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In this paper, the amplitude and frequency�AM–FM� modulation model and a multiband
demodulation analysis scheme are applied to formant frequency and bandwidth tracking of speech
signals. Filtering by a bank of Gabor bandpass filters is performed to isolate each speech resonance
in the signal. Next, the amplitude envelope�AM � and instantaneous frequency�FM� are estimated
for each band using the energy separation algorithm�ESA�. Short-time formant frequency and
bandwidth estimates are obtained from the instantaneous amplitude and frequency signals; two
frequency estimates are proposed and their relative merits are discussed. The short-time estimates
are used to compute the formant locations and bandwidths. Performance and computational issues
of the algorithm are discussed. Overall, multiband demodulation analysis�MDA � is shown to be a
useful tool for extracting information from the speech resonances in the time–frequency plane.
© 1996 Acoustical Society of America.

PACS numbers: 43.72.Ar, 43.70.Bk

INTRODUCTION

Motivated by several nonlinear and time-varying phe-
nomena during speech production, Maragoset al. �1991,
1993a� proposed an AM–FM modulation model that repre-
sents a single speech resonancer(t) as a signal with a com-
bined amplitude modulation�AM � and frequency modulation
�FM� structure

r� t ��a� t �cos�2�� f ct��
0

t

q���d� � ��� , �1�

wheref c�F is the ‘‘center value’’ of the formant frequency,
q(t) is the frequency modulating signal, anda(t) is the time-
varying amplitude. The instantaneous formant frequency sig-
nal is defined asf (t)� f c�q(t). Finally, the speech signal
s(t) is modeled as the sums(t)��k�1

N rk(t) of N such
AM–FM signals, one for each formant.

To obtain the amplitude envelope�a(t)� and the instan-
taneous frequencyf (t) signals from a speech resonancer(t),
a demodulation algorithm must be used. In addition, a filter-
ing scheme is needed to isolate a single resonance signalr(t)
from the speech signal before demodulation can be per-
formed. These two steps of speech analysis in the framework
of the AM–FM modulation model were systematically intro-
duced by Boviket al. �1993� and will henceforth be referred
to as multiband demodulation analysis �MDA �. The repre-
sentation of a speech signals(t) by the formant amplitude
envelope and instantaneous frequency signals is rich because
it reveals both the spectral structure and the excitation timing
information of different formant bands. The modulation
model can also account for nonlinear phenomena during
speech production, e.g., energy transfer among excitation
source�s� and resonators in the vocal tract. Teager and Tea-
ger �1990� presented experimental evidence of vorticity and
unstable separated airflow during vowel production; as a re-

sult the energy and frequency of speech resonances may vary
with time �Maragos et al., 1993a�. Further, Ananthapad-
manabha and Fant�1982� have shown that source–vocal
tract interaction gives rise to a frequency modulation com-
ponent in the resonant frequencies; i.e.,f (t) is time varying
within a pitch period. Finally, as the vocal tract shape
changes during phonemic transitions, flow instabilities can
arise �Tritton, 1988�. The AM–FM modulation model can
analyze such phenomena�indirectly� by measuring the
modulations present at each speech resonance.

Formant tracking is an important speech analysis prob-
lem since formant location is a very important cue for human
and machine speech recognition. In addition, formant trajec-
tories have been used successfully in both speech coding and
speech synthesis applications. Most formant tracking algo-
rithms are based on linear prediction�LP� analysis�McCan-
dless, 1974; Duncan and Jack, 1988� and encounter problems
with nasal formants, spectral zeros, and bandwidth estima-
tion. These deficiencies stem from the fact that LP is a para-
metric method that does not model spectral valleys; in addi-
tion, LP is a linear model unable to adequately model speech
acoustics. One can overcome some of the deficiencies of LP
by using a pole-zero model for formant tracking�Toyoshima
et al., 1991�. Other more complex formant tracking algo-
rithms use the extended Kalman filter�Niranjan and Cox,
1994� or hidden Markov models�Kopec, 1986�. Alterna-
tively, we propose here a multiband demodulation approach
to formant tracking in the framework of the AM–FM modu-
lation model that is easy to implement and overcomes most
of the deficiencies of LP.

In this paper, we combine the amplitude envelope�a(t)�
and the instantaneous frequencyf (t) signals of a resonance
r(t) into formant frequency and bandwidth estimates. We
propose two short-time frequency measures for estimating
the average frequency of a speech band: themean instanta-
neous frequency, which has been used for formant tracking
by Hansonet al. �1994� and themean amplitude weighted
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instantaneous frequency, a time domain equivalent of the
first central spectral moment�Cohen and Lee, 1992�. Based
on the weighted frequency estimate, the modulation model,
and a multiband filtering demodulation scheme, we propose
the multiband demodulation formant tracker. The algorithm
produces reliable formant tracks and realistic formant band-
width estimates. In addition, it is simple, easy to implement,
and avoids most of the drawbacks of LP-based formant
trackers.

