first
formant frequency and bandwidth estimates are computefbrmant frequency. When the first formant frequency is close
for each band. Next, a decision algorithm is presented thab the fundamental frequency, the HTD provides smoother
converts the short-time estimates to raw formants and, ultiestimates for the first formant amplitude and frequency sig-

mately, to formant tracks. Finally, in Secs. IV and V perfor- nals. The HTD will be used occasionally in this paper.
mance and implementation issues are discussed.

. MULTIBAND FILTERING AND DEMODULATION Il. FORMANT FREQUENCY AND BANDWIDTH SHORT-

A speech resonance is extracted from the speech signdIME ESTIMATES
through filtering. A real Gabor bandpass filter is used for this

purpose with impulse respongét) and frequency response Simple short-time estimates for the frequenyand

bandwidthB of a formant candidate, respectively, are the

H(T), unweighted mearr, and standard deviatioB, of the in-
h(t)=exp(— a’t?)cog2mt), (2)  stantaneous frequency sigrfdt),
NCH m2(f—v)2 1 ftoJrT
=— - Fo== f(t)dt, 6
H(E )= 3o o] - T IR ©
7 (f+v)? 1 [to+T
+exp<f(T : () [BU]2=?JO (f(t)—Fy) dt, @)
to

wherew is the center frequency of the filter chosen equal toyhere t, and T are the start and duration of the analysis
the formant frequency, anda is the bandwidth parameter. frame, respectively. Alternative estimates are the first and
The effective rms bandwidth of the filter was defined bysecond weighted moments 6ft) using the squared ampli-
Gabor(1946 as Y27 times the rms bandwidth, and is equal tude [a(t)]? as weight

to a/\2m. In discrete time, the impulse response is a o+ T )
sampled and truncated version of Ef). fto f(Hla(t)]” dt
Although bandpass filters with an abrupt frequency cut- Fuw= t°”[a(t)]2 dt ®)
off are typically used in most analysis—synthesis systems, we to
find that the Gabor filter by being optimally compact and to+Try s 2, 2 2
smooth both in the time and frequency domains provides [B,]2= to L@(t)/2m)™+ (F(t) = Fy)Ta(t)7Jdt ©)
W. ’

accurate amplitude and frequency estimates in the demodu-

lation stage that follows. In Bovikt al. (1993, one can find

a detailed discussion on the advantages of Gabor wavelewghere the additional terrta(t)/2m)? in B,, accounts for the

for multiband energy demodulation. amplitude modulation contribution to the bandwidohen
The energy separation algorithm (ESA) was developed and Lee, 1992

by Maragoset al. (19933 to demodulate a speech resonance  The following example explains the behavior Bf vs

r(t) into amplitude envelopéa(t)| and instantaneous fre- F,,. Consider the sunx(t) of two sinusoids with constant

quencyf(t) signals. The ESA is based on an energy-trackingrequenciesf;=1.5 kHz andf,=1.7 kHz, and time-varying

operator invented by Teager and systematically introducedmplitudesa, (t),a,(t):

by Kaiser(1990. The energy operator tracks the energy of _

the source producing an oscillation sigsél) and is defined X(=ay(tcog2miyt]+ay(t)cog 2mf,t],

as te[0,0.] s, (10

1 Tam1? dt
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FIG. 1. Amplitude envelope and instantaneous frequencyt)f=a, (t)cos[2rf,t] +a,(t)cos[2nf,t], a,(t) =1, a,(t)=1—10t, t €[0,0.1] (sampled at 10
kHz), estimated via HTD(@), (c), and ESA(b), (d). Dotted lines in(c) are proportional to the amplitude of the sinusoids anddnproportional to the
amplitude frequency product. Short-time frequency and bandwidth estint@t€s; (O is for HTD andXx for ESA) andB, (HTD only), (f) F,, andB,, (10-ms
analysis window. Bandwidths are shown as “error bars” around the frequency estimates.

wherea, (t) =10, a,(t)=1— 10, so that for the first half of velope minima f presents spikes of valud=(a;f;

the time interval0 to 50 mg the second sinusoif}, is domi-  —a,f,)/(a;—a,); i.e., the spikes point toward the frequency
nant, while for the second halb0 to 100 mg f, dominates. of the sinusoid with the larger amplitudsee the Appendix

In Fig. 1(@—(d) we display the amplitude enveloga(t)| The ESA and HTD frequency estimates take similar values,
and the instantaneous frequenigt) of x(t) computed via yet the orientation of the instantaneous frequency spikes in
the HTD and the ESA. The “beating(in and out of phase (c), (d) is somewhat different. As discussed in the Appendix,
of the two sinusoids manifests itself clearly at the amplitudethe spikes in the ESA estimate 6fpoint toward the fre-
envelope contours shown {a), (b). At envelope maxima the quency of the sinusoid with the larger amplitude frequency
instantaneous frequency computed via the H[Bhown in  product[the turning point in(d) is where the dotted lines
(c)] is equal to the averag@mplitude weightedfrequency crosq; i.e., the spikes point toward the frequency of the si-
of the two sinusoid$ = (a,f, +a,f,)/(a;+a,), while at en-  nusoid produced by the source with the highest energy.
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FIG. 2. (a) The Fourier spectrum of a 25-ms segment of speech and the frequency response of the Gabor filter centered att) 806 Fayrier spectrum
of the Gabor bandpass filtered speéatound 1600 Hg, theF, (dashed linpandF,, estimategdashed-dotted ling(c), (d) same aga), (b) but now the Gabor
filter is centered av=1300 Hz.

The short-time estimaté, computed by the ESA and filter centered av=F =1600 Hz with effective rms band-
the HTD is shown in Fig. @); F, locks onto the sinusoid width of 440 Hz. The Fourier spectrum of the formant band
with the greater amplitudéamplitude frequency product for (Gabor filtered signalalong with the short-time frequency
the ESA. The weighted estimate,,, shown in(f), provides  estimates~, and F,, are shown in(b). Note thatF, locks
a more “natural” short-time formant frequency estimate be-onto the harmonic with the greatest amplitude in the spec-
cause the spikes of the instantaneous frequency correspotrdm, while F,, provides an “average” spectral frequency, a
to amplitude minima, and get weighted less in fhgaver- more accurate formant frequency estimate. In Fig) 2nd
age. ActuallyF,, is the mean weighted frequency of the two (d) we use a Gabor filter that is centered at 1300 Hz, 300 Hz
sinusoids, with weight the squared amplitudes. Note that theff the formant frequencyF, still locks on the harmonic
ESA short-time estimates take slightly greater values thamith the greatest amplitude in the spectrum, which is the
the HTD ones, especially wheay~a, (see explanation in major formant harmonic. The weighted estim&tg, being
the Appendix. an “average” frequency, deviates from the formant fre-

These results can be generalized to the short-time frequency by almost 200 Hz. In this case, the spikes of the
guency estimates of speech resonances by use of a sinusoid@tantaneous frequency point toward the formant and the
speech model. A speech signal can be modeled as a sum wfiweighted estimatg , is a better formant estimate th&g, .
sinusoids with slowly time-varying amplitudes and frequen-There are cases, though, where a single prominent harmonic
cies (McAulay and Quatieri, 1986 in particular, a speech does not exist “inside” the Gabor filter; there the behavior of
resonance can be modeled as a sum of a few sinusoids. The, is unpredictable and thus unstable.
behavior of theF,, F,, estimates for a speech formant can The advantages of thg, estimate are that it is compu-
then be viewed as a generalization of the two sinusoids cadationally simple, conceptually attractive, and that it con-
analyzed above. For a speech resonance sifijahas the verges faster to the formant frequency in an iterative formant
tendency to lock on the frequency with the greatest amplitracking schemésee, for example, Hansa@h al. (1994 and
tude in the formant band, whilE,, weights each frequency Sec. IV]. The weighted frequency estimdtg, provides more
in the formant band with its squared amplitude. accurate formant frequencies and is more robust for low en-