The organization of the paper is as follows. First, the
analysis tools of the modulation model are presented, i.e.,
multiband filtering and demodulation. In Sec. II, the un-
weighted and weighted short-time average frequency esti-
mates are proposed. The performance of the formant fre-
quency estimates is evaluated for both synthetic and real
speech signals. The multiband formant tracking algorithm is
introduced in Sec. III. The speech signal is analyzed through
a bank of Gabor filters, each band is demodulated, and the
formant frequency and bandwidth estimates are computed
for each band. Next, a decision algorithm is presented that
converts the short-time estimates to raw formants and, ulti-
mately, to formant tracks. Finally, in Secs. IV and V perfor-
mance and implementation issues are discussed.

I. MULTIBAND FILTERING AND DEMODULATION

A speech resonance is extracted from the speech signal
through filtering. A real Gabor bandpass filter is used for this
purpose with impulse responseh(t) and frequency response
H( f ),

h� t ��exp���2t2�cos�2��t �, �2�

H� f ��
��

2� �exp� �
�2� f ���2

�2 �
�exp� �

�2� f ���2

�2 � � , �3�

where� is the center frequency of the filter chosen equal to
the formant frequencyF, and� is the bandwidth parameter.
The effective rms bandwidth of the filter was defined by
Gabor�1946� as�2� times the rms bandwidth, and is equal
to �/�2�. In discrete time, the impulse response is a
sampled and truncated version of Eq.�2�.

Although bandpass filters with an abrupt frequency cut-
off are typically used in most analysis–synthesis systems, we
find that the Gabor filter by being optimally compact and
smooth both in the time and frequency domains provides
accurate amplitude and frequency estimates in the demodu-
lation stage that follows. In Boviket al. �1993�, one can find
a detailed discussion on the advantages of Gabor wavelets
for multiband energy demodulation.

The energy separation algorithm �ESA� was developed
by Maragoset al. �1993a� to demodulate a speech resonance
r(t) into amplitude envelope�a(t)� and instantaneous fre-
quencyf (t) signals. The ESA is based on an energy-tracking
operator invented by Teager and systematically introduced
by Kaiser�1990�. The energy operator tracks the energy of
the source producing an oscillation signals(t) and is defined
as

	
s� t ���
 ṡ� t ��2�s� t � s̈� t �, �4�

where ṡ�ds/dt. The ESA frequency and amplitude esti-
mates are

1

2�
�	
 ṡ� t ��

	
s� t ��
� f � t �,

	
s� t ��

�	
 ṡ� t ��
��a� t ��. �5�

Similar equations and algorithms exist in discrete time�Ma-
ragoset al., 1993a, 1993b�. The ESA is simple, computation-
ally efficient, and has excellent time resolution.

An alternative way to estimate�a(t)� and f (t) is through
the Hilbert transform demodulation�HTD�, i.e., as the modu-
lus and the phase derivative of the Gabor analytic signal
�Papoulis, 1984�. In Potamianos and Maragos�1994b�, it is
shown that the HTD and the ESA produce similar results for
speech resonance demodulation, but the HTD has higher
computational complexity. Further, the performance of both
the HTD and�especially� the ESA is poor for a low first
formant frequency. When the first formant frequency is close
to the fundamental frequency, the HTD provides smoother
estimates for the first formant amplitude and frequency sig-
nals. The HTD will be used occasionally in this paper.

II. FORMANT FREQUENCY AND BANDWIDTH SHORT-
TIME ESTIMATES

Simple short-time estimates for the frequencyF and
bandwidthB of a formant candidate, respectively, are the
unweighted meanFu and standard deviationBu of the in-
stantaneous frequency signalf (t),

Fu�
1

T �
t0

t0�T

f � t �dt, �6�


Bu�2�
1

T �
t0

t0�T

„f � t ��Fu…2 dt, �7�

where t0 and T are the start and duration of the analysis
frame, respectively. Alternative estimates are the first and
second weighted moments off (t) using the squared ampli-
tude [a(t)] 2 as weight

Fw�

 t0

t0�T f � t �
a� t ��2 dt


 t0

t0�T

a� t ��2 dt

, �8�


Bw�2�

 t0

t0�T†„ȧ� t �/2�…2�„f � t ��Fw…2
a� t ��2‡dt


 t0

t0�T

a� t ��2 dt

, �9�

where the additional term„ȧ(t)/2�…2 in Bw accounts for the
amplitude modulation contribution to the bandwidth�Cohen
and Lee, 1992�.