In Fig. 2(a), we show the Fourier spectrum of a 25-ms ergy or noisy frequency bands.
speech segment and the frequency response of the Gabor Similarly, the B,, bandwidth estimates is more robust
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than theB, estimate. For example, in Fig(d) and(e) we  (high concentration of frequency estimatesa similar way
display B, andB,, (computed via the HTDfor the sum of  that high Fourier amplitudes outline the formant tracks at the
two sinusoids of Eq.(lO)_. The bar_ldwidths are shown as speech spectrogram of Fig(b3. We refer to the time—
“error bars” around_thelr respective frequen(_:y estimatesfrequency representation of Fig(c3 as thespeech pykno-
Note that forgl§ a, (i.e., when there is not a single promi- gram [“pyknogram” stems from the Greek word “pykno”
nelnt harAr\nonlc; '3 kt)h? spec_trt)tnhBu takefs unnattugally(/j Ia_L(;?he (mvkvos=densg. The pyknogram displays clearly the for-
values. As noted be ovB,, is the rms ormant bandwidin. -, ¢ positiongand bandwidthsand possibly the location of
Henceforth,B,, is used as the formant bandwidth estimate. . L.
. - - the spectral zeroglow density areds Note that a similar
The (squared amplitudewveighted estimateB,, andB,, . . .
EHme—frequency representation has been proposed by Fried-

are time domain equivalents of the first and second centr. .
spectral moments of the sign@lille, 1948: Mandel, 1974; man (1985, where for each frequency band the instanta-

Cohen and Lee, 1992; Potamianos and Maragos, 199401€0US frequency signal is computed, smoothed in the fre-

This explains why the weighted estimates are more robugiuency and time domains and displayed versus time.

than the unweighted ones. It also offers an alternative way of  In Fig. 4, we show the frequendy,(»,ts) and band-

computing theF,, andB,, estimates in the frequency domain width B,,(»,t,) estimates versus the center frequency of the

(see Sec. ¥ Note that sinceB,, equals the second spectral Gabor filtersv, for a single analysis frame centeredtat

moment,B,, is by definition the rms bandwidth of the signal. Note that the speech resonances in the Fourier spectrum ap-
Overall, the HTD and the ESA provide similar fre- proximately correspond to points where the Gabor filter cen-

quency and bandwidth short-time e_stimates, While_ the ESAgr frequencyr and the short-time frequency estimg(v)

has smaller computational complexity and better time resoz equal, i.e.F,(»)=v. These are points where the solid

lution (Potamianos and Maragos, 1994Bccording to the l ; .
ine (frequency estimajemeets the dotted on@abor filter
ESA error bounds formulated by Maragetsal. (19934 the center frequendy In addition, we have observed that band-

performance of the ESA deteriorates as the carrier frequenc\x. L L
(formany approaches the modulation frequer{@yndamen- idth B,,(v) minima also indicate the presence of formants.
A simple way to define raw formant estimates is as the

tal). Thus for frequency bands centered close to the funda- ] ’
mental frequency the HTD can produce smoother estimatd§eduencies where the Gabor filter center frequenapd the
than the ESA, when a careful and computationally expensivéhort-time  frequency  estimater,(v) are equal, i.e.,
implementation is used for the discrete-time HTD. In prac-{v:F,(¥)=1}. Yet, we have observed from synthetic and real
tice, for frequency bands in the 0- to 500-Hz range, the shortspeech experiments that for a *“weak” formant the
time frequency andespecially bandwidth estimateB,, are  {v:F,(v)=1} estimate is biased toward the frequency of a
more accurate when computed by the HTD than the ESA. Iheighboring “strong” formant. As a result the second and
accurate formant bandwidth estimates are needed in this lovrigher formant tracks may be inaccurate, especially when the

frequency range the HTD should be used for demodulationseparation of two formant tracks is small. More accurate for-
otherwise the ESA should be used for computational effiynant estimates are obtained from the valueFgf) at in-

ciency. flection points, wheresF,(v)/37=0. Inflection points of

F..(v) correspond to dense regions of the pyknogram because

lIl. MULTIBAND DEMODULATION EORMANT the sIopeﬁFWv/av|,,O, measuring the concentration of fre-
TRACKING ALGORITHM guency estimates aroung, has minima there. For best re-

sults a hybrid raw formant decision is us¢d:F,(v)=v} for

Next, a parallel multiband filtering and demodulation L2
o -~ p<500 Hz and{F,(v):#°F,,(v)/3*=0} for v>500 Hz.
heme for f t track d. Th h signai w w
scheme for formant tracking is propose e speech signal For the raw formant aE.,(v;) the slope ofF,,(1) at ;.

is filtered through a bank of Gabor bandpass filters, uni- : .
formly spaced in frequency witttypical) effective rms Ga- (9F\,\,(v)/(9v|y0 determines the prominence of the formant
bor filter bandwidth of 400 Hz. The amplitude envelope candidate. As the slopéF,(v)/dv|,, approaches zero, the
|a(t)| and instantaneous frequentit) signals are estimated short-time frequency estimaté,, () becomes almost con-
for each Gabor filter output. Short-time frequeriey(t,»)  stant for bands around,, a sign that a “strong” formant
and bandwidttB,,(t,») estimates are obtained from the in- heak exists in the vicinity. Clearly the slope for a legitimate
stantaneous amplitude and frequency sigiigiss. (8) and  fomant candidate ranges from zefmost probable candi-
(9] for each speech frame located around tinagd for each date to one(least probable candidateOne may either use

Gabor filter centered at frequenay The time—frequency JF,(v)/dv as a weight in the formant tracking decision algo-

distributionsF(t,v), B,,(t,») have time resolution equal to . . .

the step of th(vev short-ti\rﬂll1e windo@ypically 10 m3 and fre- rithm or a thresholc{typlcally 0.6 t0.0.8 can be imposed on

quency resolution equal to the center frequency difference df'® SloPe. In this paper, we have implemented the latter ap-

two adjacent filterstypically 50 H. proach with good results; i.e., only formant candidates with
In Fig. 3(c), we plot the value of the short-time fre- slopes below 0.7 are selected as raw formants. The former

quency estimateB,,(t,v) for every frequency band centered approach, although more complicated, is attractive and

at frequencyw versus timet for the sentence ifg). Note that ~ should be investigated in the future.

they axis in Fig. 3c) represents the range Bf, . In (c), the In brief, for a speech analysis frame centered at time

formants tracks are denoted as regions of high plot densitthe raw formants RF are obtained from the time—frequency

3799 J. Acoust. Soc. Am., Vol. 99, No. 6, June 1996 A. Potamianos and P. Maragos: Speech formant tracking 3799



2000
1500
1000

500

—500

SPEECH SIGNAL

—1000

—1500

—2000

—2500 *
(o}

4000
3500

3000

FREQUENCY (Hz)
= NN
g 9 @
@ © 9
& o &

1000

500

.
4000FE SR
=

=0
T

MEAN FREQUENCY (Hz)

3
TIME (msec) {a)

1
TIME (sec) (c)

FIG. 3. (a) Speech signal: “Show me nonstop from Dallas to Atlan{é)’wideband spectrogram aitd) pyknogram, i.e., the short-time frequency estimates
F.(t,v) for the output of 80 Gabor filters spannimg-200 to 4200 Hz displayed versus tirtenalysis frame update is 12.5 ms

distributionF,,(t,v) as follows:

IFw(v)
RF1=[V:(FW(V)=V) and 0

<0.7)

and (v< 500)] ,
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whereU denotes set union. IV. PERFORMANCE AND COMPARISONS
In Fig. 5@a), we display the raw formant estimates for
the sentence of Fig.(8). A three-point binomial smoother is The multiband demodulation analysisDA) formant

applied onF,(t,v) in the time domain before the raw for- tracking algorithm was tested on synthetic speech signals
mant estimates are computed. In Figc)8he formant tracks produced by a cascade formant synthesizer. An example is
(frequency and bandwidthare shown superimposed on the displayed in Fig. 6. Speech was synthesized using the tracks
speech spectrogram. Formant bandwidths are obtained froshown as dotted lines in Fig(l§. The formant trajectories
the B,, estimate. Note thaB,, is an estimate of the rms were designed by hanghonsense utterancand their 3-dB
formant bandwidth. bandwidths were constant throughout the synthetic utterance
The decision algorithm used to convert raw formants togt 60, 70, and 80 Hz for the three formants. The MDA raw
formant tracks is similar to linear predictidhP) based for-  formant estimates are shown in Figapand the resulting
mant tracking algorithmgMcCandless, 1974 Special care  formant tracks are shown ét) as solid lines. The algorithm
is taken for nasals sounds where a “nasal formant” betweem o qyced good formant estimates and was able to accurately
the first and second formant is allowed to be “born” and to,. .\ rapidly evolving formant tracks and weak formants.