The following example explains the behavior ofFu vs
Fw . Consider the sumx(t) of two sinusoids with constant
frequenciesf 1�1.5 kHz andf 2�1.7 kHz, and time-varying
amplitudesa1(t),a2(t):

x� t ��a1� t �cos
2� f 1t��a2� t �cos
2� f 2t�,

t�
0,0.1� s, �10�
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wherea1(t)�10t, a2(t)�1�10t, so that for the first half of
the time interval�0 to 50 ms� the second sinusoidf 2 is domi-
nant, while for the second half�50 to 100 ms� f 1 dominates.
In Fig. 1�a�–�d� we display the amplitude envelope�a(t)�
and the instantaneous frequencyf (t) of x(t) computed via
the HTD and the ESA. The ‘‘beating’’�in and out of phase�
of the two sinusoids manifests itself clearly at the amplitude
envelope contours shown in�a�, �b�. At envelope maxima the
instantaneous frequency computed via the HTD
shown in
�c�� is equal to the average�amplitude weighted� frequency
of the two sinusoidsf �(a1f 1�a2f 2)/(a1�a2), while at en-

velope minima f presents spikes of valuef �(a1f 1
�a2f 2)/(a1�a2); i.e., the spikes point toward the frequency
of the sinusoid with the larger amplitude�see the Appendix�.
The ESA and HTD frequency estimates take similar values,
yet the orientation of the instantaneous frequency spikes in
�c�, �d� is somewhat different. As discussed in the Appendix,
the spikes in the ESA estimate off point toward the fre-
quency of the sinusoid with the larger amplitude frequency
product 
the turning point in�d� is where the dotted lines
cross�; i.e., the spikes point toward the frequency of the si-
nusoid produced by the source with the highest energy.

FIG. 1. Amplitude envelope and instantaneous frequency ofx(t)�a1(t)cos[2� f 1t] �a2(t)cos[2� f 2t], a1(t)�10t, a2(t)�1�10t, t�
0,0.1� �sampled at 10
kHz�, estimated via HTD�a�, �c�, and ESA�b�, �d�. Dotted lines in�c� are proportional to the amplitude of the sinusoids and in�d� proportional to the
amplitude frequency product. Short-time frequency and bandwidth estimates:�e� Fu �� is for HTD and� for ESA� andBu �HTD only�, �f� Fw andBw �10-ms
analysis window�. Bandwidths are shown as ‘‘error bars’’ around the frequency estimates.
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The short-time estimateFu computed by the ESA and
the HTD is shown in Fig. 1�e�; Fu locks onto the sinusoid
with the greater amplitude�amplitude frequency product for
the ESA�. The weighted estimateFw , shown in�f�, provides
a more ‘‘natural’’ short-time formant frequency estimate be-
cause the spikes of the instantaneous frequency correspond
to amplitude minima, and get weighted less in theFw aver-
age. Actually,Fw is the mean weighted frequency of the two
sinusoids, with weight the squared amplitudes. Note that the
ESA short-time estimates take slightly greater values than
the HTD ones, especially whena1�a2 �see explanation in
the Appendix�.

These results can be generalized to the short-time fre-
quency estimates of speech resonances by use of a sinusoidal
speech model. A speech signal can be modeled as a sum of
sinusoids with slowly time-varying amplitudes and frequen-
cies �McAulay and Quatieri, 1986�; in particular, a speech
resonance can be modeled as a sum of a few sinusoids. The
behavior of theFu , Fw estimates for a speech formant can
then be viewed as a generalization of the two sinusoids case
analyzed above. For a speech resonance signal,Fu has the
tendency to lock on the frequency with the greatest ampli-
tude in the formant band, whileFw weights each frequency
in the formant band with its squared amplitude.

In Fig. 2�a�, we show the Fourier spectrum of a 25-ms
speech segment and the frequency response of the Gabor

filter centered at��F�1600 Hz with effective rms band-
width of 440 Hz. The Fourier spectrum of the formant band
�Gabor filtered signal� along with the short-time frequency
estimatesFu and Fw are shown in�b�. Note thatFu locks
onto the harmonic with the greatest amplitude in the spec-
trum, while Fw provides an ‘‘average’’ spectral frequency, a
more accurate formant frequency estimate. In Fig. 2�c� and
�d� we use a Gabor filter that is centered at 1300 Hz, 300 Hz
off the formant frequency.Fu still locks on the harmonic
with the greatest amplitude in the spectrum, which is the
major formant harmonic. The weighted estimateFw , being
an ‘‘average’’ frequency, deviates from the formant fre-
quency by almost 200 Hz. In this case, the spikes of the
instantaneous frequency point toward the formant and the
unweighted estimateFu is a better formant estimate thanFw .
There are cases, though, where a single prominent harmonic
does not exist ‘‘inside’’ the Gabor filter; there the behavior of
Fu is unpredictable and thus unstable.