die.” The decision algorithm consists of.three steps. First, o ant merging occurred for frequency separation less than
we search for anchor formant segments, i.e., segments whei7

the formants tracks are well separated in frequency and we %prommately 150 Hz, as shown for the second and third

defined. Next, the formant tracks between anchor segmen gacks In Fig. €0). In this case, increased frequency discrimi-

are filled using continuity constraints. Finally, we determine"aton can be obtained by decreasing the bandwidths of the

if a nasal formant is present between the first and the secorf&ters in the filterbank. The f_o_rmant bandvyldth estlma_tes

formant tracks. The decision algorithm is kept simple sinceVere aiso accurate. An empirically determined bandwidth

the number of spurious raw formants is very small. In gen_(?orrectlon factor was applied in regions where formant varia-
eral, the choice of a decision algorithm depends on the agions were greater than 100 Hz/10 ms to compensate for
plication. In our case, the formant tracks are used for vocodoverestimated bandwidth values.

ing so the decision algorithm is tuned to guarantee  Overall, the MDA produced accurate formant frequency

continuous formant tracks. Alternative formant decision al-and bandwidth estimates for synthetic speech. The formant
gorithms based on evaluating all possible combinations oestimates were more accurate for lower than for higher fun-
raw formants to formant tracks can be found in the literaturedamental frequency values. In general, when the fundamen-
e.g., hidden Markov model decodingfopec, 1986 or a tal frequency is comparable to the bandwidth of the Gabor
functional minimization approactiaprie and Berger, 1994 filter, only a single speech harmonic “falls inside” the filter
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FIG. 5. MDA formant tracking on the speech signal of Fi¢g)3(a) Raw formant estimatesb) formant tracks: frequency and bandwidthe bandwidth is
equal to the length of the “error bar” centered at the formant frequgranyd (c) formant tracks superimposed on the speech spectrogram.

and the MDA tracks the most prominent harmonic in thehigh-pitched speakers should be considered carefully.
formant band instead of the formant frequency. In this case, Next the formant tracking algorithm was tested on clean
the bandwidth estimates are also noisy. For high-pitchednd on telephone speech from the TIMIT and NTIMIT data-
speech more accurate formant tracks can be obtained by itases, respectively, with good results. The quality of the for-
creasing the bandwidth of the Gabor filters. In general, whemant tracks was determined by superimposing the estimated
choosing the filter bandwidth the trade-off between increasefbrmant trajectories on the speech spectrogram. The formant
frequency discrimination and accurate formant estimates foirequency and bandwidth estimates were accurate in all cases
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FIG. 6. MDA formant tracking on synthetic speed¢h) Raw formant estimategb) Formant tracks: compute@olid line) versus actua(dotted ling.