The advantages of theFu estimate are that it is compu-
tationally simple, conceptually attractive, and that it con-
verges faster to the formant frequency in an iterative formant
tracking scheme
see, for example, Hansonet al. �1994� and
Sec. IV�. The weighted frequency estimateFw provides more
accurate formant frequencies and is more robust for low en-
ergy or noisy frequency bands.

Similarly, the Bw bandwidth estimates is more robust

FIG. 2. �a� The Fourier spectrum of a 25-ms segment of speech and the frequency response of the Gabor filter centered at 1600 Hz,�b� the Fourier spectrum
of the Gabor bandpass filtered speech�around 1600 Hz�; theFu �dashed line� andFw estimates�dashed-dotted line�, �c�, �d� same as�a�, �b� but now the Gabor
filter is centered at��1300 Hz.
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than theBu estimate. For example, in Fig. 1�d� and �e� we
display Bu and Bw �computed via the HTD� for the sum of
two sinusoids of Eq.�10�. The bandwidths are shown as
‘‘error bars’’ around their respective frequency estimates.
Note that fora1�a2 �i.e., when there is not a single promi-
nent harmonic in the spectrum� Bu takes unnaturally large
values. As noted below,Bw is the rms formant bandwidth.
Henceforth,Bw is used as the formant bandwidth estimate.

The �squared amplitude� weighted estimatesFw andBw

are time domain equivalents of the first and second central
spectral moments of the signal�Ville, 1948; Mandel, 1974;
Cohen and Lee, 1992; Potamianos and Maragos, 1994b�.
This explains why the weighted estimates are more robust
than the unweighted ones. It also offers an alternative way of
computing theFw andBw estimates in the frequency domain
�see Sec. V�. Note that sinceBw equals the second spectral
moment,Bw is by definition the rms bandwidth of the signal.

Overall, the HTD and the ESA provide similar fre-
quency and bandwidth short-time estimates, while the ESA
has smaller computational complexity and better time reso-
lution �Potamianos and Maragos, 1994b�. According to the
ESA error bounds formulated by Maragoset al. �1993a� the
performance of the ESA deteriorates as the carrier frequency
�formant� approaches the modulation frequency�fundamen-
tal�. Thus for frequency bands centered close to the funda-
mental frequency the HTD can produce smoother estimates
than the ESA, when a careful and computationally expensive
implementation is used for the discrete-time HTD. In prac-
tice, for frequency bands in the 0- to 500-Hz range, the short-
time frequency and�especially� bandwidth estimatesBw are
more accurate when computed by the HTD than the ESA. If
accurate formant bandwidth estimates are needed in this low-
frequency range the HTD should be used for demodulation;
otherwise the ESA should be used for computational effi-
ciency.

III. MULTIBAND DEMODULATION FORMANT
TRACKING ALGORITHM

Next, a parallel multiband filtering and demodulation
scheme for formant tracking is proposed. The speech signal
is filtered through a bank of Gabor bandpass filters, uni-
formly spaced in frequency with�typical� effective rms Ga-
bor filter bandwidth of 400 Hz. The amplitude envelope
�a(t)� and instantaneous frequencyf (t) signals are estimated
for each Gabor filter output. Short-time frequencyFw(t,�)
and bandwidthBw(t,�) estimates are obtained from the in-
stantaneous amplitude and frequency signals
Eqs. �8� and
�9�� for each speech frame located around timet and for each
Gabor filter centered at frequency�. The time–frequency
distributionsFw(t,�), Bw(t,�) have time resolution equal to
the step of the short-time window�typically 10 ms� and fre-
quency resolution equal to the center frequency difference of
two adjacent filters�typically 50 Hz�.

In Fig. 3�c�, we plot the value of the short-time fre-
quency estimatesFw(t,�) for every frequency band centered
at frequency� versus timet for the sentence in�a�. Note that
the y axis in Fig. 3�c� represents the range ofFw . In �c�, the
formants tracks are denoted as regions of high plot density

�high concentration of frequency estimates� in a similar way
that high Fourier amplitudes outline the formant tracks at the
speech spectrogram of Fig. 3�b�. We refer to the time–
frequency representation of Fig. 3�c� as thespeech pykno-
gram 
‘‘pyknogram’’ stems from the Greek word ‘‘pykno’’
(�����́s�dense�. The pyknogram displays clearly the for-
mant positions�and bandwidths� and possibly the location of
the spectral zeros�low density areas�. Note that a similar
time–frequency representation has been proposed by Fried-
man �1985�, where for each frequency band the instanta-
neous frequency signal is computed, smoothed in the fre-
quency and time domains and displayed versus time.

In Fig. 4, we show the frequencyFw(�,t0) and band-
width Bw(�,t0) estimates versus the center frequency of the
Gabor filters�, for a single analysis frame centered att0.
Note that the speech resonances in the Fourier spectrum ap-
proximately correspond to points where the Gabor filter cen-
ter frequency� and the short-time frequency estimateFw���
are equal, i.e.,Fw�����. These are points where the solid
line �frequency estimate� meets the dotted one�Gabor filter
center frequency�. In addition, we have observed that band-
width Bw��� minima also indicate the presence of formants.

A simple way to define raw formant estimates is as the
frequencies where the Gabor filter center frequency� and the
short-time frequency estimateFw��� are equal, i.e.,
�� :Fw������. Yet, we have observed from synthetic and real
speech experiments that for a ‘‘weak’’ formant the
�� :Fw������ estimate is biased toward the frequency of a
neighboring ‘‘strong’’ formant. As a result the second and
higher formant tracks may be inaccurate, especially when the
separation of two formant tracks is small. More accurate for-
mant estimates are obtained from the value ofFw��� at in-
flection points, where�2Fw���/��2�0. Inflection points of
Fw��� correspond to dense regions of the pyknogram because
the slope�Fw�/����0

, measuring the concentration of fre-

quency estimates around�0, has minima there. For best re-
sults a hybrid raw formant decision is used:��:Fw������ for
��500 Hz and�Fw(�):�2Fw(�)/��2�0� for ��500 Hz.

For the raw formant atFw��0� the slope ofFw��� at �0,
�Fw(�)/����0

determines the prominence of the formant

candidate. As the slope�Fw(�)/����0
approaches zero, the

short-time frequency estimateFw��� becomes almost con-
stant for bands around�0, a sign that a ‘‘strong’’ formant
peak exists in the vicinity. Clearly the slope for a legitimate
formant candidate ranges from zero�most probable candi-
date� to one�least probable candidate�. One may either use
�Fw���/�� as a weight in the formant tracking decision algo-
rithm or a threshold�typically 0.6 to 0.8� can be imposed on
the slope. In this paper, we have implemented the latter ap-
proach with good results; i.e., only formant candidates with
slopes below 0.7 are selected as raw formants. The former
approach, although more complicated, is attractive and
should be investigated in the future.

In brief, for a speech analysis frame centered at timet
the raw formants RF are obtained from the time–frequency
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distributionFw(t,�) as follows:

RF1�� �:„Fw�����… and � �Fw���

��
�0.7�

and ���500�� , �11�

RF2�� Fw���:� �2Fw���

��2 �0� and � �Fw���

��
�0.7�

and ���500�� , �12�

RF�RF1�RF2, �13�

FIG. 3. �a� Speech signal: ‘‘Show me nonstop from Dallas to Atlanta,’’�b� wideband spectrogram and�c� pyknogram, i.e., the short-time frequency estimates
Fw(t,�) for the output of 80 Gabor filters spanning��200 to 4200 Hz displayed versus time�analysis frame update is 12.5 ms�.
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where� denotes set union.
In Fig. 5�a�, we display the raw formant estimates for

the sentence of Fig. 3�a�. A three-point binomial smoother is
applied onFw(t,�) in the time domain before the raw for-
mant estimates are computed. In Fig. 5�c� the formant tracks
�frequency and bandwidth� are shown superimposed on the
speech spectrogram. Formant bandwidths are obtained from
the Bw estimate. Note thatBw is an estimate of the rms
formant bandwidth.

The decision algorithm used to convert raw formants to
formant tracks is similar to linear prediction�LP� based for-
mant tracking algorithms�McCandless, 1974�. Special care
is taken for nasals sounds where a ‘‘nasal formant’’ between
the first and second formant is allowed to be ‘‘born’’ and to
‘‘die.’’ The decision algorithm consists of three steps. First,
we search for anchor formant segments, i.e., segments where
the formants tracks are well separated in frequency and well
defined. Next, the formant tracks between anchor segments
are filled using continuity constraints. Finally, we determine
if a nasal formant is present between the first and the second
formant tracks. The decision algorithm is kept simple since
the number of spurious raw formants is very small. In gen-
eral, the choice of a decision algorithm depends on the ap-
plication. In our case, the formant tracks are used for vocod-
ing so the decision algorithm is tuned to guarantee
continuous formant tracks. Alternative formant decision al-
gorithms based on evaluating all possible combinations of
raw formants to formant tracks can be found in the literature,
e.g., hidden Markov model decoding�Kopec, 1986� or a
functional minimization approach�Laprie and Berger, 1994�.