except for high-pitched female speakers. Further, the perfofformant tracker sometimes produces an extra low-frequency
mance of the algorithm on telephone speech sentencdsrman) there are some important differences over small
(NTIMIT) was good. The estimated formant tracks werescales. LP produces a number of spurious formants that may
similar to the ones obtained from the corresponding high€confuse the formant decision algorithm. Also, the LP raw
quality TIMIT sentences. Problems occurred for the thirdformants estimates are noisy, especially for weak and/or
formant track when it exceeded 2500 Hz due to the bandpagsgher formants. Finally, ir{b) the LP bandwidth estimates
filtering effects of the telephone channel. Also, weak formani{shown as “error bars,” scaled up four timeare inaccurate
tracks were sometimes inaccurate or lost due to noise. Oveand very noisy. Overall, the MDA formant tracking algo-
all, the MDA formant tracking performed well for both clean rithm has the attractive features of being conceptually simple
and telephone speech. and easy to implement in parallel. It behaves well in the
Most formant tracking algorithms are based on a shortpresence of nasalizatidby tracking an extra nasal formant
time linear prediction(LP) analysis. LP is a parametric provides good formant bandwidth estimates, and produces
method that computes a predetermined number of formantery few spurious raw formants. Currently, the MDA for-
estimates, independent of the actual number of spectral peaksant tracker is being integrated into tA—FM modulation
in the spectrum. In addition, the formant frequency accuracyocoder (Potamianos and Maragos, 1994a
is affected by the preemphasis and the harmonic structure of An iterative demodulation algorithm for formant track-
the spectrum, and the formant bandwidth estimates are unr@g has been proposed by Hanseiral. (1994. Initial for-
alistic. Finally, LP-based formant trackers encounter probmant estimates are refined through an iterative scheme: A
lems with nasals and nasalized vowels. The multiband deGSabor bandpass filter is centered at the initial formant esti-
modulation approach overcomes most of these problems. Imate; the speech resonance is extracted through filtering, de-
Fig. 7, we display the LP raw formant frequency and band-modulated, and the short-time average frequefngys com-
width estimates for comparison with the MDA estimates inputed. At the next iteration the Gabor filter center frequency
Fig. 5. Although the long-term formant trajectory shapesis set to the formant estimakg, . The algorithm converges to
look similar (except for nasalized speech, where the MDAa formant wherf, does not change significantly from itera-
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FIG. 7. LP raw formant frequencfg) and bandwidti{shown

as “error bars,” scaled up four time®) estimates for the speech signal shown in Fig);3

LP analysis order is 12, preemphasis is 0.5, window size is 25 ms updated every 12.5 ms.

tion to iteration. For the iterative ESA the, frequency es-
timate is preferred ovef,, because the use &, increases

ear. In Hansoret al. (1994, the performance of the iterative
ESA formant tracker has improved by using constant-Q fil-

substantially the convergence speed to a formant. Overalters.

the MDA produces better formant estimates than the iterative
ESA especially in regions when the separation between folyersus the weightedr

As discussed in Sec. Il, the choice of the unweightgd
w frequency estimates is the choice

mant tracks is small. This is due to the improved raw for-petween “fast convergence” to a formant and robust raw

mant decision algorithm of the MDA. A modifi

ESA algorithm that uses gradient descent to

minima of JF ,(v)/dv could significantly improve the accu-
racy of the formant tracks produced by the iterative ESA.

V. DISCUSSION

The multiband demodulation formant trac

ified iterative formant estimates. In general, for the MDA formant tracking
reach the locgjgorithm we prefer to use the more reliable weighted esti-
mateF,,. When the frequency axis is poorly samplée.,
when only a few Gabor filters are ugedhough,F, can
produce better results than,, sinceF, provides good for-
mant estimates even when the Gabor filter is not centered
exactly on the formant frequency.

We mentioned in Sec. Il, that tHe, andB,, estimates
king algorithm are equivalent to the first and second spectral moments that

uses a bank of uniformly spaced Gabor filters. Alternatively,can be computed in the frequency domain via the fast Fou-

for a small additional computational cost, a
(constant-Q filterbankcan be used. Increasing

Gabor wavelerier transform(FFT). This results in significant computa-
the spacing oftional savings since the Gabor filtering can be implemented

the bandpass filters with frequency decreases the frequendy multiplication in the frequency domain and no demodu-

discrimination for higher formants. This is co
the formant frequency perceptual resolutigim
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mpatible with lation is needed. Th&,, andB,, estimates computed in the
ens of the  frequency domain take similar values to their time domain
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equivalents when adequately “long” FFT implementation tioned far from the formant or for increased convergence
are used. A 1024-point FFT gives good results for samplingpeed in an iterative formant tracking scheme.
frequency at 16 kHz and a short-time analysis window of 20  Overall, the multiband demodulation formant tracker
ms. From our simulations on synthetic speech, though, weroduced very promising results which suggests that the
have observed that the time domain implementation is ablAM—-FM modulation model and the energy demodulation
to better resolve “weak” formant regions. In addition, when algorithms are a useful modeling approach for speech analy-
using the time domain implementation, one may enhance thsis.
time resolution of the formant tracks at a small computa-
tional cost by simply decreasing the size of the short-time
averaging window in a second pass of the algorithm. ACKNOWLEDGMENT