IV. PERFORMANCE AND COMPARISONS

The multiband demodulation analysis�MDA � formant
tracking algorithm was tested on synthetic speech signals
produced by a cascade formant synthesizer. An example is
displayed in Fig. 6. Speech was synthesized using the tracks
shown as dotted lines in Fig. 6�b�. The formant trajectories
were designed by hand�nonsense utterance� and their 3-dB
bandwidths were constant throughout the synthetic utterance
at 60, 70, and 80 Hz for the three formants. The MDA raw
formant estimates are shown in Fig. 6�a� and the resulting
formant tracks are shown at�b� as solid lines. The algorithm
produced good formant estimates and was able to accurately
track rapidly evolving formant tracks and weak formants.
Formant merging occurred for frequency separation less than
approximately 150 Hz, as shown for the second and third
tracks in Fig. 6�b�. In this case, increased frequency discrimi-
nation can be obtained by decreasing the bandwidths of the
filters in the filterbank. The formant bandwidth estimates
were also accurate. An empirically determined bandwidth
correction factor was applied in regions where formant varia-
tions were greater than 100 Hz/10 ms to compensate for
overestimated bandwidth values.

Overall, the MDA produced accurate formant frequency
and bandwidth estimates for synthetic speech. The formant
estimates were more accurate for lower than for higher fun-
damental frequency values. In general, when the fundamen-
tal frequency is comparable to the bandwidth of the Gabor
filter, only a single speech harmonic ‘‘falls inside’’ the filter

FIG. 4. The short-time Fourier transform, the frequencyFw(�) and bandwidthBw(�) estimates versus the center frequencies� of the Gabor filters, for a
25-ms segment of speech.
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and the MDA tracks the most prominent harmonic in the
formant band instead of the formant frequency. In this case,
the bandwidth estimates are also noisy. For high-pitched
speech more accurate formant tracks can be obtained by in-
creasing the bandwidth of the Gabor filters. In general, when
choosing the filter bandwidth the trade-off between increased
frequency discrimination and accurate formant estimates for

high-pitched speakers should be considered carefully.
Next the formant tracking algorithm was tested on clean

and on telephone speech from the TIMIT and NTIMIT data-
bases, respectively, with good results. The quality of the for-
mant tracks was determined by superimposing the estimated
formant trajectories on the speech spectrogram. The formant
frequency and bandwidth estimates were accurate in all cases

FIG. 5. MDA formant tracking on the speech signal of Fig. 3�a�: �a� Raw formant estimates,�b� formant tracks: frequency and bandwidth�the bandwidth is
equal to the length of the ‘‘error bar’’ centered at the formant frequency�, and�c� formant tracks superimposed on the speech spectrogram.
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except for high-pitched female speakers. Further, the perfor-
mance of the algorithm on telephone speech sentences
�NTIMIT � was good. The estimated formant tracks were
similar to the ones obtained from the corresponding high-
quality TIMIT sentences. Problems occurred for the third
formant track when it exceeded 2500 Hz due to the bandpass
filtering effects of the telephone channel. Also, weak formant
tracks were sometimes inaccurate or lost due to noise. Over-
all, the MDA formant tracking performed well for both clean
and telephone speech.

Most formant tracking algorithms are based on a short-
time linear prediction�LP� analysis. LP is a parametric
method that computes a predetermined number of formant
estimates, independent of the actual number of spectral peaks
in the spectrum. In addition, the formant frequency accuracy
is affected by the preemphasis and the harmonic structure of
the spectrum, and the formant bandwidth estimates are unre-
alistic. Finally, LP-based formant trackers encounter prob-
lems with nasals and nasalized vowels. The multiband de-
modulation approach overcomes most of these problems. In
Fig. 7, we display the LP raw formant frequency and band-
width estimates for comparison with the MDA estimates in
Fig. 5. Although the long-term formant trajectory shapes
look similar �except for nasalized speech, where the MDA

formant tracker sometimes produces an extra low-frequency
formant� there are some important differences over small
scales. LP produces a number of spurious formants that may
confuse the formant decision algorithm. Also, the LP raw
formants estimates are noisy, especially for weak and/or
higher formants. Finally, in�b� the LP bandwidth estimates
�shown as ‘‘error bars,’’ scaled up four times� are inaccurate
and very noisy. Overall, the MDA formant tracking algo-
rithm has the attractive features of being conceptually simple
and easy to implement in parallel. It behaves well in the
presence of nasalization�by tracking an extra nasal formant�,
provides good formant bandwidth estimates, and produces
very few spurious raw formants. Currently, the MDA for-
mant tracker is being integrated into theAM–FM modulation
vocoder �Potamianos and Maragos, 1994a�.

An iterative demodulation algorithm for formant track-
ing has been proposed by Hansonet al. �1994�. Initial for-
mant estimates are refined through an iterative scheme: A
Gabor bandpass filter is centered at the initial formant esti-
mate; the speech resonance is extracted through filtering, de-
modulated, and the short-time average frequencyFu is com-
puted. At the next iteration the Gabor filter center frequency
is set to the formant estimateFu . The algorithm converges to
a formant whenFu does not change significantly from itera-

FIG. 6. MDA formant tracking on synthetic speech:�a� Raw formant estimates.�b� Formant tracks: computed�solid line� versus actual�dotted line�.
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tion to iteration. For the iterative ESA theFu frequency es-
timate is preferred overFw because the use ofFu increases
substantially the convergence speed to a formant. Overall,
the MDA produces better formant estimates than the iterative
ESA especially in regions when the separation between for-
mant tracks is small. This is due to the improved raw for-
mant decision algorithm of the MDA. A modified iterative
ESA algorithm that uses gradient descent to reach the local
minima of �Fu���/�� could significantly improve the accu-
racy of the formant tracks produced by the iterative ESA.

V. DISCUSSION

The multiband demodulation formant tracking algorithm
uses a bank of uniformly spaced Gabor filters. Alternatively,
for a small additional computational cost, a Gabor wavelet
�constant-Q filterbank� can be used. Increasing the spacing of
the bandpass filters with frequency decreases the frequency
discrimination for higher formants. This is compatible with
the formant frequency perceptual resolution�limens� of the

ear. In Hansonet al. �1994�, the performance of the iterative
ESA formant tracker has improved by using constant-Q fil-
ters.

As discussed in Sec. II, the choice of the unweightedFu

versus the weightedFw frequency estimates is the choice
between ‘‘fast convergence’’ to a formant and robust raw
formant estimates. In general, for the MDA formant tracking
algorithm we prefer to use the more reliable weighted esti-
mateFw . When the frequency axis is poorly sampled�i.e.,
when only a few Gabor filters are used�, though, Fu can
produce better results thanFw , sinceFu provides good for-
mant estimates even when the Gabor filter is not centered
exactly on the formant frequency.

We mentioned in Sec. II, that theFw andBw estimates
are equivalent to the first and second spectral moments that
can be computed in the frequency domain via the fast Fou-
rier transform �FFT�. This results in significant computa-
tional savings since the Gabor filtering can be implemented
by multiplication in the frequency domain and no demodu-
lation is needed. TheFw andBw estimates computed in the
frequency domain take similar values to their time domain

FIG. 7. LP raw formant frequency�a� and bandwidth�shown as ‘‘error bars,’’ scaled up four times� �b� estimates for the speech signal shown in Fig. 3�a�;
LP analysis order is 12, preemphasis is 0.5, window size is 25 ms updated every 12.5 ms.

3804 3804J. Acoust. Soc. Am., Vol. 99, No. 6, June 1996 A. Potamianos and P. Maragos: Speech formant tracking



equivalents when adequately ‘‘long’’ FFT implementation
are used. A 1024-point FFT gives good results for sampling
frequency at 16 kHz and a short-time analysis window of 20
ms. From our simulations on synthetic speech, though, we
have observed that the time domain implementation is able
to better resolve ‘‘weak’’ formant regions. In addition, when
using the time domain implementation, one may enhance the
time resolution of the formant tracks at a small computa-
tional cost by simply decreasing the size of the short-time
averaging window in a second pass of the algorithm.

Next we propose an alternative formant decision algo-
rithm that applies image processing techniques directly on
the speech pyknogram. The information in the pyknogram
can be mathematically represented as a two-dimensional set
in the time–frequency plane. As seen from Fig. 3�c�, the
formant tracks manifest themselves as relatively thin and
elongated geometrical structures. Formant tracking can be
performed on the pyknogram by cleaning these dense re-
gions from the surrounding clutter and thining them down to
a single point at each time instant. Such a geometrical analy-
sis of the pyknogram can be rigorously quantified using the
concepts and operations of mathematical morphology. This
is a powerful set-theoretic methodology for image analysis
that can quantify the shape, size, and other geometrical as-
pects of image objects; it has found many applications in
image processing and nonlinear filtering�Serra, 1982; Mara-
gos and Schafer, 1990�. As a continuation of the work in this
paper, we plan to apply algorithms from morphological im-
age analysis for cleaning, segmentation, and thining of the
formant tracks in the pyknogram.

Finally, one could possibly use multiband demodulation
for spectral zero tracking. In Fig. 3�c�, zeros sometimes
manifest themselves as areas of low plot density�e.g., for
nasalized sounds an antiformant can be observed between
the second and the third formant track�. More work is under-
way for antiformant tracking using the multiband demodula-
tion analysis�MDA �.