Next we propose an alternative formant decision algo- ) ) )
rithm that applies image processing techniques directly on ~ This work was supported by the U.S. National Science
the speech pyknogram. The information in the pyknogranf-oundation under Grant No. MIP-9396301.
can be mathematically represented as a two-dimensional set
in the time—frequency plane. As seen from Figc)3the
formant tracks manifest themselves as relatively thin ancAPPENDIX
elongated geometrical structures. Formant tracking can be

erformed on the pvknoaram by cleaning these dense re- Consider the sum of two or more sinusoids with time-
P PyKnog y 9 varying amplitudesa,(t) and constant frequencieds, (the

gions from the surrounding clutter and thining them down toanalysis that follows also holds for an additional Slow-

a single point at each time instant. Such a geometrical anal)(?arying phase modulation term, i.e., for a sum of amplitude
sis of the pyknogram can be rigorously quantified using the SV

concepts and operations of mathematical morphology. Thiglnd frequency modulated sinusoids
is a powerful set-theoretic methodology for image analysis
that can quantify the shape, size, and other geometrical as-

pects of image objects; it has found many applications in ) ) )
image processing and nonlinear filterit®grra, 1982; Mara- ASSuming that the bandwidth of(t) is much smaller than

gos and Schafer, 1990As a continuation of the work in this the mean carrier frequendmean off,), the quadrature error
paper, we plan to apply algorithms from morphological im- Wil be sma!l (Nuttall, 1992 and the Gabor analytic signal
age analysis for cleaning, segmentation, and thining of th&(t) of x(t) is
formant tracks in the pyknogram.

Finally, one could possibly use multiband demodulation 2(t)~ 2 ag(texdj(2mft+6,)]. (A2)
for spectral zero tracking. In Fig.(®, zeros sometimes "
manifest themselves as areas of low plot denéitg., for The HTD estimates for the amplitude enveloét)| and
nasalized sounds an antiformant can be observed betweé#tstantaneous frequenci(t) are [assuming thata,(t) is
the second and the third formant tracklore work is under- ~ slowly varying compared to cosg t)]
way for ant_iformant tracking using the multiband demodula- la(t)|=|z(t)| = (S k an(Da(t)cog 27(f,— F)t+ (6,
tion analysis(MDA). '

X(t)=>, ay(t)cog 2mf t+6,]. (A1)

—00D", (A3)
VI. CONCLUSIONS

d

In this paper, we have presented a collection of ideas ()= g £2()=(En faan(Dar(t)cog2a(f,—fit
and algorithms for estimating the speech formant parameters
and for tracking their evolution in time. The formant tracking +(6,— B [a(t) 1% (Ad)
algorithm was presenteq in the the framewor.k of theg; the case of two sinusoidwie setd,=6,=
AM-FM speech modulation model and the main speechty)
analysis tool used was multiband filtering followed by de-
modulation(MDA). We have shown that the proposed MDA~ |a(t)|=(a%+a3+2a;a, co§Aw t])*? (A5)
formant tracking algorithm produces good formant fre- P 2
guency and bandwidth estimates for synthetic, clean and () =(@f1+astr+aas(fi+ fo)coddw a1,

; ; (A6)

telephone speech, while overcoming most of the drawbacks
of LP-based formant trackers. In addition, we demonstratetvhere Aw=2m(f,—f,). At envelope maxima and minima
that the MDA approach is a powerful speech analysis toolCOS[Aw t]=+*1) [a| andf take the values
that produces rich time—frequency representations such as
the speech pyknogram. Further, in this paper, we have com- |a|=|a;*a,|, f
pared the unweighted mean and tfteguared amplitude
weighted mean of the instantaneous frequency for formarthus at envelope minimé presents spikes pointing toward
frequency estimation. We concluded that the weighted estithe frequency of the sinusoid with the larger amplituge
mate provides in general more reliable and accurate formarrom Eqs.(A5) and(A6) the short-time frequency estimates
locations. The unweighted mean is preferred when the filteF, and F,, defined in Egs.(8) and (9) are approximately
(used for extracting the formant from the spectjumposi- equal to(depending on the analysis frame boundaries

0 for simplic-

a,fi*xa,f,
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