VI. CONCLUSIONS

In this paper, we have presented a collection of ideas
and algorithms for estimating the speech formant parameters
and for tracking their evolution in time. The formant tracking
algorithm was presented in the the framework of the
AM–FM speech modulation model and the main speech
analysis tool used was multiband filtering followed by de-
modulation�MDA �. We have shown that the proposed MDA
formant tracking algorithm produces good formant fre-
quency and bandwidth estimates for synthetic, clean and
telephone speech, while overcoming most of the drawbacks
of LP-based formant trackers. In addition, we demonstrated
that the MDA approach is a powerful speech analysis tool
that produces rich time–frequency representations such as
the speech pyknogram. Further, in this paper, we have com-
pared the unweighted mean and the�squared amplitude�
weighted mean of the instantaneous frequency for formant
frequency estimation. We concluded that the weighted esti-
mate provides in general more reliable and accurate formant
locations. The unweighted mean is preferred when the filter
�used for extracting the formant from the spectrum� is posi-

tioned far from the formant or for increased convergence
speed in an iterative formant tracking scheme.

Overall, the multiband demodulation formant tracker
produced very promising results which suggests that the
AM–FM modulation model and the energy demodulation
algorithms are a useful modeling approach for speech analy-
sis.
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APPENDIX

Consider the sum of two or more sinusoids with time-
varying amplitudesan(t) and constant frequenciesf n �the
analysis that follows also holds for an additional slow-
varying phase modulation term, i.e., for a sum of amplitude
and frequency modulated sinusoids�,

x� t ���
n

an� t �cos
2� f nt��n�. �A1�

Assuming that the bandwidth ofx(t) is much smaller than
the mean carrier frequency�mean off n�, the quadrature error
will be small �Nuttall, 1991� and the Gabor analytic signal
z(t) of x(t) is

z� t ���
n

an� t �exp
 j�2� f nt��n��. �A2�

The HTD estimates for the amplitude envelope�a(t)� and
instantaneous frequencyf (t) are 
assuming thatan(t) is
slowly varying compared to cos(2� f nt)]

�a� t ����z� t ���„�n,k an� t �ak� t �cos
2�� f n� f k�t���n

��k��…1/2, �A3�

f � t ��
d

dt
�z� t ��„�n,k f nan� t �ak� t �cos
2�� f n� f k�t

���n��k��…/
a� t ��2. �A4�

For the case of two sinusoids�we set�1��2�0 for simplic-
ity�

�a� t ����a1
2�a2

2�2a1a2 cos
�� t� �1/2, �A5�

f � t ��„a1
2f 1�a2

2f 2�a1a2� f 1� f 2�cos
�� t�…/
a� t ��2,
�A6�

where ���2�( f 1� f 2). At envelope maxima and minima
�cos[�� t] ��1� �a� and f take the values

�a���a1�a2�, f �
a1f 1�a2f 2

a1�a2
. �A7�

Thus at envelope minimaf presents spikes pointing toward
the frequency of the sinusoid with the larger amplitudean .
From Eqs.�A5� and�A6� the short-time frequency estimates
Fu and Fw defined in Eqs.�8� and �9� are approximately
equal to�depending on the analysis frame boundaries�
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Fu� � f 1 ,
f 2 ,

a1�a2

a1�a2
, Fw�

a1
2f 1�a2

2f 2

a1
2�a2

2 ; �A8�

i.e., Fu locks onto the frequency component with the larger
amplitude, while Fw provides a �squared amplitude�
weighted mean frequency.

One can obtain equations similar to�A3� and �A4� for
the ESA but they are of little intuitive value. Instead we
investigate the case of the sum of two amplitude modulated
sinusoids. The value of the amplitude envelope�a� and in-
stantaneous frequencyf at envelope maxima and minima
�derived from the continuous time ESA� are

�a���a1�a2�, f �	a1f 1
2�a2f 2

2

a1�a2
	1/2

. �A9�

As a result, the frequency presents spikes at envelope
minima that point toward the frequency of the sinusoid with
the larger amplitude frequency product, i.e.,an f n . Similarly,
the short-time estimateFu is approximately equal to the fre-
quency of the sinusoid with the larger amplitude frequency
productan f n , while Fw takes values similar to Eq.�A8�.

The Fw estimate computed using the ESA takes slightly
higher values thanFw computed using the HTD, especially
for a1�a2 . This is due to the increased frequency weighting
in Eq. �A9� compared to Eq.�A7�. In general, the perfor-
mance of the ESA and the HTD is almost identical for
speech formant demodulation provided that the fundamental
frequency is much smaller than the formant frequency. For a
large-bandwidth multicomponent signal, though, the two de-
modulation algorithms can produce quite different results.
There, the ESA frequency estimates are biased
the ESA
overestimates the frequencies as can be seen from comparing
Eqs.�A7� and �A9��.

For a sum of more than two�AM–FM� sinusoids
Fw�(�nan

2f n)/(�nan
2) 
directly from Eqs.�A3� and �A4��;

i.e., Fw weights each frequency with the squared amplitude.
The behavior ofFu is more complicated. In general, if the
signal consists of only one or two prominent sinusoids,Fu

will lock onto the frequency of the sinusoid with the greatest
amplitude. This is typically the case for a speech resonance
signal.
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